8.2 Integration by Parts Derivative of a Product What is the formula for the derivative of a product? Derivative of a Product What is the formula for the derivative of a product? d [f (x)g(x)] = f 0 (x)g(x) + g0 (x)f (x) dx Derivative of a Product What is the formula for the derivative of a product? d [f (x)g(x)] = f 0 (x)g(x) + g0 (x)f (x) dx If we integrate both sides and rearrange, we get Z 0 g (x)f (x) dx = Z d [f (x)g(x)] dx − dx Z f 0 (x)g(x) dx Integration by Parts So ... R g0 (x)f (x)dx = f (x)g(x) − R f 0 (x)g(x)dx Integration by Parts So ... R g0 (x)f (x)dx = f (x)g(x) − R uv0 = uv − R R f 0 (x)g(x)dx vu0 where u = f (x) and v = g(x). Integration by Parts So ... R g0 (x)f (x)dx = f (x)g(x) − R uv0 = uv − R R f 0 (x)g(x)dx vu0 where u = f (x) and v = g(x). Integration by parts is the product rule “in reverse” in the same way substitution is related to the chain rule. Choosing u and v0 1 We want to get simpler with v and u0 , or at least less complicated. Choosing u and v0 1 2 We want to get simpler with v and u0 , or at least less complicated. We need to be able to find v. First Example Example Integrate Z xe3x dx First Example Example Integrate Z xe3x dx This cannot be solved by any method we have seen before. First Example Example Integrate Z xe3x dx This cannot be solved by any method we have seen before. The setup: u= dv = du = v= First Example Example Integrate Z xe3x dx This cannot be solved by any method we have seen before. The setup: u= dv = What is a good choice for u? du = v= First Example If we choose u = e3x , we do not simplify our situation at all and 2 actually make it more complicated with dv = x ⇒ v = x2 . First Example If we choose u = e3x , we do not simplify our situation at all and 2 actually make it more complicated with dv = x ⇒ v = x2 . u=x dv = e3x dx we do make things simpler. du = dx v = 13 e3x First Example If we choose u = e3x , we do not simplify our situation at all and 2 actually make it more complicated with dv = x ⇒ v = x2 . u=x dv = e3x dx du = dx v = 13 e3x we do make things simpler. We can now rewrite Z xe3x dx = x 3x 1 e − 3 3 Z e3x dx First Example If we choose u = e3x , we do not simplify our situation at all and 2 actually make it more complicated with dv = x ⇒ v = x2 . u=x dv = e3x dx du = dx v = 13 e3x we do make things simpler. We can now rewrite Z x 3x 1 e − e3x dx 3 3 1 x = e3x − e3x + C 3 9 xe3x dx = Z Hint So, using a power function is a good choice for u since we can take multiple derivatives and that term will “go away” at some point. Hint So, using a power function is a good choice for u since we can take multiple derivatives and that term will “go away” at some point. This is usually the case ... usually ... Second Example Example Z z lnz dz Second Example Example Z z lnz dz What