Sizes N = Z Measuring Nuclear Masses Used wit h I SOL t arget t o m easure exot ic react ion product nuclei Be a m DRAGON 2 (TRIUMF/Canada) Combination Wien Filter - TOF new nuclides are produced in high charge states good mass resolution Lorent z force F 2 sets of magnetic and electric dipoles, MCP TOF system in focal plane B E mv q E q TOF : Abs : W. Udo Schröder, 2004 B Wien vel . Filt er B Nuclear Masses q v m Abs : Princ. accuracy m 10 m q v , m, K m m 5 10 3 | Rel : 10 8 Nuclear Masses 3 TRI UMF- Dragon Recoil Mass Spect rom et er W. Udo Schröder, 2004 Basic Const it uent s of At om ic Nuclei Helium XN 4 2 He2 4 A Z A nucleons: protons (H+) plus neutrons Z pr ot ons (equals t he number of elect r ons in a neut r al atom) N=A- Z neutrons Charges ep = +e = 1.602· 10 - 19C (Coulomb) en = 0 ( e2 =1.440MeVfm) Nuclear Masses Masses mp = 1.673·10 -27kg = 938.279 MeV/ c2 = 1.00728 u (mass unit s) mn = 1.675·10 -27kg = 939.573 MeV/ c2 = 1.00867 u 1u = m( 12C)/ 12 = 1.6606·10 -27kg = 931.502 MeV/ c2 Expect approximately W. Udo Schröder, 2004 m A Z XN Z mp N mn Z me ?? Radiat ive Capt ure of Nucleons E> 0 (r) 0 5 r E< 0 Bound States Nuclear Masses Potential Elastic NN scattering (E 0) does not lead t o a bound ( E < 0) NN syst em (nucleus). N e e d t o dissipa t e e x t r a e n e r gy r a dia t e ou t som e of t h e m a ss. Hypot het ical nuclear collapse: -r a ys, E radiated, lost from nucleus less energy than original free nucleons Exot herm ENucleus 0 Observe radiat ion em it t ed in capt ure of e - , n, W. Udo Schröder, 2004 Nuclear Masses m H=1.00782u m p = 1.00728u m n = 1.00866u Nuclear Masses 6 Element Deuterium Helium 4 Lithium 7 Beryllium 9 Iron 56 Silver 107 Iodine 127 Lead 206 Polonium 210 Uranium 235 Uranium 238 D 4He 7Li 9Be 56Fe 107Ag 127I 206Pb 210Po 235U 238U Binding energy B Z mH N mn m A Z XN 0 Mass of Nuclear Mass Binding Energy Binding Energy Nucleons (u) (u) (MeV) MeV/Nucleon 2.01594 2.01355 2.23 1.12 4.03188 4.00151 28.29 7.07 7.05649 7.01336 40.15 5.74 9.07243 9.00999 58.13 6.46 56.44913 55.92069 492.24 8.79 107.86187 106.87934 915.23 8.55 128.02684 126.87544 1072.53 8.45 207.67109 205.92952 1622.27 7.88 211.70297 209.93683 1645.16 7.83 236.90849 234.99351 1783.8 7.59 239.93448 238.00037 1801.63 7.57 Note: hydrogen atomic mass mH is used in tables, rather than m p . W. Udo Schröder, 2004 Syst em at ics of Experim ent al Binding Energies For heavy nuclei, B/ A 8MeV 7 For light nuclei, oddeven staggering gg nuclei most tightly bound gg: N even, Z even uu: N odd, Z odd 4 8 16 20 He , Be , O , 2 4 8 10 Ne, ... Nuclear Masses exceptions: 8 Be unstable 8 Be 2 4 He W. Udo Schröder, 2004 there is no A=5 nucleus Energet ics of 8 Be 8 free nucleons=:0 tabulated 8 Be - B/A 4n 4p 0 2 8 Nuclear Masses -1 B for 8 Be 8 8 m(12C)/12 Be -2 m -3 4n 4p -4 m 4 B 4.942 MeV 8.071 56.49 MeV 7.289 MeV 61.44 MeV " 0 " per def . 