The Welfare Costs of Tied Food Aid Abbott, P.C. and McCarthy, F.D. IIASA Collaborative Paper March 1981 Abbott, P.C. and McCarthy, F.D. (1981) The Welfare Costs of Tied Food Aid. IIASA Collaborative Paper. IIASA, Laxenburg, Austria, CP-81-008 Copyright © March 1981 by the author(s). http://pure.iiasa.ac.at/1795/ All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting [email protected] NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR THE WELFARE COSTS OF TIED FOOD AID philip C. Abbott F. Desmond McCarthy March, 1981 CP-81-8 C o Z Z a b o r a t i v e P a p e r s report work which has not been performed solely at the International Institute for Applied Systems Analysis and which has received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria PREFACE The aid given to some developing countries often has conditions attached. This is particularly true in the case of food aid. These conditions are often referred to in the literature as tied aid. This paper analyses various tying techniques. It estimates the type of losses which ensue and some of the strategies that may be adopted by the recipients. iii The Welfare Costs of Tied Food Aid bs P h i l i p C. Abbott and F. Desmond McCsrthy It is now generally understood t h a t aid-tying, whether by source o r project, imposes an excess cost when t h e t y i n g i s effective.- 1/ However, t h e analysis of such r e s t r i c t i o n s has not been integreted i n t o a general equilibrium framework i n t h e developmental l i t e r a t u r e . Hence, it is i n s u f f i c i e n t l y appreciated t h a t t h e problen of assessing t h e b e n e f i t s (and possibly l o s s e s ) from t h e r e c e i p t of t i e d a i d i s e s s e n t i a l l y one of constrained maximization .-2/ The inadequacy i s p a r t i c u l a r l y evident i n t h e analysis of P.L. The c l a s s i c a r t i c l e s by Schultz (1960) and Fisher (1963) 480 aid. focussed exclusively on t h e impact of P.L. production. 480 a i d on domestic food On t h e other hand, even i f such an e f f e c t were present, the welfare *act of t h e r e c e i p t of food a i d could be positive. It i s the purpose of t h i s note t o develop t h e analysis of t h e l a t t e r question systematically. In doing t h i s , we note t h a t P.L. 480 a i d comes t o a country not e n t i r e l y as a grant. The c o n s t r a i n t s posed by t h e food a i d (vis-a-vis Philip C. Abbott is with the Department of Economics, Northeastern University, F. Desmond McCarthy is with the International Institute for Applied Systems Analysis, Laxenburg, Austria. The authors wish to acknowledge the helpful suggestions of Professors J.N. Bhagwati and L. Taylor of M.I.T. 1/ For t h e project-tying, s e e Singer (19651, f o r source t y i c g see Haq (1965) and Bhagwati (1968). 2/ Hovever, t h e general equilibrium approach has e a r l i e r been developed i n t h e trade-tfieoretic, a s d i s t i n c t from t h e developmental l i t e r a t u r e , by 3hagwati (1968). cash a i d ) may r e l a t e t o d m e s t i c consumption o r production o r imports and t h a t t h e l o s s r e s u l t i n g *om -- meeting such c o n s t r a i n t s nay not be t h e minimal one, s i n c e second-best p o l i c i e s may be u t i l i z e d t o meet t h e constraints. We u t i l i z e t h e usual t r a d e - t h e o r e t i c model, which assumes two t r s d a b l e s (one being food) and f i x e d i n t e r n a t i o n a l p o l i c i e s , with t h e food a i d t h e n c o n s t i t u t i n g a " t r a n s f e r " r e c e i p t . fPcnn standard t r a d e - t h e o r e t i c The key d i f f e r e n c e a n a l y s i s i s t h a t t h e p o s t - t r a n s f e r equil- ibrium must r e r l e c t t h e a d d i t i o n a l c o n s t r a i n t s t h a t P.L. 480 a i d l e g i s - .