Root locus example Basis • Plot of the closed-loop system roots, as k varies from 0 to ∞ • Or plot of 1+kG(s)=0 • Sketch by looking at open-loop transfer function, G(s) 1 s( s 1)( s 5)( s 10) a=conv([1 0], [1 1]) b=conv([1 5], [1 10]) D=conv(a,b) N=1 sys=tf(N, D) rlocus(sys) roots([4 16*3 65*2 50]) Break-in Break-out points 1 1 D( s) k G( s) N ( s) N (s) D( s) dk 0 ds Matlab output Transfer function: 1 ---------------------------s^4 + 16 s^3 + 65 s^2 + 50 s Solve for breakin/out points -8.2399e+000 -3.3005e+000 -4.5963e-001 Root locus • Open Loop Response – Poles: n = 4 – Zeros: m =0 • Asymptote angles 45,135,225,315 degrees • Asymptote centroid s=-4 Root Locus 25 20 15 Imaginary Axis 10 5 0 -5 -10 -15 -20 -25 -30 -25 -20 -15 -10 -5 Real Axis 0 5 10 15 20 Shape of Asymptotes • Asymptotes lines are symmetric about the real axis • Number of asymptotes = n-m n-m = # poles - # zeros Can’t have more zeros than poles for a proper transfer function for a real system. • Shape of asymptote lines is often called a Butterworth pattern. Root Locus 25 20 15 Imaginary Axis 10 5 0 -5 -10 -15 -20 -25 -30 -25 -20 -15 -10 -5 Real Axis 0 5 10 15 20
© Copyright 2026 Paperzz