2 -5 m -6 -7 8 Be W. Udo Schröder, 2004 2 2 2.425 MeV 8 Be 4.850 MeV is st rongly bound but highly unstable ( E 100keV) against disintegration into 2 particles 56.59 MeV Energet ics of Transm ut at ion 9 Non- monotonic behavior, 6 5 4 BE Ene r gy r e le a se d by fission 7 Ene r gy r e le a se d in fusion Bin din g e n e r gy pe r n u cle on ( M e V ) 9 8 Fe/ Ni m ost st rongly bound 3 2 1 0 0 20 40 60 80 100 120 140 160 180 200 220 240 Nuclear Masses Mass number (A) 226Ra (226.0254MeV) ( 222Rn + 4 He) (222.0176 + 4.00260)MeV Mass defect = m Ra- m RnHe = 0.0052 u exothermic, energy released Q=+4.84 MeV transmutation energetically possible W. Udo Schröder, 2004 A 2 different regions in A, different energetically preferred transmutations: Heavy nuclei are particle unst able, exot herm ic spontaneous emission of particles (B =28 MeV!) or fission ( nuclear power) . 2 light nuclei can fuse and produce energy ( st ars, nuclear power) The Sem i- Em pirical Mass Form ula m Z, N Z mH N mn B Z, N c2 ; 0 neglect e- binding B Original: Weizsacker, Z. Physik 96,431(1935) Nuclear Masses 10 B Z, N aV A 23 aS A aC Z 2 A1 3 aa A 2Z A 2 A 12 Wapstra, Handb. Physik, XXXVIII aV 15.835 MeV aS 18.33 MeV 11.2 MeV for o aC 0.714 MeV aa 23.20 Me V 0 MeV for odd Anuclei 11.2 MeV for e e nuclei Implicit assumption: Leptodermous nucleus aV = volume, condensation aS = surface, less binding a C = Coulomb repulsion of protons a a = asymmetry lessens binding for like particles, compared to unlike = unpaired particles are less tightly bound W. Udo Schröder, 2004 quantal effects o nuclei Relat ive Cont ribut ions t o Nuclear Mass R A1 3 Vnucleus A const. contribution from each nucleon saturated force 11 fewer interactions on surface reduce contribution from each 23 surface nucleon S A different interactions between like and unlike nucleons ( Fermion statistics, isospin) depends on |N- Z|, reduces B Nuclear Masses Coulomb self energy becomes large for large Z, heavy nuclei, makes nucleus unstable reduces B ECoul e2 Z 2 d 3r d 3r 2 W. Udo Schröder, 2004 (r ) (r ) r r 3 e2 Z 2 5 RC hom. sharp sphere Coulomb Radius RC 1.24 A1 3 fm Pairing Energies odd- even mass differences, B largest for paired nucleons 12 Average trend: Nuclear Masses n W. Udo Schröder, 2004 p A 12 Remaining structure and fluctuations: shell and deformation effects. The - St able Valley N = Z ZA A 2 Nuclear Masses 13 Z Nature: 170 even- Z, even- N 60 odd- A 4 odd z, odd N ZA A 2 N ZA W. Udo Schröder, 2004 A 2 A2 3 aC 2 asym Nuclear Masses 14 Qualit y of Droplet - Model Mass Fit W. Udo Schröder, 2004 Total binding energy of heavy nuclei ~1600 MeV, accuracy of LDM fit: ±0.5 MeV Bet a Decays of Odd- A Nuclei m A, Z m A m min : Z A A Z 4 as 2 A Z2 mn 2 4 as me c2 A mp 23 aC A ( A) Z ZA 2 15 Expand around ZA: Mass parabola m( Z ) bottom of valley m Beta decay and K- elect ron capt ure ( EC) Nuclear Masses odd- A isobars =0 Z ZA W. Udo Schröder, 2004 EC to K- hole Bethge, Kernphysik Energet ics of Decay Beta decay and K- capture 16 Z, A Z 1, A e m ( Z , A) m( Z 1, A) Z, A e m ( Z , A) Nuclear Masses Exam ple : Z m( Z 11 6 C 1, A e | e 1, A m( Z e m ( 11 C ) c 2 | 2 me 1 extra e+ 1 extra e- 1, A) 6e e 1, A) | EC 11 5 Be 6e 5 e e