happens if we choose u = z? Second Example Example Z z lnz dz What happens if we choose u = z? dv = ln z. Second Example Example Z z lnz dz What happens if we choose u = z? dv = ln z. We don’t know how to to find the antiderivative of ln z yet, so this is not a good choice here. Second Example u= Second Example u = ln z Second Example u = ln z du = Second Example u = ln z 1 du = dz z Second Example u = ln z 1 du = dz z dv = Second Example u = ln z 1 du = dz z dv = z dz Second Example u = ln z 1 du = dz z dv = z dz v= Second Example u = ln z 1 du = dz z dv = z dz z2 v= 2 Second Example dv = z dz z2 v= 2 u = ln z 1 du = dz z Z z lnz dz = z2 lnz − 2 Z z2 1 dz 2 z Second Example dv = z dz z2 v= 2 u = ln z 1 du = dz z Z z lnz dz = z2 lnz z2 1 − dz 2 2 z Z z2 lnz z = − dz 2 2 Z Second Example dv = z dz z2 v= 2 u = ln z 1 du = dz z Z z lnz dz = z2 lnz z2 1 − dz 2 2 z Z z2 lnz z = − dz 2 2 z2 lnz z2 = − +C 2 4 Z ln x Example Z ln x dx ln x Example Z Our first IBP trick ... u = ln x ln x dx ln x Example Z Our first IBP trick ... u = ln x 1 du = dx x ln x dx ln x Example Z ln x dx Our first IBP trick ... u = ln x 1 du = dx x dv = dx ln x Example Z ln x dx Our first IBP trick ... u = ln x 1 du = dx x dv = dx v=x ln x Example Z ln x dx Our first IBP trick ... u = ln x 1 du = dx x Z ln x dx = x ln x − dv = dx v=x Z dx ln x Example Z ln x dx Our first IBP trick ... u = ln x 1 du = dx x Z dv = dx v=x ln x dx = x ln x − Z dx = xln x − x + C Third Example Example Z x cos x dx Third Example Example Z u= x cos x dx Third Example Example Z u=x x cos x dx Third Example Example Z u=x du = x cos x dx Third Example Example Z u=x du = dx x cos x dx Third Example Example Z u=x du = dx x cos x dx dv = Third Example Example Z u=x du = dx x cos x dx dv = cos x dx Third Example Example Z u=x du = dx x cos x dx dv = cos x dx v= Third Example Example Z x cos x dx u=x dv = cos x dx du = dx v = sin x Third Example Example Z x cos x dx u=x dv = cos x dx du = dx v = sin x Z x cos x dx = Third Example Example Z x cos x dx u=x dv = cos x dx du = dx v = sin x Z x cos x dx = x sin x − Z sin x dx Third Example Example Z x cos x dx u=x dv = cos x dx du = dx v = sin x Z x cos x dx = x sin x − Z sin x dx = x sin x + cos x + C Example 4 Example Z x2 cos x dx Example 4 Example Z u= x2 cos x dx Example 4 Example Z u = x2 x2 cos x dx Example 4 Example Z u = x2 du = x2 cos x dx Example 4 Example Z u = x2 du = 2xdx x2 cos x dx Example 4 Example Z u = x2 du = 2xdx x2 cos x dx dv = Example 4 Example Z u = x2 du = 2xdx x2 cos x dx dv = cos x dx Example 4 Example Z u = x2 du = 2xdx x2 cos x dx dv = cos x dx v= Example 4 Example Z x2 cos x dx u = x2 dv = cos x dx du = 2xdx v = sin x Example 4 Example Z x2 cos x dx u = x2 dv = cos x dx du = 2xdx v = sin x Z x2 cos x dx = Example 4 Example Z x2 