ANSWER KEY QUE NO. 1 2 3 4 5 6 7 8 Conventional Mathematical Techniques 5X + 4 = 19 100 – X = 45 2,3,7 & 8 1,4,5,6,9 & 0 8,000 Vedic Mathematical Techniques ANSWER 5X + 4 = 19 100 – X = 45 2,3,7 & 8 1,4,5,6,9 & 0 8,000 83 X 57 = 83 x 57 4150 + 581 4731 2515 ÷ 99 2 5 99 2 5 1 5 AhI,waJy = 2515 198 Waajk = 99 535 Waagk5 = 25 495 xe8 = 40 40 (5xy2 – 3)( –4xy) = (5xy2 – 3) × (–4xy) = 5xy2 × (–4xy) – 3× (–4xy) = 5 × (−4) x2y3 + 12xy = (− −20) x2y3 + 12xy (5xy2 – 3) × ( – 4xy ) = (–20)x2y3 + 12xy. 83 X 57 = 83 x 57 4731 2515 ÷ 99 1 1 1 1 1 TOTAL MARKS 1 1 1 1 1 2 2 2 2 2 2 AhI,waJy = 2515 Waajk = 99 Waagk5 = 25 xe8 = 40 99 2 5 1 5 01 0 2 05 (1004I A>tr) 25 40 (5xy2 – 3)( –4xy) 4xy 5xy 20x2y3 3 12xy 2 (5xy – 3)( –4xy) = (– 20)x2y3 + 12xy. 2 301 MARKS 9 10 11 8x + 5 = 61 ∴ 8x = 61 – 5 ∴ 8x = 56 ∴ x = 56 8 ∴ x= 7 mud\l = ½a. ½a 1,000 mud\t = 1 v8R Vyajno dr = 10 % ½a. ½a. 10 ½a 100 nu> 1 v8Rnu> Vyaj = ½a ½a. ½a 1,000 nu> 1 v8Rnu> Vyaj = ( ? ) ∴ Vyaj = 1,000 x 10 x 1 100 x 1 Vyaj = 100 ½a. ½a mud\l = ½a. ½a 4,000 mud\t = 3 v8R Vyajno dr = 12 % ½a. ½a. 12 ½a 100 nu> 1 v8Rnu> Vyaj = ½a ½a. ½a 4,000 nu> 3 v8Rnu> Vyaj = ( ? ) ∴ Vyaj = 4,000 x 12 x 3 100 x 1 Vyaj = 40 x 12 x 3 Vyaj = 1440 ½a. ½a Vyajmud\l = mudl \ + Vyaj = 4,000 + 1,440 Vyajmud\l = 5,440 ½a. ½a 8x + 5 = 61 ∴ 8x = 61 – 5 ∴ 8x = 56 ∴ x = 56 8 ∴ x= 7 P = ½a. ½a 1,000 R = 10 % 1 1 2 1 N = 1 v8R 1 a 2 P = ½a. ½a 4,000 R = 12 % N = 3 v8R a 1 a 1 AHI>, 302 2 12 13 14 2aro ke 7eya pase x ½ipya 0e. quxI pase 7eya krta car g`a ½ipya 0e. te4I quxI pase 4x ½ipya 4ay. b>neno srva5o 110 ½ipya 0e. smIkr` Sv½p Sv½p : ∴ x + 4x = 110 ∴ 5x = 110 ∴ x = 110 5 ∴ x = 22 ∴ 7eyane x = 22 ½ipya m5e.Ane quxIne 4x = 4 x 22 = 88 ½a.m5e. (67)2 = 67 x 67 67 x 67 4020 + 469 4489 2 (67) = 4489. 1 il3r = 1,000 imlIil3r 8 il3r = ( ? ) imlIil3r = 8 x 1,000 imlIil3r = 8,000 imlIil3r 4elInI s>Qya = 8,000 imlIil3r 200 imlIil3r = 40 4elIAo wrI xkay. 2aro ke 7eya pase x ½ipya 0e. te4I quxI pase 4x ½ipya 4ay. b>neno srva5o 110 ½ipya 0e. ∴ x + 4x = 110 ∴ 5x = 110 ∴ x = 110 5 ∴ x = 22 ∴ quxI pase 4x = 4 x 22 = 88 ½a.m5e. 1 1 2 (67)2 (67)2 = = = 2 (67) = D(6) / D(67) / D(7) 368449 4489. 