Fourier Transform formulas Fourier Series formulas ∞ X f (x) = a0 + (ak cos(kx) + bk sin(kx)) Z k=1 π 1 f (x) dx 2π −π Z 1 π ak = cos(kx)f (x) dx = ck + ck π −π Z π 1 bk = sin(kx)f (x) dx = i(ck − c−k ) π −π ∞ X f (x) = ck eikx a0 = −∞ 1 ck = 2π square wave f (x) Z π f (x)e−ikx dx −π Fourier series ←→ ∞ X 4 sin(kx) πk k=1,3,5,... ∞ X Fourier series ←→ ck eikx −∞ Z ∞ Fourier transform 1 2π fˆ(ω)eiωx where ω = 2π −∞ T Z ∞ −ikx 1 1 Fourier series û(k) = u(x)e dx δ(x) ←→ + (cos x + cos 2x + cos 3x + . −∞ 2π Z ∞ π 1 sin x sin 2x sin 3x Fourier series ikx u(x) = û(k)e dk − + − ... x ←→ 2 2π −∞ 1 2 3 sin x sin 2x sin 3x Fourier series û(k) = Ĝ(k)ĥ(k) x ←→ 2 − + − . . . Z ∞ 1 2 3 u(x) = g(x)h(x) ⇐⇒ ĝ(k) ∗ ĥ(k) = û(k) = ĝ(k − τ )ĥ(τ ) dτ 2 π a0 = ( Z−∞ ∞ Fourier series 0, k odd. ←→ û(k) = ĝ(k)ĥ(k) ⇐⇒ g(x) ∗ h(x) = u(x) = g(x − τ )h(τ ) dτ | sin(x)| ak = 4 1 −∞ π 1−k2 , k even. Z ∞ eixd u(x) ⇐⇒ û(k − d) F −1 ˆ Ĥ(k) = f (k)ĝ(k) ←→ H(x) = f (x) ~ g(x) = f (τ )g(x − τ u(x − a) ⇐⇒ e−iak û(k) f (x) ←→ −inf ty du ⇐⇒ ikû(k) dx Z x û(k) u(x) dx ⇐⇒ + cδ(k) ik a u(x) = f (x) ~ g(x) û(k) = fˆ(k)ĝ(k) 1 8. trig identities 1 1 − cos(2x) 2 2 1 1 cos2 (x) = + cos(2x) 2 2 3 1 3 sin (x) = sin(x) − sin(3x) 4 4 1 3 cos3 (x) = cos(x) − cos(2x) 4 2 sin(2x) = 2 sin(x) cos(x) sin2 (x) = cos(2x) = cos2 (x) − sin2 (x) = 1 − 2 sin2 (x) = 2 cos2 (x) − 1 2 tan(x) tan(2x) = 1 − tan2 (x) sin(A ± B) = sin(A) cos(B) ± cos(A) cos(B) 1. 2. 3. 4. 5. cos(A ± B) = cos(A) sin(B) ∓ sin(A) sin(B) Z When period T is not 2π replace k by in all cosn−1 (x) sin(x) n − 1 n cos (x) dx = + cosn−2 dx formulas for Fourier series. n n 1 x = cos x sin x + n even 2 2 R∞ 1 2 = cos2 x sin x + sin x n odd Plancherel formula 2π −∞ |f (x)|2 dx = 3 3 R∞ Z Z ˆ 2 n−1 −∞ |f (k)| dk − sin (x) cos(x) n−1 n sin (x) dx = + sinn−2 dx n n −1 x = sin x cos x + n even 2 2 ∞ Rπ P 2 −1 Parseval’s formula −π |f (x)|2 dx = 2π |ck |2 sin2 x cos x − cos x n odd = k=1 3 Z Z 3 1 n ax n ax n−1 ax x e dx = x e −n x e dx a 2 2 2 2 2 Parseval’s = R ∞ 2 formula again 2πa0 +π a1 + b1 + a2 + b2 + .9.. . exp/trig f (x) dx −∞ eiθ − e−iθ sin(x) = 2i eiθ + e−iθ R∞ cos(x) = Inner products 2π −∞ f (x)ḡ(x) dx = 2 R∞ ˆ ¯ reiθ = r (cos(θ) + i sin(θ)) −∞ f (k)ĝ(k) dk 2π T k Z ln(reiθ ) = ln(r) + iθ + 2kπi Z ∞ √ x2 x2 k2 F (e− 2 ) = e− 2 e−ikx dx = e− 2 2π R R 6. integration by parts uv 0 = [uv] − u0 v so pick the one that is easy to differentiate for u and the one that is easy to integrate for v. −∞ −x2 k2 √ ) = e− 4 √ Z ∞ π −x2 e dx = 2 Z 0∞ √ 2 e−x dx = π F (e 7. properties of odd and even functions Let o, e be odd and even functions, then e + e = e, o + o = o, e × e = e, o × o = e, o × e = o, ee = e, oe = o −∞ Laplace 2 π 1. To find solution to Laplace on disk, or radius r, use polar. The solution is If we are given u0 = δ at point on circle as boundary conditions, use the above formula, much easier. misc. items u(r, θ) = a0 + a1 r cos(θ) + b1 r sin(θ) 2 2 + a2 r cos(2θ) + b2 r sin(2θ) . . . Rb 1. The function that minimizes a 12 (u0 (x))2 − f u(x) dx is the solution of u00 (x) = f Where the ak and bk found from finding Fourier series of u(r, θ) evaluated at boundary as normally done. 2. every function is made up of odd/even parts f (x) − f (−x) 2 f (x) + f (−x) = 2 fodd part = 2. solution inside the circle is Z π 1 − r2 1 = u(r, θ) = 2 2π −π 1 + r − 2r cos(θ − ζ) dζ feven part references: 1. schaum’s mathematical handbook of formulas and tables by Spiegel 2. http://www.integraltec.com/math 3. http://en.wikipedia.org/wiki/Integration_by_reduction_formulae 3
© Copyright 2026 Paperzz