Relationships and Calculus 1.1

Higher Maths Unit Assessment Revision
Relationships and Calculus
1.1 Polynomials
1) Show that (x + 1) is a factor of 𝑓(π‘₯) = π‘₯ 3 + 4π‘₯ 2 βˆ’ 7π‘₯ βˆ’ 10 and hence fully factorise
𝑓(π‘₯).
2) Show that (x – 3) is a factor of 𝑓(π‘₯) = π‘₯ 3 + 3π‘₯ 2 βˆ’ 10π‘₯ βˆ’ 24 and hence fully factorise
𝑓(π‘₯).
3) Show that (x – 4) is a factor of 𝑓(π‘₯) = 3π‘₯ 3 βˆ’ π‘₯ 2 βˆ’ 38π‘₯ βˆ’ 24 and hence fully factorise
𝑓(π‘₯).
4) Show that (x + 3) is a factor of 𝑓(π‘₯) = 6π‘₯ 3 + 13π‘₯ 2 βˆ’ 19π‘₯ βˆ’ 12 and hence fully factorise
𝑓(π‘₯).
5) Show that (2x – 5) is a factor of 𝑓(π‘₯) = 12π‘₯ 3 βˆ’ 63π‘₯ βˆ’ 30 and hence fully factorise 𝑓(π‘₯).
6) If the function 𝑔(π‘₯) = π‘˜π‘₯ 2 + 3π‘₯ βˆ’ 1 has no real roots then calculate the range of values
for k.
7) If the function β„Ž(π‘₯) = 2π‘₯ 2 + π‘˜π‘₯ + 7 has 1 real root then calculate the range of values for
k.
8) If the function 𝑓(π‘₯) = 3π‘₯ 2 βˆ’ 4π‘₯ βˆ’ 3 + π‘˜ has 2 distinct real roots then calculate the range
of values for k.
9) If (x + 5) is a factor of the function 𝑓(π‘₯) = π‘₯ 3 + 8π‘₯ 2 + 𝑝π‘₯ βˆ’ 140 then calculate the range
of values for p.
10) If (x – 7) is a factor of the function 𝑔(π‘₯) = 2π‘₯ 3 + π‘žπ‘₯ 2 βˆ’ 10π‘₯ + 21 then calculate the
range of values for q.