- l a t i o n may r e a u i r e 3/ Vhile each c o n s t r a i n t w i l l be t r e a t e d diagrammatically, we a l s o analyze it a l g e b r a i c a l l y . The n o t a t i o n used f o r t h e l a t t e r w i l l be as follows: U Domestic c o n s ~ t i o nof good Yi : Domestic productian of good A : Aid received, i n t h e form o f good 1 p : World Market P r i c e of good 1 denominated i n terms of good 2 : S o c i a l U t i l i t y Function ( c ~ c2) , F (Y1, 1 - i = 1,2 Ci : y2) : a : i' i' i = 1,2 Reduction P o s s i b i l i t y R o n t i e r Grant ccmponent o f a i d . Hence, t h e r e a r e two goods i n t h i s v o r l d , t h e a i d good 1 (food) and all 3/ The usual t r a n s f e r problem a n a l y s i s , of course, i s a l s o of i n t e r e s t when t h e terms of t r a d e caD vary. E3y c o n t r a s t , w e a r e assuming here t h a t t h e terms o f t r a d e a r e f i x e d , s i n c e a i d rec i p i e n t s g e n e r a l l y meet t h e requirements of t h e s m a l l country assumption. 0th- goods. It i s assumed t h a t U (cl, C2) and P (Y1, conditions f o r d i f f e r e n t i a l b i l i t y a s required, and U p a r t i a l derivatives with respect t o Ci and Yi, i Y2) satisf'y and Fi denote respectively. Throughout t h e analysis non-specialization i n consumption and production w i l l be assumed, and t r a d e i s allowed, except when s p e c i f i c c o n s t r a i n t s a r e introduced. I. We w i l l t h e r e f o r e be concerned only wikh i n t e r i o r maxima. Consumption Constraint It is assumed t h a t p r i o r t o receiving aid, t h e r e c i p i e n t country, a small, open economy;' maximizes its s o c i a l u t i l i t y U and this r e s u l t s i n a l e v e l of consumption q f o r t h e a i d gwd. After receiving a i d , t h e - consumption l e v e l of good 1 i s constrained t o be C1 = C1 + A. (This 1s t h e c o n s t r a i n t of " a d d i t i a a l i t ~which ~ i s o f t e n thought t o be applied 480 donations.) In US P.L. I n addition, t h e country now seeks t o max- imize U subject t o t h i s constraint and a l s o t h e production and foreign exchange constraints. The problem faced by t h i s country can, therefore, be specified a s f o l l m : Hlu u (C1, Social U t i l i t y c2) Production P o s s i b i l i t y Frontier s.t. F (yl, y2) = 0 p. [cl - (1- + Cp - Y:, = 0 Foreign Exchange Constant Additionality Constraint A geometric i n t e r p r e t a t i o n of t h e problem i s given i n Fig. 1. -4/ This implies t h a t i t s behavior does not e f f e c t p, t h e world p r i c e of good 1. a a Good 2 (all other Goods) Good 1 (Food) Figure 1. Consumption Constraint o n Aid Recipient I n i t i a l production i s a t P and consum-ption a t C , giving maximum u t i l i t y U1. A.fter t h e i n f l u x of a i d t h e grant c a g o n e n t moves t h e foreign ex- change constraint t o albl'yielding t h e primary gain. - t h e a d d i t i o n a l i t y c o n s t r a i n t C1 = C1 l i e on t h e l i n e ed. If one now imboses + A then a solution must a l s o The opthum outcome f o r t h e case i l l u s t r a t e d (with a ) 0) is a t s where t h e u t i l i t y i s below pre-aid l e v e l U1. A primary gcrin moves ab t o a'b"and then t h e concomitant l o s s occurs due t o t h e binding consumption d i s t o r t i o n . It i s evident t h a t i f t h e consumption constraint were not binding a gain would r e s u l t ; a s a'b'passes above U f o r same portion of t h a t curve. 