Q >0 exotherm. Q 1 m ( 11 Be) c 2 me c2 m ( 11 Be) c 2 Decay Q- value smaller by 2mec2 for W. Udo Schröder, 2004 Z m ( Z , A) Mass balance: m ( 11 C ) c 2 Q Z, A me c2 Q 2 mec2 + decay than for - Decay of an Even- A Nucleus o o e e o-o weakly bound even A A=108 e- e strongley bound oo 17 11.2 MeV for o o nuclei 0 MeV for odd Anuclei Nuclear Masses ee 11.2 MeV for e st able Traps Z 108 W. Udo Schröder, 2004 e nuclei for even A, 2 distinct mass parabolas separated by 2 = 22.4.A- 2 MeV Z 108 47 is relat ive minimum for oo A=108 nuclei, but not for ee. Energet ics of Prot on Decay Isotone- Parabolas Nuclear Masses Bin din g Ene r gy ( M18e V) odd- A even- A p decay energet ically possible if Qp = - [B(Z,A) equivalent to Qp m( Z , A) c2 m( Z p B(Z- 1,A- 1)] >0 1, A 1) Proton Emitter Decay Q Value mp Daughter me c2 Half Life p p p p Z S. Hofmann, Handbook of Nuclear Decay W. Udo Schröder, 2004 Modes, CRC Press 1993 Search for location of p- Drip Line continues 0 Energet ics of Decay One of t he m ost frequent decays of heavy nucleus because B = 28.3 MeV is relatively large. (A,Z) Q B( A 4, Z 2) 28.3 MeV B( A, Z ) 0 Nuclear Masses 19 (A- 4,Z- 2)+B W. Udo Schröder, 2004 No shell corrections B energetically allowed (along - stable valley) for A > 150, e.g., in the rare eart h region of elements ( Gd). decay from nuclear ground st at e is mostly slower than decay, except for very heavy nuclei > Pb, act inides, e.g., Po, Am , Cf, Alpha Q- Values Lise calculation 20 U Nuclear Masses Q >0 Bi W. Udo Schröder, 2004 Fissilit y of Nuclei H L B( AL, ZL) 21 Qf Bs B( AH , ZH ) fission fragments B( A, Z) BCoul Nuclear Masses Volume and symmetry terms cancel Balance of Coulomb vs. surface energy fissility parameter x x 239U: W. Udo Schröder, 2004 2 Es0 3 e 2 5 r0 Z 2 2 as A Es = 650MeV EC =950MeV Fiss.frgm. : Es = 813MeV EC =607MeV Balance: EC0 Es = - 163MeV EC =343MeV Qf = 180 MeV Z2 A 50 Energet ics of Mult ifragm ent Decay 22 Important for spallation and applications: n fragments at infinity Qn > 0?? n fragments Nuclear Masses Threshold Fissilit y for Qn x EC 2 Es x 1, n 2 Z 2 3 e 5 r0 A 2 as 20 ( m any) However: com pet it ion wit h decay for every emission. Hasse & Myers, Geometrical Relationships Of Macroscopic Nuclear Physics,Springer, New York,1988 W. Udo Schröder, 2004 0 Droplet Model W.D. Myers & W. J. Swiatecki, Ann. Phys. 55, 395(1969); 84, 186 (1974) 1 higher order in A- 1/3, I=(N- Z)/A Extension of LDM finit e com pressibilit y, deform ed shapes, n and Most accurate: Finite- Ra n ge D r ople t M ode l different surfaces. 23 p B( N , Z ; shape) a3 A1 3 Bcurv Nuclear Masses I a1 J c1 Z 2 A 13 (3c1 16Q) ZA 23 1 (9 J 4Q) A 13 bulk asymmetry c1 3e2 c4 5 c1 3 4 2 5 r0 ; W. Udo Schröder, 2004 Bsurf ; c2 c12 1 336 J ; c5 1 c12 64 Q 23 2 1 M 2 c2 Z 2 A1 3 Bred BC BV 1 K 2 2 2a2 A 4 A a2 c5 Z 2 Bw 13 9 J2 4 Q c3 Z 2 A Bsurf L 2 2 1 A2 3 Bsurf c4 Z 4 3 A c1 Z 2 A 43 13 BC / K deviation from aver density 18 ; K c3 5 c1 b 2 r0 2 ; Functions B describe contributions of shape/spherical
© Copyright 2026 Paperzz