THE DERIVATIVE MAP IS THE MATRIX OF PARTIALS Let f : Rm → Rn be a differentiable map, written in coordinates as (x1 , x2 , . . . , xm ) 7→ (f1 (x1 , x2 , . . . , xm ), f2 (x1 , x2 , . . . , xm ), . . . , fn (x1 , x2 , . . . , xm )). Let Df be the derivative of f at some point ~v in Rm . We have defined Df as an abstract linear map Rm → Rn . Linear maps of finite dimensional vector spaces are given by matrices. The point of this note is to prove the following result: Theorem The matrix of Df is given by ∂f1 ∂f1 ∂f1 ∂f1 · · · ∂xm ∂x1 ∂x2 ∂x3 ∂f2 ∂f2 ∂f2 ∂f2 ∂x1 ∂x2 ∂x2 · · · ∂x m .. .. .. .. .. . . . . . ∂fn ∂f1 ∂fn ∂fn ∂x1 ∂x2 ∂x3 · · · ∂xm Let A be the matrix of Df , meaning that (Df )(0 0 · · · t · · · 0)T = (A1i A2i · · · Ani )T , where the 1 entry is in the i-th position. (The superscript T ’s are transposes, in order to turn rows vectors into column vectors; just so that this equation isn’t two inches tall.) Proof: By hypothesis, f (~v + ~h) − f (~v ) − (Df )~h lim =0 ~h→0 |~h| as ~h approaches 0 along any path. In particular, f (v + (0, 0, . . . , t, . . . , 0)T ) − f (v) − (Df )(0, 0, . . . , t, . . . , 0)T . 0 = lim t→0 |(0 0 . . . , t . . . 0)T | Written out a bit more explicitly, f (v1 , v2 , . . . , vi + t, . . . , vm ) − f (v1 , v2 , . . . , vi , . . . , vm ) − t(Df )(0 0 . . . 1 . . . 0)T 0 = lim t→0 t f (v1 , v2 , . . . , vi + t, . . . , vm ) − f (v1 , v2 , . . . , vi , . . . , vm ) − t(A1i A2i · · · Ani )T = lim t→0 t f (v1 , v2 , . . . , vi + t, . . . , vm ) − f (v1 , v2 , . . . , vi , . . . , vm ) = lim − (A1i A2i · · · Ani )T t→0 t Saying that the norm of a vector approaches 0 is the same as saying that all of its components approach 0. Looking at the j-th component of the previous limit, fj (v1 , v2 , . . . , vi + t, . . . , vm ) − fj (v1 , v2 , . . . , vi , . . . , vm ) 0 = lim − Aji . t→0 t So fj (v1 , v2 , . . . , vi + t, . . . , vm ) − fj (v1 , v2 , . . . , vi , . . . , vm ) lim = Aji . t→0 t We have ∂fj Aji = ∂ti as promised.
© Copyright 2026 Paperzz