1 It should a l s o be noted t h a t t h e outvard s h i f t of t h e budget c o n s t r a i n t a'b' a = 0, a'b' transfer. i s determined by a s h i f t s by an amount A, and so C: In t h a t case, no l o s s occurs. . If equals Cpprior t o t h e a i d If a exceeds 0, however, then a'b' s h i f t s out by an amount l e s s than A, so t h a t C2 i s reduced and a l o s s i n u t i l i t y may result. I n t h e extreme case where a = 1, then ab does not s h i f t , and a l o s s i s obvious. The optimum s o l u t i o n under t h e consumption a d d i t i o n a l i t y constraint may a l s o be obtained a n a l y t i c a l l y . The change i n s o c i a l u t i - Uty, du, obtained i s given by: (see appendix 1 f o r t h e derivation ; t h e case where t h e additionU t y constraint i s not binding i s a l s o t r e a t e d t h e r e ) If t h e a d d i t i o n a l i t y constraint i s binding, then it follows t h a t dC1 = dA. Production i s kept at t h e optimum by maintaining t h e pre-aid prices t o t h e producer. A consumption t a x cum subsidy i s reauired t o insure consmption a t s ( ~ i g .1 , ) . dU = UldA - u1 'pU2 - A3 dU - The change i n U i s given by: a pU2dA also: so t h a t : ((1 o ) pU2 - X 3 ) dA where X can be thought of a s t h e shadow p r i c e of t h e a d d i t i o n a l i t y 3 constraint. Since CI is fixed, t h e o t h e r constraints and first order conditions a l s o f i x C2. U = U (q+ A, c2). U1 and U2 are evaluated a t t h i s point, where Note t h a t when t h e a d d i t i o n a l i t y constraint did not apply, optimality conditions required t h a t t h e country always gain, The constrained s o l u t i o n , however, allows Up> U1/p which is why t h e country may lose, One should note that i n Fig, 1, t h e s o c i a l u t i l i t y function is no longer tangent t o t h e budget c o n s t r a i n t ( l i n e a%'' ) a t point s , t h e constrained outcome, Some observations a r e relevant a t t h i s juncture, The above conditions imply t h a t if a country i s following optimal production policy, p r i c e t o farmers w i l l not equal p r i c e s to consumers. of t h e presence of a ire resource - t h e food aid, This occurs because This i s then allocated between farmers and consumers by appropriate p r i c e s t o each, !he a i d inflow w i l l be used t o subsidize lower food p r i c e s t o consumers (and i n e f f e c t , higher food p r i c e s t o producers than would otherwise obtain). Hence, t h e c o n s t r a i n t s considered here do not necessarily impose t h e Schultzian disincentive e f f e c t . Hence, i f a p p r o p r i a t e p o l i c y i s followed t h e r e w i l l not b e any change i n domestic production. By u s e o f an a p p r o p r i a t e wedge, i n c e n t i v e t o produce i s not reduced, s i n c e t h e producer f a c e s t h e same ( p r e - a i d ) r e l a t i v e p r i c e s . Thus, a c o n s m t i o n e x t e r n a l i t y i s b e s t handled by a c o n s u m t i o n p o l i c y o f tax and subsidy. 11. Production C o n s t r a i n t : It is assumed h e r e t h a t t h e r e c i p i e n t is r e q u i r e d by t h e a i d donor t o produce a n a d d i t i o n a l amount of t h e a i d good 1 equal t o 811 above t h e pre-aid level of TI. The problem may be s t a t e d a s follows: Max U(C1? C2) P [cl Y - 7 - (1 - Social U t i l i t y a)A - Y1) + C2 - +BA Y2 - Production P o s s i b i l i t y Frontier 0 Foreign Exchange C o n s t r a i n t Production C o n s t r a i n t Again a geometric i n t e r p r e t a t i o n i s shown i n Fig. 2. Before a i d one i s c o n s t r a i n e d by t h e world market t o ab w i t h a i d good production a t 5. I f production of good 1 is now forced t o t h e r e s u l t i n g f o r e i g n exchange c o n s t r a i n t i s a b. from t h e a i d w i l l move a'b'nut by an amount ( 1 !fl +3A The primary g a i n - a)A tt~ a' b'. One should a l s o n o t e t h a t a country c o n s t r a i n e d t o produce a t t h e Same l e v e l a s b e f o r e r e c e i p t of t h e a i d ( i . e . . , 3 = 0) w i l l always g a i n from t h e a i d i n f l o w , though t h e v a l u e