cos x dx u = x2 dv = cos x dx du = 2xdx v = sin x Z 2 2 x cos x dx = x sin x − 2 Z x sin x dx Example 4 2 x sin x − 2 Z x sin x dx Example 4 2 x sin x − 2 u= Z x sin x dx Example 4 2 x sin x − 2 u=x Z x sin x dx Example 4 2 x sin x − 2 u=x du = Z x sin x dx Example 4 2 x sin x − 2 u=x du = dx Z x sin x dx Example 4 2 x sin x − 2 u=x du = dx Z x sin x dx dv = Example 4 2 x sin x − 2 u=x du = dx Z x sin x dx dv = sin x dx Example 4 2 x sin x − 2 u=x du = dx Z x sin x dx dv = sin x dx v= Example 4 2 x sin x − 2 Z x sin x dx u=x dv = sin x dx du = dx v = − cos x Example 4 2 x sin x − 2 2 Z x sin x dx u=x dv = sin x dx du = dx v = − cos x x sin x − 2 Z x sin x dx = Example 4 2 x sin x − 2 2 Z x sin x dx u=x dv = sin x dx du = dx v = − cos x x sin x − 2 Z 2 x sin x dx = x sin x − 2 −x cos x − Z −cos x dx Example 4 2 x sin x − 2 2 Z x sin x dx u=x dv = sin x dx du = dx v = − cos x x sin x − 2 Z 2 x sin x dx = x sin x − 2 −x cos x − Z −cos x dx = x2 sin x + 2x cos x − 2sin x + C Example 5 Example Z t2 e5t dt Example 5 Example Z u= t2 e5t dt Example 5 Example Z u = t2 t2 e5t dt Example 5 Example Z u = t2 du = t2 e5t dt Example 5 Example Z u = t2 du = 2t dt t2 e5t dt Example 5 Example Z u = t2 du = 2t dt t2 e5t dt dv = Example 5 Example Z u = t2 du = 2t dt t2 e5t dt dv = e5t dt Example 5 Example Z u = t2 du = 2t dt t2 e5t dt dv = e5t dt v= Example 5 Example Z u = t2 du = 2t dt t2 e5t dt dv = e5t dt 1 v = e5t 5 Example 5 Example Z u = t2 du = 2t dt Z t2 e5t dt = t2 e5t dt dv = e5t dt 1 v = e5t 5 Example 5 Example Z t2 e5t dt dv = e5t dt 1 v = e5t 5 u = t2 du = 2t dt Z t2 5t 2 t e dt = e − 5 5 2 5t Z t e5t dt Example 5 Z t2 e5t dt = Example 5 Z t2 5t 2 t e dt = e − 5 5 2 5t Z t e5t dt Example 5 Z t2 5t 2 t e dt = e − 5 5 u= 2 5t Z t e5t dt Example 5 Z t2 5t 2 t e dt = e − 5 5 2 5t u=t Z t e5t dt Example 5 Z t2 5t 2 t e dt = e − 5 5 2 5t u=t du = Z t e5t dt Example 5 Z t2 5t 2 t e dt = e − 5 5 2 5t u=t du = dt Z t e5t dt Example 5 Z t2 5t 2 t e dt = e − 5 5 2 5t u=t du = dt Z t e5t dt dv = Example 5 Z t2 5t 2 t e dt = e − 5 5 2 5t u=t du = dt Z t e5t dt dv = e5t dt Example 5 Z t2 5t 2 t e dt = e − 5 5 2 5t u=t du = dt Z t e5t dt dv = e5t dt v= Example 5 Z t2 5t 2 t e dt = e − 5 5 2 5t u=t du = dt Z t e5t dt dv = e5t dt 1 v = e5t 5 Example 5 Z t2 5t 2 t e dt = e − 5 5 2 5t u=t du = dt Z t2 e5t dt = Z t e5t dt dv = e5t dt 1 v = e5t 5 Example 5 Z t2 5t 2 t e dt = e − 5 5 2 5t Z dv = e5t dt 1 v = e5t 5 u=t du = dt Z t2 e5t dt = t e5t dt t2 5t 2 e − 5 5 Z t e5t dt Example 5 Z t2 5t 2 t e dt = e − 5 5 2 5t Z dv = e5t dt 1 v = e5t 5 u=t du = dt Z t e5t dt t2 5t 2 e − t e5t dt 5 5 t2 2t 2 5t = e5t − e5t + e +C 5 25 125 t2 e5t dt = Z Example 6 Example Z x2 ln x dx = Example 6 Example Z u= x2 ln x dx = Example 6 Example Z u = ln x du = x2 ln x dx = Example 6 