Math 1B, Fall 2008, Wilkening Midterm 2, version 1,3,5 0. (1 point) write your name, your GSI’s name, and your section number at the top of your exam. P 2n 1. (3 points or 0 points) Suppose |cos x| = 6 1. Evaluate ∞ n=0 (cos x) . a. cot x b. csc2 x c. cosh x x d. √1−x 2 e. none of the above 2. (3 points or 0 points) Describe the behavior of the sequence a1 = 0, an+1 = a. b. c. d. e. a2n + 3 4 an increases monotonically and converges to 1 an increases monotonically and converges to 3 an increases monotonically to ∞ an decreases monotonically to −∞ an is not monotonic 3. (3 points or 0 points) Supppose 0 < an < 1, an < bn , and Circle all the statements that are necessarily true: P 2 P 2 P a. bn converges and b < bn P√ Pn √ P bn converges and bn < bn b. P 2 P 2 P c. an converges and a < an P√ Pn√ P d. an converges and an < an P e. if p > 0 then (−1)n apn is convergent 2 P bn is convergent. 4a. (3 points) Let f (x) = e−x . Write down the Maclaurin series for f (x) and evaluate f (99) (0) and f (100) (0). 4b. (4 points) Find all x that satisfy the equation ∞ X 1 nxn = . 2 n=1 5. (2 points each) For each of the following series, determine whether the series is absolutely convergent (AC), conditionally convergent (CC), or divergent (D). Show some work, but do not spend excessive time justifying all your steps. ∞ X (−1)n [sin(1/n2 )]2/3 n=1 ∞ X ln cos n=1 1 n ∞ X (2n)! 3n (n!)2 n=1 ∞ X 5 n=0 n 3n 6a. (2 pts) Is the following statement True or False? Justify your answer with a proof or counterexample. (Obviously it’s true if an ≥ 0 and bn ≥ 0, so don’t assume this). P P an is divergent and bn is divergent, then (an + bn ) is also divergent. P P n 6b. (3 points) Suppose cn xn has radius of convergence 2 while dP n x has radius of convergence 5. What is the radius of convergence of the series (cn + dn )xn ? Explain. If P 7a. (3 points) Prove that e ≥ 1 1+ k k for k ≥ 1. Hint: ln(1 + x) = x − x2 2 +··· 7b. (3 points) Use part (a) and mathematical induction to prove the following crude version of Stirling’s approximation: en n! ≥ nn for all n ≥ 1. Math 1B, Fall 2008, Wilkening Midterm 2, version 2,4,6 0. (1 point) write your name, your GSI’s name, and your section number at the top of your exam. P 2n 1. (3 points or 0 points) Suppose |sin x| = 6 1. Evaluate ∞ n=0 (sin x) . a. tan x b. sec2 x c. sinh x x d. √1−x 2 e. none of the above 2. (3 points or 0 points) Describe the behavior of the sequence a1 = 2, an+1 = a. b. c. d. e. a2n + 3 4 an increases monotonically and converges to 3 an decreases monotonically and converges to 1 an increases monotonically to ∞ an decreases monotonically to −∞ an is not monotonic 3. (3 points or 0 points) Supppose 0 < an < 1, an < bn , and Circle all the statements that are necessarily true: P 2 P 2 P a. an converges and a < an P√ Pn√ P an converges and an < an b. P 2 P 2 P c. bn converges and b < bn P√ Pn √ P d. bn converges and bn < bn P e. if p > 0 then (−1)n apn is convergent 3 P bn is convergent. 4a. (3 points) Let f (x) = e−x . Write down the Maclaurin series for f (x) and evaluate f (99) (0) and f (100) (0). 4b. (4 points) Find all x that satisfy the equation ∞ X n=1 nxn = 1. 5. (2 points each) For each of the following series, determine whether the series is absolutely convergent (AC), conditionally convergent (CC), or divergent (D). Show some work, but do not spend excessive time justifying all your steps. ∞ X [sin(1/n2 )]1/3 n=1 ∞ X (−1)n ln cos n=1 1 n ∞ X (2n)! 5n (n!)2 n=1 ∞ X 5 n=0 n (−3)n 6a. (2 pts) Is the following statement True or False? Justify your answer with a proof or counterexample. (Obviously it’s true if an ≥ 0 and bn ≥ 0, so don’t assume this). P P an is divergent and bn is divergent, then (an + bn ) is also divergent. P P n 6b. (3 points) Suppose cn xn has radius of convergence 2 while dP n x has radius of convergence 1. What is the radius of convergence of the series (cn + dn )xn ? Explain. If P 7a. (3 points) Prove that e ≥ 1 1+ k k for k ≥ 1. Hint: ln(1 + x) = x − x2 2 +··· 7b. (3 points) Use part (a) and mathematical induction to prove the following crude version of Stirling’s approximation: en n! ≥ nn for all n ≥ 1. results.txt Tue Nov 04 23:56:56 2008 1 results of second midterm: # students: 345 total possible: max score: average: standard dev: 36 points 32 points 14.09 5.93 rough grading scale (worry about +/- later) raw score 19-32 14-18 10-13 6-9 1-5 grade A B C D F # of students 88 88 81 71 17 curve for comparison to other midterm and final: curved score = 35 + 2.75 * raw score histogram: raw score 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 # students 1 0 5 5 6 19 18 16 18 14 21 27 19 21 17 15 18 17 18 21 13 5 9 9 5 1 1 2 2 0 1 1 running total 1 # 1 6 ##### 11 ##### 17 ###### 36 ################### 54 ################## 70 ################ 88 ################## 102 ############## 123 ##################### 150 ########################### 169 ################### 190 ##################### 207 ################# 222 ############### 240 ################## 257 ################# 275 ################## 296 ##################### 309 ############# 314 ##### 323 ######### 332 ######### 337 ##### 338 # 339 # 341 ## 343 ## 343 344 # 345 # the answers below were written up by Peter Mannisto and James Tener.
© Copyright 2026 Paperzz