of t h a t a i d i s reduced by t h e e f f e c t s of t h e c o n s t r a i n t . Also, i f t h e a i d is a l l g r a n t , t h e n a c o u n t r y w i l l g a i n once B is less t h a n u n i t y . For t h i s c o n s t r a i n t t h e domestic food p r o d u c t i o n (good 1) i n c r e a s e s . The optimum (second b e s t ) p o l i c y r e q u i r e s a ducer t a x cum s u b s i d y . pro- Such changes i n p r o d u c t i o n r e q u i r e advance n o t i c e of t h e a i d a v a i l a b i l i t y , however. Good 2 (all other Goods) 1(Food) Figure 2. Production Constraint 111. Import Constraint I n t h i s instance t h e country i s required t o lmport some given amount of food. This may a r i s e where business i n t e r e s t s i n t h e donor country seek t o i n s i s t on t h e r e c i p i e n t s of t h e i r c m e r c i a l i m ~ o r t s continuing those commercial imports o r a t l e a s t some s p e c i f i e d f r a c t i o n of t h e pre-aid l e v e l of comrmercial inqorts. The problem may be stated: Social U t i l i t y Production P o s s i b i l i t y Frontier Foreign Exchange Constraint Import Constraint The mathematical s o l u t i o n obtained f o l l a r s along similar l i n e s t o I and 11. ( s e e appendix 3 f o r d e t a i l s . ) Results again i n d i c a t e t h a t constraints came with a c o s t , and a severe enough constraint may induce a l o s s from t h e r e c e i p t of t i e d a i d . A similar problem has been analyzed by Bhagwati (1968) f o r t h e case y = 1. This i s shown in Fig. 3 and it i l l u s t r a t e s t h e points outl i n e d i n Appendix 3. I n f t i a l production and consumption a r e a t Y1 and C1 giving u t i l i t y $. a t C1 ~ i v i n gu2. I f t h e recipient i s n m constrained t o imports a t t h e For food a i d A and no c o n s t r a i n t s consumption i s pre-aid l e v e l ( y = 1) i n addition t o t h e a i d A then one possible solution is t o consume a t C1 y i e l d i n g u t i l i t y sumption t a x cum subsidy. $. This nay be r e a l i z e d by a con- This would, however, be an i n e f f i c i e n t policy. The r e c i p i e n t could a l s o s a t i s f y t h e c o n s t r a i n t and do b e t t e r i f consump- * t i o n were a t Cl y i e l d i n g U . TO achieve t h i s l e v e l , U * (higher than $) * requires producing a t Y1. Thus, t o achieve t h e optimum solution (under t h e imaosed pattern of t r a d e ) , t h e r e c i p i e n t i s obliged t o i n t e r f e r e i n both consumption and production markets. * t o Y1, production This requires a production t a x cum subsidy t o drive lowering t h e r e l a t i v e food p r i c e t o t h e producer to- * gether with a consumption t a x cum subsidy t o d r i v e consumption t o Cl 1) (assuming t h a t t h e associated U i s t h e maximum t h a t can be achieved). The two taxes should be eaual f o r a lowest cost solution. point iras not highlighted by Bhagwati. Appendix 3. This Analytical d e t a i l s a r e given i n It is noted i n this instance t h a t t h e Import constraint r e s u l t s i n t h e r e c i p i e n t producing less food domestically than i n t h e pre-aid s i t u a t i o n by making food production l e s s a t t r a c t i v e . t h e Schultzian, disincentive e f f e c t i s operating i n . t h i s case. Hence, Good 2 (all other Goods) Good 1,( Food) Fiqure 3. I m p o r t C o n s t r a i n t on Aid Recipient IV. Distributional Effects I n t h i s s e c t i o n t h e model is modified t o a n a l y z e t h e e f f e c t s on a c o u n t r y ' s w e l f a r e when a l l i n d i v i d u a l s { w i t h i n t h e c o u n t r y a r e n o t t h e same. I n o r d e r t o f o c u s on t h i s a s p e c t of t h e problem i t is assumed t h a t t h e c o u n t r y consumes a l l t h e o u t p u t and a l s o