Example Z u = ln x 1 du = dx x x2 ln x dx = Example 6 Example Z u = ln x 1 du = dx x x2 ln x dx = dv = Example 6 Example Z u = ln x 1 du = dx x x2 ln x dx = dv = x2 dx Example 6 Example Z u = ln x 1 du = dx x x2 ln x dx = dv = x2 dx v= Example 6 Example Z u = ln x 1 du = dx x x2 ln x dx = dv = x2 dx x3 v= 3 Example 6 Example Z u = ln x 1 du = dx x Z x2 ln x dx = x2 ln x dx = dv = x2 dx x3 v= 3 Example 6 Example Z x2 ln x dx = dv = x2 dx x3 v= 3 u = ln x 1 du = dx x Z x2 ln x dx = x3 1 ln x − 3 3 Z x2 dx Example 6 Example Z u = ln x 1 du = dx x Z x2 ln x dx = x2 ln x dx = dv = x2 dx x3 v= 3 x3 1 ln x − x2 dx 3 3 x3 x3 = ln x − +C 3 9 Z Example 7 Example Z y p y + 3 dy Example 7 Example Z u= y p y + 3 dy Example 7 Example Z u=y du = y p y + 3 dy Example 7 Example Z u=y du = dy y p y + 3 dy Example 7 Example Z u=y du = dy y p y + 3 dy dv = Example 7 Example Z u=y du = dy y p y + 3 dy dv = p y + 3 dy Example 7 Example Z y p y + 3 dy u=y dv = du = dy v= p y + 3 dy Example 7 Example Z y p y + 3 dy u=y dv = du = dy v= p y + 3 dy 3 2 (y + 3) 2 3 Example 7 Example Z Z y p y + 3 dy u=y dv = du = dy v= y p y + 3 dy = p y + 3 dy 3 2 (y + 3) 2 3 Example 7 Example Z Z y p y + 3 dy u=y dv = du = dy v= y p y + 3 dy = 3 2 2 y(y + 3) 2 − 3 3 Z p y + 3 dy 3 2 (y + 3) 2 3 3 (y + 3) 2 dy Example 7 Example Z Z y p y + 3 dy u=y dv = du = dy v= y p p y + 3 dy 3 2 (y + 3) 2 3 3 3 2 2 y(y + 3) 2 − (y + 3) 2 dy 3 3 3 5 2 4 = y(y + 3) 2 − (y + 3) 2 + C 3 15 y + 3 dy = Z Example 8 Example Z √ (x + 2) 2 + 4x dx Example 8 Example Z u= √ (x + 2) 2 + 4x dx Example 8 Example Z u = x+2 du = √ (x + 2) 2 + 4x dx Example 8 Example Z u = x+2 du = dx √ (x + 2) 2 + 4x dx Example 8 Example Z u = x+2 du = dx √ (x + 2) 2 + 4x dx dv = Example 8 Example Z u = x+2 du = dx √ (x + 2) 2 + 4x dx dv = √ 2 + 4x dx Example 8 Example Z u = x+2 du = dx √ (x + 2) 2 + 4x dx dv = v= √ 2 + 4x dx Example 8 Example Z u = x+2 du = dx √ (x + 2) 2 + 4x dx dv = √ 2 + 4x dx 3 1 v = (2 + 4x) 2 6 Example 8 Example Z u = x+2 du = dx Z √ (x + 2) 2 + 4x dx = √ (x + 2) 2 + 4x dx dv = √ 2 + 4x dx 3 1 v = (2 + 4x) 2 6 Example 8 Example Z u = x+2 du = dx Z √ (x + 2) 2 + 4x dx dv = √ 2 + 4x dx 3 1 v = (2 + 4x) 2 6 Z √ 3 3 1 1 (2 + 4x) 2 dx (x + 2) 2 + 4x dx = (x + 2)(2 + 4x) 2 − 6 6 Example 8 Example Z u = x+2 du = dx Z √ (x + 2) 2 + 4x dx dv = √ 2 + 4x dx 3 1 v = (2 + 4x) 2 6 Z √ 3 3 1 1 (2 + 4x) 2 dx (x + 2) 2 + 4x dx = (x + 2)(2 + 4x) 2 − 6 6 3 5 1 1 = (x + 2)(2 + 4x) 2 − (2 + 4x) 2 + C 6 60 Example 9 Example Z x dx ex Example 9 Example Z u= x dx ex Example 9 Example Z u=x du = x dx ex Example 9 Example Z u=x du = dx x dx ex Example 9 Example Z u=x du = dx x dx ex dv = Example 9 Example Z u=x du = dx x dx ex dv = e−x dx Example 9 Example Z u=x du = dx x dx ex dv = e−x dx v= Example 9 Example Z x dx ex u=x dv = e−x