4489. 8 il3r = 8,000 imlIil3r 1 1 2 1 4elInI s>Qya = 8,000 imlIil3r 200 imlIil3r = 40 4elIAo wrI xkay. 1 303 2 15 7y2 + 3y - 4 ma>4I y2 - 5y + 8 bad kro. Jvab ::- (7y2 + 3y - 4) – (y2 - 5y + 8) = 7y2 + 3y – 4 – y2 + 5y – 8 = 7y2 – y2 + 3y + 5y – 4 – 8 = 6y2 + 8y – 12 A4va 2 (5x + 4y) nu> sadu>½p Aapo. jvab ::- (5x + 4y)2 = (5x)2 + 2 (5x) (4y) + (4y)2 = 25x2 + 40xy + 16y2. 16 (9m2 – 7)(2m + 1) nu> sadu>½p Aapo. Jvab ::- (9m2 – 7)(2m + 1) = 9m2 (2m + 1) – 7 (2m + 1) = 18m3 + 9m2 – 14m – 7 (9m2 – 7)(2m + 1) = 18m3 + 9m2 – 14m – 7 A4va Jvab ::(x – 7 + 4x2) + (8 – 2x2 + 4x) + (7x – 5 +3x2) = x – 7 + 4x2 + 8 – 2x2 + 4x + 7x – 5 + 3x2 = 4x2 – 2x2 + 3x2 + x + 4x + 7x – 7 + 8 – 5 = 5x2 + 12x – 4. y1 y0 y2 p/4m pdavlI 7 3 4 bI+ pdavlI 1 5 8 6 8 12 (7y2 + 3y – 4 ) – ( y2 – 5y + 8 ) = 6y2 + 8y – 12. A4va (5x + 4y)2 jvab ::- (5x + 4y)2 = D(5x) / D(5x)(4y) / D(4y) = 25x2 + 40xy + 16y2. 9m2 7 2m 18m3 14m 1 9m2 7 (9m2 – 7)(2m + 1) = 18m3 + 9m2 – 14m – 7. A4va x2 X x0 p/4m pdavlI 4 1 7 bI+ pdavlI 2 4 8 +I+ I+ pdavlI 3 7 5 5 12 4 2 2 (x – 7 + 4x ) + (8 – 2x + 4x) + (7x – 5 + 3x2) = 5x2 + 12x – 4. 304 1 1 2 A4va A4va 1 1 2 2 1 3 A4va 2 1 3 17 18 2aro ke phelI s>Qya = x bI+ k/imk s>Qya = x + 1 Ane +I+ I+ k/imk s>Qya = x + 2 4ay. +` ` k/imk s>Qyano srva5o 87 4ay 0e. te4I smIkr` Sv½p Sv½p : ∴x + x + 1 + x + 2 = 87 ∴ 3x + 3 = 87 ∴ 3x = 87 – 3 ∴ 3x = 84 ∴ x = 84 3 ∴ x = 28 ∴ phelI s>Qya = x = 28 4ay. l>b6n 3a>kInI l>ba[ = 50 semI. l>b6n 3a>kInI pho5a[ = 40 semI. l>b6n 3a>kInI }>ca[ = 90 semI. l>b6n 3a>kInu> 6nf5 = l> x p. x }> = lxbxh = 50 x 40 x 90 = 1,80,000 6n semI l>b6n 3a>kInu> 6nf5 = 1,80,000 6n semI 1,000 6n semI = 1 il3r 1,80,000 6n semI = ( ? ) il3r = 1,80,000 il3r 1,000 = 180 il3r pa`InI pa`InI 3a>kIma> 180 il3r pa`I smay. 2aro ke phelI s>Qya = x bI+ k/imk s>Qya = x + 1 Ane +I+ I+ k/imk s>Qya = x + 2 4ay. 4ay. smIkr` Sv½p Sv½p : x + x + 1 + x + 2 = 87 ∴ 3x + 3 = 87 ∴ 3x = 87 – 3 ∴ 3x = 84 ∴ x = 84 3 ∴ x = 28 ∴ phelI s>Qya = x = 28 4ay. l = 50 semI. b = 40 semI l>b6n 3a>kInu> 6nf5 = h = 90 semI. = = ( 1000 6n semI.