any aid. The u s u a l c a v e a t s a b o u t normative u t i l i t y f u n c t i o n s a p p l y . The a n a l y s i s o f t h e e f f e c t s i s based on a model of a c o u n t r y w i t h two c l a s s e s of w r k e r . The L1 members of t h e f i r s t produce o n l y food (Goodl) w h i l e t h e L2 members of t h e o t h e r produce o n l y machines (Good 2). lations. These may b e t y p i c a l l y r u r a l and u r b a n popu- Each c l a s s , i, consumes b o t h goods, u t i l i t y functions U i (clip CZi), i - I n d i v i d u a l s have 1 , 2 where C of food j consumed by a member o f c l a s s i and C 1,2. ji - is t h e q u a n t i t y Cjl C j 2 ' The p r o d u c t i o n f u n c t i o n s are assumed t o have t h e form: with the usual properties. j I = + A s o c i a l u t i l i t y function U f o r t h e c o u n t r y is assumed of t h e form: Before f o o d a i d a r r i v e s i t is assumed t h a t a g e n e r a l e q u i l i brium exists w i t h a l l markets i n e q u i l i b r i u m and a l l income consumed. Let a q u a n t i t y dA of food a i d a r r i v e i n t h e c o u n t r y ; t h e quest i o n of how i t is d i s t r i b u t e d is d i s c u s s e d l a t e r . It is assumed t h a t s t r u c t u r a l r i g i d i t y of t h e economy i s s u c h t h a t workers c a n n o t change from prdoucing o n e good t o a n o t h e r s o t h a t t h e p h y s i c a l o u t p u t of goods remains t h e same. (This d i s t o r t i o n is n e c e s s a r y t o make commodity t y i n g of t h e a i d i m p o r t a n t . Otherwise, s h i f t s of l a b o r between o c c u p a t i o n s w i l l m i t i g a t e t h e r e d i s t r i b u t i v e e f f e c t s of t h e a i d t r a n s - fer). However, t h e money wage of workers i n food w i l l t y p i c a l l y f a l l , i n e f f e c t reducing t h e i r a b i l i t y t o t r a d e f o r o t h e r goods. It is assumed t h a t a l l f a c e t h e same p r i c e f o r food p, w i t h t h e p r i c e f o r machines being 1. The change i n u t i l i t y f o r a member of c l a s s i i s given by The change i n u t i l i t y f o r t h e country is given by: It is of i n t e r e s t t o examine when du may be n e g a t i v e ( i . e . , aid induces a n e t l o s s i n s o c i a l u t i l i t y ) . the (The d e t a i l s a r e given i n Appendlx 4 . ) The a n a l y s i s s u g g e s t s t h a t s u f f i c i e n t c o n d i t i o n s t o produce a net l o s s i n (a) social u t i l i t y are: The d i s t r i b u t i o n of food a i d t o t h e food producing c l a s s does n o t outweigh (b) i t s l o s s i n marketed s u r p l u s . The marginal u t i l i t y of food (machines) of t h e food producers is s u f f i c i e n t l y h i g h e r than t h a t of t h e machine producers. (c) F a c t o r markets a r e r i g i d s o t h a t food producers w i l l n o t s h i f t t o producing machines. The t y p i c a l s i t u a t i o n where one might a n t i c i p a t e such a r e s u l t would be a country receiving food a i d when a l a r g e segment of i t s popu l a t i o n i s involved i n agriculture. The optimum (second b e s t ) policy i n t h i s instance n e c e s s i t a t e s a r e d i s t r i b u t i v e mechanism. This would require d i f f e r e n t consumption and production t a x cum subsidy f o r each class. V. Conclusions The analyses of c o n s t r a i n t s placed on US P.L. 480 food a i d pre- 8ented here have shown t h a t t h e value of t h a t a i d t o a r e c i p i e n t country can be sharply reduced and may i n f a c t r e s u l t i n a net l o s s i f t h a t a i d is accompanied by s u f f i c i e n t l y severe constraints. The results are summn-rized i n Table 1 f o r t h e p a r t i c u l a r models discussed. I n addition, if t h e a i d causes sharp r e d i s t r i