dx du = dx v = − e−x Example 9 Example Z x dx ex u=x dv = e−x dx du = dx v = − e−x Z x dx = ex Example 9 Example Z x dx ex u=x dv = e−x dx du = dx v = − e−x Z x dx = − x e−x − ex Z −e−x dx Example 9 Example Z x dx ex u=x dv = e−x dx du = dx v = − e−x Z x dx = − x e−x − −e−x dx ex = − x e−x − e−x + C Z Example 10 Example Z tan−1 7x dx Example 10 Example Z tan−1 7x dx Anyone remember the formula for the derivative of the arctangent function? Example 10 Example Z tan−1 7x dx Anyone remember the formula for the derivative of the arctangent function? u = tan−1 7x du = Example 10 Example Z tan−1 7x dx Anyone remember the formula for the derivative of the arctangent function? u = tan−1 7x 7 du = dx 1 + 49x2 Example 10 Example Z tan−1 7x dx Anyone remember the formula for the derivative of the arctangent function? u = tan−1 7x 7 du = dx 1 + 49x2 dv = dx Example 10 Example Z tan−1 7x dx Anyone remember the formula for the derivative of the arctangent function? u = tan−1 7x 7 du = dx 1 + 49x2 dv = dx v= Example 10 Example Z tan−1 7x dx Anyone remember the formula for the derivative of the arctangent function? u = tan−1 7x 7 du = dx 1 + 49x2 dv = dx v=x Example 10 Example Z tan−1 7x dx Anyone remember the formula for the derivative of the arctangent function? u = tan−1 7x 7 du = dx 1 + 49x2 Z tan−1 7x dx = dv = dx v=x Example 10 Example Z tan−1 7x dx Anyone remember the formula for the derivative of the arctangent function? u = tan−1 7x 7 du = dx 1 + 49x2 Z tan −1 7x dx = xtan dv = dx v=x −1 7x − 7 Z x dx 1 + 49x2 Example 10 Z tan−1 7 x dx = Example 10 Z tan −1 7 x dx = x tan −1 7x−7 Z x dx 1 + 49x2 Example 10 Z tan −1 7 x dx = x tan −1 We can now apply substitution. 7x−7 Z x dx 1 + 49x2 Example 10 Z tan −1 7 x dx = x tan −1 We can now apply substitution. w = 1 + 49x2 7x−7 Z x dx 1 + 49x2 Example 10 Z tan −1 7 x dx = x tan −1 7x−7 Z x dx 1 + 49x2 We can now apply substitution. w = 1 + 49x2 dw = 98x dx Example 10 Z tan −1 7 x dx = x tan −1 7x−7 Z x dx 1 + 49x2 We can now apply substitution. w = 1 + 49x2 dw = 98x dx 1 dw = x dx 98 Example 10 Z tan −1 7 x dx = x tan −1 7x−7 Z x dx 1 + 49x2 We can now apply substitution. dw = 98x dx 1 dw = x dx 98 w = 1 + 49x2 Z tan −1 7 x dx = x tan −1 7x−7 Z x dx 1 + 49x2 Example 10 Z tan −1 7 x dx = x tan −1 7x−7 Z x dx 1 + 49x2 We can now apply substitution. dw = 98x dx 1 dw = x dx 98 w = 1 + 49x2 Z tan −1 x dx 1 + 49x2 Z dw 1 −1 = x tan 7 x − 14 w 7 x dx = x tan −1 7x−7 Z Example 10 Z tan −1 7 x dx = x tan −1 7x−7 Z x dx 1 + 49x2 We can now apply substitution. dw = 98x dx 1 dw = x dx 98 w = 1 + 49x2 Z tan −1 x dx 1 + 49x2 Z dw 1 −1 = x tan 7 x − 14 w 1 = x tan−1 7 x − ln |w| + C 14 7 x dx = x tan −1 7x−7 Z Example 10 Z tan −1 7 x dx = x tan −1 7x−7 Z x dx 1 + 49x2 We can now apply substitution. dw = 98x dx 1 dw = x