= = I. 1 lI3r) lI3r lbh 50 x 40 x 90 1,80,000 6n semI 1,80,000 il3r 1,000 = 180 lI3r 1 1 1 3 1 1 1 3 305 19 2 7056 2 3528 2 1764 2 882 3 441 3 147 7 49 7 7 1 7056 = 7056 = 2x2x2x2x3x3x7x7 = 22 x 22 x 32 x 72 = ( 2 x 2 x 3 x 7)2 = ( 84)2 √7056 = √(84)2 = 84 70 / 56 Aekmno A>k 4 ke 6 70 4I nanI s>Qya 84 ke 86 pU`RvgR s>Qya = 64 = 82 84 852 = 7225 4I AapelI s>Qya nanI 0e. 86 √7056 = 84 1 1 1 20 mud\l = ½a. ½a 5,110 mud\t = 200 idvs Vyajno Vyajno dr = 10 % ½a. ½a 100 nu> 365 idvsnu> Vyaj = ½a. ½a 10 ½a. ½a 5,110 nu> 200 idvsnu> Vyaj = ( ? ) ∴ Vyaj = 5,110 x 200 x 10 100 x 365 Vyaj = 280 ½a. ½a Vyajmud\l = mudl \ + Vyaj = 5,110 + 280 Vyajmud\l = 5,390 ½a. ½a 3 P = ½a. ½a 5,110 1 R = 10 % N = 200 idvs a AHI>, 1 1 306 3 21 (1) 77 x 73 = = = 77 x 73 = (75 + 2) (75 – 2) (75)2 – (2)2 5625 – 4 5621. (2) (8xy – 5p)2 = (8xy)2 – 2 (8xy) (5p) + (5p)2 = 64x2y2 – 80pxy + 25p2 77 x 73 = 77 / +7 77 / +3 80 / 21 x 7 560 / 21 23 x 27 = 5621. (2) (8xy – 5p)2 jvab ::- (8xy – 5p)2 = D(8xy) / D(8xy)(5p) / D(5p) = 64x2y2 – 80pxy + 25p2 A4va A4va Jvab ::(9x2y3+ 3xy2 – 2x2y + 4) – (7 – 4xy2 – 8x2y + 3xy3– 4x2y3) + (7x2y – 4xy2 + 5xy – 4) = 9x2y3+ 3xy2 – 2x2y + 4 – 7 + 4xy2 + 8x2y – 3xy3 + 4x2y3 + 7x2y – 4xy2 + 5xy – 4 = 9x2y3 +4x2y3 – 3xy3 + 4xy2 – 4xy2 – 2x2y + 8x2y + 7x2y + 5xy + 4 – 7 – 4 = 13x2y3 – 3xy3 + 3xy2 + 13x2y + 5xy – 7. 22 Sam6n qaDanI l>ba[ = 8 mI3r = 800 semI. Sam6n qaDanu> 6nf5 = ( l )3 = ( 800 )3 = 800 x 800 x 800 = 51,20,00,000 6n semI Sam6n qaDanu> 6nf5 = 51,20,00,000 6n semI l>b6n [>>3nI l>ba[ = 32 semI (1) x2y3 p/4m pdavlI 9 bI+ pdavlI 4 +I+ I+ pdavlI 0 13 x2 y 2 8 7 13 xy2 x y3 3 0 4 3 4 0 3 3 xy 0 0 5 5 x0y0 4 7 4 7 (9x2y3+ 3xy2 – 2x2y + 4) – (7 – 4xy2 – 8x2y + 3xy3– 4x2y3) + (7x2y – 4xy2 + 5xy – 4) = 13x2y3 – 3xy3 + 3xy2 + 13x2y + 5xy – 7. [>3onI s>Qya = sm6n qaDanu> 6nf5 l>b6n [>3nu> 6nf5 = 800 x 800 x 800 6n semI 32 x 20 x 10 6n semI = 800 x 100 = 80,000 [>3o bnavI xkay. 307 1 