b u t i o n a l e f f e c t s , then t h e net s o c i a l u t i l i t y of an aid receiving country may a l s o decrease. These r e s u l t s follow from t h e e f f e c t s of d i s t o r t i o n s i n a l l o c a t i o n s of renources i n t h e receiving country a s a r e s u l t of t h e c o n s t r a i n t which accmpanies t h e aid. Further, it i s a l s o important t o r e a l i z e t h a t a r e c i p i e n t may meet t h e s e c o n s t r a i n t s i n a number of ways, and f o r each s i t u a t i o n t h e r e i s an optimum (second b e s t ) policy. The departure from unified exchagge r a t e s requires a c t i v e government p a r t i c i p a t i o n t o minimize t h e loss. The lessons from US food aid, which was considered e x p l i c i t l y here, can be e a s i l y extended t o o t h e r forms of a i d which come with s t r i n g s attached. Hence, one should not assume t h a t a i d with conditions attached w i l l benefit a recipient, and even i f there i s b e n e f i t , t h e r e a l value of the aid t o a recipient rnw well be less than i t s nominal value. Table 1. SUMMARY OF EFFECTS OR RECIPIENT AID KITH CO~JSTRAINTSA ' T ' T A o OR WHEN MA~DISTRIBUTIORMISTS Cause o f Loss 1. Consumption additional it^ 2. Domestic Production Incre~se I I (&j Optimum (second best) Policy Can net loss occur if aid is all grant! Post Aid Domestic food production Consumption Tax cum subsidy ti0 Unchanged Production YES If Increase NO Decrease YES Unchanged ( short-run ) Tax cum subsidy T1 = Y i + ' B A 3- Import Level Maintenance Equal Consumption and Production tax cum subsidy C1 b. Maldistribution o f purchasing pover *Note: Different Consumption and Production tax cum subsidy for each class for 1,2 and 3 it is assumed that no distribution problems exist, Bhagwati, J., " l i m e r i s e r i z i n g Growth: A Geometrical mote," Economic Studies, Vol. 25, 1958, pp. 201-205. Review of "The Tying of Aid, " UmCTAD S e c r e t a r i a t , TD/7/Supp. 4, United Nations, 1967, pp. 1-57. "The Theory and P r a c t i c e of Commercial Policy: Departures from Unified Exchange Rates," Special papers i n I S t e r n a t i o n a l Economics, No. 8, Princeton University, 1968. , .. Eckaus R S , "Economic C r i t e r i a f o r Foreign Aid f o r Economic Develoment ," i n Foreipn Aid, e d i t e d by J. Ehepwati and R.S. Eckaus, Penguin Books, Baltimore, MD., 1970, pp. 142-164. Fisher, F.M., "A T h e o r e t i c a l Analysis of t h e Impact of Food S q l u s Disposal on A g r i c u l t u r a l Production i n Recipient countries," Journal of Farm Economics, Vol. 45, 1963, pp. 863-875. Haq, M. U1,"Tied C r e d i t s : A Q u a n t i t a t i v e ~ n a l y s i s , " i n J. Adler (ed.) ~ a ~ i t Movements a l and Economic Develooment, I n t e r n a t i o n a l Economic Association, M a d i l l a n and St. Martin1s Press, 1965. I s e m , P.J., and H.W. Singer, "Food Aid: Disincentive E f f e c t s and Econonic Develoment and C u l t u r a l Change, t h e i r Policy Implications." Vol. 25, Number 2, January, 1977, pp. 205-237. Keynes, J .M. , "The Geman T r a n s f e r Problem," XXXIV, 1929, pp. 1-70 M-, Economic J o u r n a l , Vol. J.S., "The Impact of P.L. 480 Imports on P r i c e s and D m e s t i c Supply of Cereals i n India," Journal of F m Economics, Vol. 49, 1963, pp. 131-146. Metzler, L. A,, Economy, "The Transfer Problem ~ e c o n s i d e r e d , " Journal of P o l i t i c a l Vol. V, 1942, pp. 397-414. Papanek, G., "The E f f e c t of Aid and Other Resource Transfers on Savings and Growth i n LDC's," Economic Journal, Vol. 82, 1972, pp. 934-950. Pincus, J.A., istics, "The Cost of F o r e i m Aid," V O ~ . 