dx 98 w = 1 + 49x2 Z tan x dx 1 + 49x2 Z dw 1 −1 = x tan 7 x − 14 w 1 = x tan−1 7 x − ln |w| + C 14 1 = x tan−1 7 x − ln |1 + 49x2 | + C 14 −1 7 x dx = x tan −1 7x−7 Z Example 11 Example Z sin2 x dx Example 11 Example Z sin2 x dx Our first instinct would probably be to try using Example 11 Example Z sin2 x dx Our first instinct would probably be to try using u = sin x and dv = cos x dx. Example 11 Example Z sin2 x dx Our first instinct would probably be to try using u = sin x and dv = cos x dx. When we do we end up with −sin x cos x + R cos2 x dx. Example 11 Example Z sin2 x dx Our first instinct would probably be to try using u = sin x and dv = cos x dx. When we do we end up with −sin x cos x + R cos2 x dx. Since this isn’t as far as we need to be, we may try IBP again with u = cos x and dv = cos x dx this time. Example 11 Example Z sin2 x dx Our first instinct would probably be to try using u = sin x and dv = cos x dx. When we do we end up with −sin x cos x + R cos2 x dx. Since this isn’t as far as we need to be, we may try IBP again with u = cos x and dv = cos x dx this time. Then, we’d have = −sin x cos x + sin x cos x + which gets us exactly nowhere. R sin2 x dx, Example 11 But what if after the first application of IBP we tried this instead: Z sin2 x dx = −sin xcos x + Z cos2 x dx Example 11 But what if after the first application of IBP we tried this instead: Z Z 2 sin2 x dx = −sin xcos x + sin x dx = −sin xcos x + Z Z cos2 x dx (1 − sin2 x) dx Example 11 But what if after the first application of IBP we tried this instead: Z Z Z sin2 x dx = −sin xcos x + 2 sin x dx = −sin xcos x + sin2 x dx = −sin xcos x + Z Z Z cos2 x dx (1 − sin2 x) dx dx − Z sin2 x dx Example 11 But what if after the first application of IBP we tried this instead: Z Z Z sin2 x dx = −sin xcos x + 2 sin x dx = −sin xcos x + sin2 x dx = −sin xcos x + ⇒2 Z Z Z Z cos2 x dx (1 − sin2 x) dx dx − Z sin2 x dx sin2 x dx = −sin x cos x + x + C Example 11 But what if after the first application of IBP we tried this instead: Z Z Z sin2 x dx = −sin xcos x + 2 sin x dx = −sin xcos x + sin2 x dx = −sin xcos x + ⇒2 ⇒ Z Z Z Z Z cos2 x dx (1 − sin2 x) dx dx − Z sin2 x dx sin2 x dx = −sin x cos x + x + C 1 x sin2 x dx = − sin x cos x + + C 2 2 Example 12 Example Z 1 0 sin−1 x dx Example 12 Example Z 1 0 sin−1 x dx Does anyone remember the derivative of sin−1 x? Example 12 Example Z 1 0 sin−1 x dx Does anyone remember the derivative of sin−1 x? u = sin−1 x du = Example 12 Example Z 1 0 sin−1 x dx Does anyone remember the derivative of sin−1 x? u = sin−1 x dx du = √ 1 − x2 Example 12 Example Z 1 0 sin−1 x dx Does anyone remember the derivative of sin−1 x? u = sin−1 x dx du = √ 1 − x2 dv = dx Example 12 Example Z 1 0 sin−1 x dx Does anyone remember the derivative of sin−1 x? u = sin−1 