1 2 1 1 2 A4va A4va 1 2 1 1 1 4 23 l>b6n [>>3nI pho5a[ = 20 semI l>b6n [>3> nI }>ca[ = 10 semI l>b6n [>>3nu> 6nf5 = l x b x h = 32 x 20 x 10 = 6,400 6n semI l>b6n [>>3nu> 6nf5 = 6,400 6n semI [>3onI s>Qya = sm6n qaDanu> 6nf5 l>b6n [>3nu> 6nf5 = 800 x 800 x 800 6n semI 32 x 20 x 10 6n semI = 25 x 40 x 80 1,250 = 80,000 [>3o bnavI xkay. 3364 676 3364 = 2 x 2 x 29 x 29 2 3364 = 22 x 292 = (2 x 29)2 2 1682 29 841 = (58)2 29 29 1 2 676 676 = 2 x 2 x 13 x 13 = 22 x 132 2 338 13 169 = (2 x 13)2 13 13 = (26)2 1 √3364 676 2 = √ (58) (26)2 = 58 26 1 1 4 3364 676 33 /6 4 2 ke 8 52 ke 58 6/76 Aekmno A>k s>Qya 33 4I nanI pU`RvgR s>Qya = 25 = 52 52 552 = 3364 4I AapelI 58 s>Qya mo3I 0e. √3364 = √ (58)2 676 (26)2 308 4 ke 6 24 ke 26 Aekmno A>k s>Qya 6 4I nanI pU`RvgR s>Qya = 4 = 22 24 252 = 625 4I AapelI 26 s>Qya mo3I 0e. = 58 26 1 2 1 4 24 25 mud\l = ½a. ½a 25,000 mud\t = 30 mas mas Vyajno dr = 15 % ½a. nu> 12 masnu ½a 100 masnu> Vyaj = ½a. ½a 15 ½a. ½a 25,000 nu> 30 masnu masnu> Vyaj = ( ? ) ∴ Vyaj = 25,000 x 30 x 15 100 x 12 = 125 x 75 Vyaj = 9375 ½a. ½a Vyajmud\l = mudl \ + Vyaj = 25,000 + 9375 Vyajmud\l = 34,375 ½a. ½a p/kaxwa[Ae mud\tne tne A>te 34,375 ½a. ½a cUkvva pDe. 2aro ke phelI bekI s>Qya = x bI+ bekI s>Qya = x + 2 Ane +I+ I+ bekI s>Qya = x + 4 4ay. +`e `ey k/imk bekI sQyaaono srva5o 156 4ay 0e. ∴smIkr` Sv½p Sv½p : x + x + 2 + x + 4 = 156 ∴ 3x + 6 = 156 ∴ 3x = 156 – 6 ∴ 3x = 150 ∴ x = 150 ∴ x = 50 3 ∴ phelI bekI s>Qya = x = 50, bI+ bekI s>Qya = x + 2 = 50 + 2 = 52 Ane +I+ I+ bekI s>Qya = x + 4 = 50 + 4 = 54 4ay. ∴ sO4I mo3I bekI s>Qya = x + 4 = 54 4ay. 1 P = ½a. ½a 25,000 N = 30 mas mas R = 15% a AHI>, 1 1 ½a 1 4 2aro ke phelI bekI s>Qya = x bI+ bekI s>Qya = x + 2 Ane +I+ I+ bekI s>Qya = x + 4 4ay. ∴smIkr` Sv½p Sv½p : x + x + 2 + x + 4 = 156 ∴ 3x + 6 = 156 ∴ 3x = 156 – 6 ∴ 3x = 150 ∴ x = 150 3 ∴ x = 50 ∴ phelI bekI s>Qya = x = 50, bI+ bekI s>Qya = x + 2 = 50 + 2 = 52 Ane +I+ I+ bekI s>Qya = x + 4 = 50 + 4 = 54 4ay. ∴ sO4I mo3I bekI s>Qya = x + 4 = 54 4ay. 309 1 1 1 1 4
© Copyright 2026 Paperzz