45, 1963, pp. 360-367. Review of Economics and S t a t - Rosenstein-Rodan, P.N., " I n t e r n a t i o n d Aid f o r Underdeveloped Countries ," Review of Economics and S t a t i s t i c s , Vol. 43, 1961, pp. 107-138. Rogers K.P., U.K. S r i v a s t a v a , and E.O. Heady, "Modified P r i c e , P r o d u c t i o n , and Income I m p a c t s of Food Aid Under Market iff e r e n t i a t e d ~ i s t r i b u t i b n , " American J o u r n a l of A g r i c u l t u r a l Economics, Vol. 54, 1972, pp. 201- -- -- S c h u l t z . T.W.. "Value of U.S. Farm S u r p l u s e s t o Underdeveloped 1019~ o ; n t r i e s , " J o u r n a l of Farm ~ c o n b -9m i c s Vol. 4 , 1960, 1030. bp. S i n g e r , H.W. " ~ x t e r n a lAid: For Plows o r P r o j e c t s ? " J o u r n a l , 75, September 1965, pp. 539-45, The Economic Appendix 1 Optimum p o l i c y f o r a n a i d r e c i p i e n t u n d e r a consumption addition Consider constraint Lagfangian m u l t i p l i e r s X i i =1 , 2 , 3 f o r t h e s e c o n s t r a i n t s , t h e problem becomest MZUC u(cl, c2) + ) . l ~ ( ~ l y - Y2) + A ~ [ P ( c ~ (1 + 3(C1 - -C 1 - A) - a ) A - Y1) + C2 - Y2] , F i r s t o r d e r c o n d i t i o n s f o r t h i s problem a r e : plus the original constraints Using t h e s e f o u r c o n d i t i o n s t o g e t h e r w i t h t h e t h r e e c o n s t r a i n t c o n d i t i o n s , one may e v a l u a t e t h e s e v e n unknowns: X l Y x, a3 C1, C2, Y1, Y 2 , The change of U Note a l s o t h a t : dU = UldC1 + u L -pdC1 + ( 1 - a 1 w] It i s now of i n t e r e s t t o analyze t h e various p o s s i b l i t i e s . I f the "additionality" c o n s t r a i n t i s not binding then f o r a maximum U one has 3 = 0 and so U1 = U2. Thie yields: In t h i s instance a country always gains by accepting a i d (0 1_ a < 1). Hence, t h e requirement t h a t some of an a i d good be paid f o r cannot, by itself, induce a l o s s i n this instance. Appendix 2. Optimum Policy for an a i d recipient under a production Constraint. For t h i s instance the problem is: U(C1. Cp) + + ?, AIF(Y1. Y2) + A2(p(c1 y1 - (1 - a )A - Y1 - (Tl + B A ) ) F i r s t order conditions f'rm t h e analgtic formulation are: plus the o r i g i n a l constraints. + C2) Change i n u t i l i t y i s g i v e n by; dU U l dCl + U2dC2 Noting t h a t : dC2 = -pdC1 + (1 - a) pdA + pdYl + dY2 one may e v a l u a t e t h e v a r i o u s subcases. If t h e c o n s t r a i n t on p r o d u c t i o n i s n o t binding, t h e n A3 = 0, F 1 = pF2 and U 1 = pU2 This yields: a s before. That is, p r o d u c t i o n is allowed t o remain a t p o i n t D i n F i g u r e 2, which is t h e optimum p o i n t , s o t h a t t h e primary g a i n from a i d w i l l be a l l t h a t o c c u r s . If c o n s t r a i n t is b i n d i n g , however, t h e n p = becomes also and 1% and dU This y i e l d s dU = U 1 [ ( I - ), pdA - 6 3 d A Note t h a t f o r a = 1 ( a l l ' a i d ' paid f o r ) dU< 0. T h i s i s s i m p l y t h a t a b i n d i n g p r o d u c t i o n c o n s t r a i n t w i l l produce a l o s s , s i n c e i t moves t h e r e c i p i e n t from t h e o p t i m a l p r o d c u t i o n p o i n t D. For a = 0 , (no payment f o r a i d ) g a i n ( l o s s ) r e q u i r e s p t o be positive (negative), - 68 T h i s says t h a t a r e c i p i e n t of c o m p l e t e l y "free" a i d may i n c u r a l o s s i f t h a t a i d i s t i e d t o a s u f f i c i e n t l y r e s t r i c t i v e production constraint, Optimum P o l i c y f o r a n a i d R e c i p i e n t under Appendix 3 an Import Cons t r a i n t I n t h i s i n s t a n c e , the problem f a c e d by t h e r e c i p i e n t c o u n t r y is: Max U(C1, C 2 ) + %IF( Y 1 , Y2) + A2(p(C1 + Y1 (Cl - - (1- 7 (El - T I ) a)A-Y1) + C 2 - Y2) + A) F i r s t order conditions f o r t h i s problan are: uy + A ~ P+ u2 plus % =o A2 + A1 F, - A2P 1 2 - A2 = 0 - A3 - 0 = 0 the original constraints, e v a l u a t e t h e s e v e n