x dx du = √ 1 − x2 dv = dx v= Example 12 Example Z 1 0 sin−1 x dx Does anyone remember the derivative of sin−1 x? u = sin−1 x dx du = √ 1 − x2 dv = dx v=x Example 12 Example Z 1 0 sin−1 x dx Does anyone remember the derivative of sin−1 x? u = sin−1 x dx du = √ 1 − x2 dv = dx v=x This gives Z 1 0 1 Z sin−1 x dx = x sin−1 x − 0 1 0 x dx √ 1 − x2 Example 12 Z 1 0 1 Z sin−1 x dx = x sin−1 x − 0 1 0 x dx √ 1 − x2 Example 12 Z 1 0 1 Z sin−1 x dx = x sin−1 x − 0 = π − 2 1 0 Z 1 0 x dx √ 1 − x2 x dx √ 1 − x2 Example 12 Z 1 0 1 Z sin−1 x dx = x sin−1 x − 0 = Now we can use substitution. w = 1 − x2 π − 2 1 0 Z 1 0 x dx √ 1 − x2 x dx √ 1 − x2 Example 12 Z 1 0 1 Z sin−1 x dx = x sin−1 x − 0 = π − 2 Now we can use substitution. w = 1 − x2 ⇒ dw = −2x dx 1 0 Z 1 0 x dx √ 1 − x2 x dx √ 1 − x2 Example 12 Z 1 0 1 Z sin−1 x dx = x sin−1 x − 0 = π − 2 1 0 Z 1 0 x dx √ 1 − x2 x dx √ 1 − x2 Now we can use substitution. 1 w = 1 − x2 ⇒ dw = −2x dx ⇒ − dw = x dx 2 Example 12 Z 1 0 sin −1 π 1 x dx = + 2 2 Z x=1 dw √ x=0 w Example 12 Z 1 0 sin −1 π 1 x=1 dw √ x dx = + 2 2 x=0 w x = 1 π 1 1 = + (2)w 2 2 2 x=0 Z Example 12 Z 1 0 sin −1 π 1 x=1 dw √ x dx = + 2 2 x=0 w x = 1 π 1 1 = + (2)w 2 2 2 x=0 1 1 π = + ( 1 − x2 ) 2 2 0 Z Example 12 Z 1 0 sin −1 π 1 x=1 dw √ x dx = + 2 2 x=0 w x = 1 π 1 1 = + (2)w 2 2 2 x=0 1 1 π = + ( 1 − x2 ) 2 2 0 π = −1 2 Z Example 13 Example Z x5 cos(x3 ) dx Example 13 Example Z x5 cos(x3 ) dx We can begin with an old substitution trick. Example 13 Example Z x5 cos(x3 ) dx We can begin with an old substitution trick. w = x3 Example 13 Example Z x5 cos(x3 ) dx We can begin with an old substitution trick. w = x3 dw = 3x2 dx Example 13 Example Z x5 cos(x3 ) dx We can begin with an old substitution trick. w = x3 dw = 3x2 dx 1 dw = x2 dx 3 Example 13 Example Z x5 cos(x3 ) dx We can begin with an old substitution trick. w = x3 dw = 3x2 dx 1 dw = x2 dx 3 This gives 1 3 Now we can apply IBP. Z w cos w dw Example 14 1 3 Z w cos w dw Example 14 1 3 u= Z w cos w dw Example 14 1 3 u=w du = Z w cos w dw Example 14 1 3 u=w du = dw Z w cos w dw Example 14 1 3 u=w du = dw Z w cos w dw dv = cos w dw Example 14 1 3 u=w du = dw Z w cos w dw dv = cos w dw v= Example 14 1 3 Z w cos w dw u=w dv = cos w dw du = dw v = sin w Example 14 1 3 1 3 Z w cos w dw u=w dv = cos w dw du = dw v = sin w Z w cos w dw = Example 14 1 3 1 3 Z w cos w dw u=w dv = cos w dw du = dw v = sin w Z w cos w dw = 1 1 w sin w − 3 3 Z sin w dw Example 14 1 3 1 3 Z w cos w dw u=w dv = cos w dw du = dw v = sin w Z 1 1 w sin w − sin w dw 3 3 1 1 = w sin w + cos w + C 3 3 w cos w dw = Z Example 14 1 3 1 3 Z w cos w dw u=w dv = cos w dw du = dw v = sin w Z 1 1 w sin w − sin w dw 3 3 1 1 = w sin w + cos w + C 3 3 1 3 = x sin x3 + cos x3 + C 3 w cos w dw = Z Example 14 Example Z 5 0 ln(1 + t) dt Example 14 Example Z 5 0 ln(1 + t) dt We first could use substitution with w = t + 1. Then, we could use IBP, but since we already found a formula for lnx, we could apply that and just evaluate. Example 14 Example Z 5 0 ln(1 + t) dt We first could use substitution with w = t + 1. Then, we could use IBP, but since we already found a formula for lnx, we could apply that and just evaluate. Z 5 0 5 ln(1 + t) dt = (1 + t)ln(1 + t) − (t + 1) = 6 ln 6 − 5 0 Example 15 Example Z √ x ln x dx Example 15 Example Z √ u= x ln x dx Example 15 Example Z √ u = ln x x ln x dx Example 15 Example Z √ u = ln x dx du = x x ln x dx Example 15 Example Z √ u = ln x dx du = x x ln x dx dv = √ x dx Example 15 Example Z √ u = ln x dx du = x x ln x dx dv = √ x dx 2 3 v = x2 3 Example 15 Example Z √ u = ln x dx du = x Z √ x ln x dx = x ln x dx dv = √ x dx 2 3 v = x2 3 Example 15 Example Z √ u = ln x dx du = x Z √ x ln x dx = x ln x dx dv = √ x dx 2 3 v = x2 3 3 2 2 (ln x) x 2 − 3 3 Z 1 x 2 dx Example 15 Example Z √ dv = √ x dx 2 3 v = x2 3 u = ln x dx du = x Z √ x ln x dx 1 3 2 2 (ln x) x 2 − x 2 dx 3 3 3 2 4 3 = (ln x) x 2 − x 2 + C 3 9 x ln x dx = Z Example 16 Example Z ex cosx dx Example 16 Example Z ex cosx dx Here we apply IBP twice, both times with u = ex . Then we do some algebra like we did before with the integral of sin2 x. Example 16 Example Z ex cosx dx Here we apply IBP twice, both times with u = ex . Then we do some algebra like we did before with the integral of sin2 x. Z ex cos x dx = 1 1 x e sin x + ex cos x + C 2 2 Example 17 Example Z cos2 (3α + 1) dα Example 17 Example Z cos2 (3α + 1) dα Similar to the sin2 x with u = dv = cos(3α + 1). Example 17 Example Z cos2 (3α + 1) dα Similar to the sin2 x with u = dv = cos(3α + 1). We end up with Z cos2 (3α + 1) dα = 1 α sin(3α + 1)cos(3α + 1) + + c 6 2 Where We Are At So, at this point, we have the following techniques that we could apply: substitution Z √ 4x 2x2 + 1 dx Where We Are At So, at this point, we have the following techniques that we could apply: substitution Z √ substitution Z 4x 2x2 + 1 dx etanx dx cos2 x Where We Are At So, at this point, we have the following techniques that we could apply: substitution Z √ substitution 4x 2x2 + 1 dx Z etanx dx cos2 x Z x2 dx 4 + x2 long division What We Could Use completing the square Z x2 dx + 6x + 14 dx (x + 3)2 + 5 1 −1 x + 3 √ = √ tan +c 5 5 = Z What We Could Use completing the square Z x2 dx + 6x + 14 dx (x + 3)2 + 5 1 −1 x + 3 √ = √ tan +c 5 5 = Z partial fraction decomposition Z dx x(x + 1) What We Could Use completing the square Z x2 dx + 6x + 14 dx (x + 3)2 + 5 1 −1 x + 3 √ = √ tan +c 5 5 = Z partial fraction decomposition Z dx x(x + 1) What if none of these techniques work? We then will turn our attention integration using tables.
© Copyright 2026 Paperzz