unknowns; Using t h e s e c o n d i t i o n s , one may C 1, C2, Y 1, Y2, S i n c e t h e change i n u t i l i t y i s g i v e n by A1, X2, and X3. aa& from the above conditions: ?l&e t h a t f o r an optimum (lowest c o s t ) soll:tion production and world p r i c e s shoald be s e p a r a t e d by an amount p r i c e s should be s e p a r a t e d by -. -133 -' while c o n s u m ~ t i o nand world U2 This t a x package t o g e t h e r with an u2 appropriate subsidy y i e l d s t h e optimum (second b e s t ) s o l u t i o n . Once again, i f t h e c o n s t r a i n t is n o t binding, reduces t o dU dA = U2(1 - a ) p = dU i3 = 0 an11 dA (1 - a ) U 1 However, with t h e c o n s t r a i n t , changes i n production (dY ) a r e induced, and t h i s can counteract t h e primary gain from t h e a i d I n t h a t caset Again, h 3 i s i n t e r p r e t e d a s t h e c o s t of t h e c o n s t r a i n t , and i t s v a l u e can be c a l c u l a t e d from t h e f i r s t order conditions discussed earlier. Those conditions and, hence, t h e c o n s t r a i n t , a l s o t m p l y r e l a t i o n s h i p between dA ( t h e a i d inflow) and dY i n production. , the a induced change The d i s t r i b u t i o n e f f e c t f o r a n a i d r e c i p i e n t Appendix 4 I n t h e t e x t i t i s shown t h a t t h e change i n u t i l i t y f o r a two c l a s s s o c i e t y a f t e r r e c e i v i n g a i d i s g i v e n by dU where dU a LldU1 + L2dU2 It i s of i n t e r e s t t o c o n s i d e r a number of c a s e s . Egalitarian Society If one makes a common assumption t h a t a l l members of t h e s o c i e t y have s i m i l a r m a r g i n a l u t i l i t y ( f o r each good) i.e., then i t follows that: s i n c e t h e n e t i n c r e a s e i n food consumption i s dA w h i l e t h e n e t i n c r e a s e i n machine consumption i s z e r o one o b t a i n s : dU = lJipd~ > 0 Accordingly one c o n c l u d e s t h a t a n e g a l i t a r i a n s o c i e t y w i l l i n c r e a s e i t s w e l f a r e by a c q u i r i n g a i d . I n many c o u n t r i e s t h e r e is a s h a r p d i f f e r e n c e between v a r i o u s c l a s s e s t h i s may b e viewed a s a d i f f e r e n c e i n m a r g i n a l u t i l i t y between, s a y , a r u r a l food producing and a n urban machine producing class. Consider t h i s somewhat more g e n e r a l s i t u a t i o n . i n t h e c o u n t r y ' s u t i l i t y dU i s g i v e n by The change Noting t h a t : one o b t a i n s : The q u e s t i o n i s t h e n whether dU can b e n e g a t i v e . The second term I t remains t o a n a l y z e t h e f i r s t term. w i l l be p o s i t i v e . 1 typical situation Ul - can be < For a T h i s o c c u r s when c l a s s e s 0. have d i f f e r e n t t a s t e b u t s i m i l a r endowments, o r s i m i l a r t a s t e s w i t h d i f f e r e n t endowments, o r both. , is f o r members of Class 1, dU The changes i n wages (money) g i v e n by: where f i s t h e f r a c t i o n of food a i d g i v e n t o c l a s s 1 and da is 1 a i d / c a p i t a i n c l a s s 1. S i n c e each consumes t o t a l income one a l s o o b t a i n s ( i g n o r i n g 2nd o r d e r e f f e c t s ) ; Hence , PldCll + dCZ1 - Ap ( C1 L1 - CllAp -Cll) Ap + + pda pda This l a s t term I s t h e d i f f e r e n c e between t h e marketed s u r p l u s o f a c l a s s one member ( a l o s s ) and t h e v a l u e of t h e food a i d received (gain). Thus t h e n e t e f f e c t can b e n e g a t i v e n e t w e l f a r e l o s s c a n r e s u l t t o c l a s s 1. - and If i n addition lJ1 1 is s u f f i c i e n t l y n e g a t i v e t h e n o n e o b t a i n s t h e r e s u l t t h a t dU can be n e g a t i v e , i.e., t h e c o u n t r y a s a whole l o s e s by aid. so a - U:
© Copyright 2026 Paperzz