A-Math Formula List - Additional Math (4047) b2

A-Math Formula List - Additional Math (4047)
*Formulas highlighted in yellow are found in the formula list of the exam paper.
Quadratic Equation
b2 - 4ac > 0
Real and Distinct Roots
/ Unequal Roots
b2 - 4ac = 0
Real and Equal
Roots/Repeat Roots/
Coincident Roots.
b2 - 4ac < 0
Imaginary roots
Also known as Complex
Roots.
Page 1 of 17
www.tuitionwithjason.sg
A-Math Formula List - Additional Math (4047)
Roots of Quadratic Equation
The Quadratic Equation has solutions 𝜢 and 𝜷
Sum of Roots is
𝑏
Product of Roots is 𝛼𝛽
𝛼 + 𝛽 = βˆ’π‘Ž
=
𝑐
π‘Ž
The Equation is x2 – (Sum of Roots) x + (Product of Roots) = 0
𝛼 βˆ’ 𝛽 = ±βˆš(𝛼 βˆ’ 𝛽)2
𝛼 2 + 𝛽2 = (𝛼 + 𝛽)2 βˆ’ 2𝛼𝛽
𝛼 4 + 𝛽4 = (𝛼 2 + 𝛽2 )2 βˆ’ 2(𝛼𝛽)2
Indices
Same Base Number
Same Power
xa ο‚΄ xb ο€½ xa b
am ο‚΄bm ο€½  aο‚΄b m
x a a ο€­b
ο€½x
b
x
m
am  a οƒΆ
 οƒ·
m
bοƒΈ
b
b
 x a οƒΆ ο€½ xaο‚΄b
 οƒ·
 οƒΈ
b
a

οƒΆ
NOTE:  x οƒ· ο‚Ή xa ο‚΄ xb
 οƒΈ
Base Number-Same β†’ Power Add
or Subtract
Power Same→ Base Number
Multiply or Divide.
Other Laws of Indices
x ο€­a ο€½
1
xa
1
b
x b ο€½ x1
Page 2 of 17
www.tuitionwithjason.sg
A-Math Formula List - Additional Math (4047)
xa
a
ο€­
b
x y ο€½
yb
1
1
1
x bο€½
ο€½
1 b 1
x
b
x
1
ο€½ xa
x ο€­a
xοƒΆ
 yοƒ·
 οƒΈ
a
b
x b ο€½ xa
a
1
1
x bο€½
ο€½
a b a
x
xb
ο€­
ο€­a
a
 yοƒΆ
 οƒ·
xοƒΈ
ο€­
Surds
a ο‚΄ b ο€½ aο‚΄b
aο‚΄ a ο€½
 
a
2
aο‚Έ bο€½
a
b
m a ο‚΄ n b ο€½ m ο‚΄ n aο‚΄b
ο€½a
m a  n a ο€½ (m  n) a
m a ο€­ n a ο€½ (m ο€­ n) a
Rationalizing Denominator

 

nο€­ a
nο€­ a
1
nο€­ a
ο‚΄
ο€½
ο€½
2
n a nο€­ a
n2 ο€­a
n2 ο€­ a


Page 3 of 17
www.tuitionwithjason.sg
A-Math Formula List - Additional Math (4047)

 

n a
nο€­ a
1
n a
ο‚΄
ο€½
ο€½
2
nο€­ a n a
n2 ο€­a
n2 ο€­ a


1
nο€­ a
ο‚΄
ο€½
n a
nο€­ a
 nο€­ a  ο€½  nο€­ a 
2
2
nο€­a
 n   a 
1
n a
ο‚΄
ο€½
nο€­ a
n a
 n a  ο€½  n a 
2
2
nο€­a
 n   a 
Partial Factions
Linear Factor
mx  n
A
B
ο€½

(ax b)(cx ο€­d ) (ax b) (cx  d )
Repeat Factors
mx  n
(ax b)(cx ο€­d )2
ο€½
A
B
C


(ax b) (cx  d ) (cx  d )2
Quadratic Factors
mx  n
A
Bx C

(ax b)(cx 2 ο€­d ) (ax b) (cx 2  d )
ο€½
Page 4 of 17
www.tuitionwithjason.sg
A-Math Formula List - Additional Math (4047)
Note: If the highest coefficient of the NUMERATOR is the SAME or LARGER that
the DENOMINATOR. Do LONG DIVISION before partial fractions.
Logarithm
ln1 = 0
log b 1 = 0
by = x
y = log b x
log b b = 1
ln e x = x
log b bx = x
ln e xa = xa
Note: log b m + log b n = log b (m × n)
ln x = log e x
log e e=1
thus ln e =1
log b m + log b n β‰  log b m × log b n
log b m – log b n = log b (
Remember:
m
)
n
log b m a = a × log b m
log v u ο€½
log a u
log a v
log v u ο€½
log u u
1
ο€½
log u v log u v
Page 5 of 17
www.tuitionwithjason.sg
A-Math Formula List - Additional Math (4047)
Binomial Theorem
nοƒΆ
n!
 οƒ·ο€½
 r οƒΈ r !(n ο€­ r )!
nοƒΆ
nοƒΆ n
 οƒ· ο€½ Cr
rοƒΈ
nοƒΆ
 n οƒΆ n(n ο€­1)  n οƒΆ n(n ο€­1)(n ο€­ 2)
1ο‚΄2ο‚΄3
Remember:  οƒ· ο€½ 1,  οƒ· ο€½ n,  οƒ· ο€½
,  οƒ·ο€½
0
1
2
1
ο‚΄
2
 οƒΈ
 οƒΈ
 οƒΈ
 3οƒΈ
Since:
nοƒΆ
nοƒΆ
nοƒΆ
nοƒΆ
(a  bx) n ο€½ a n   οƒ· a n ο€­1 (bx)1   οƒ· a n ο€­ 2 (bx) 2   οƒ· a n ο€­3 (bx)3 ....  οƒ· a n ο€­r (bx) r  (bx) n
1οƒΈ
 2οƒΈ
 3οƒΈ
rοƒΈ
Therefore:
n
(n)(n ο€­ 1) n ο€­ 2
(n)(n ο€­ 1)(n ο€­ 2) n ο€­3
(a  bx) n ο€½ a n  a n ο€­1 (bx)1 
a (bx) 2 
a (bx)3 ....  (bx) n
1
1ο‚΄ 2
1ο‚΄ 2 ο‚΄ 3
Alternate formula if a=1
1  kx 
n
nοƒΆ
nοƒΆ
nοƒΆ
 n οƒΆ n ο€­( n ο€­1)
nοƒΆ
0
1
2
n ο€­1
n
ο€½  οƒ·1n  kx    οƒ·1n ο€­1  kx    οƒ·1n ο€­ 2  kx   .... 
 kx    οƒ·1nο€­n  kx 
οƒ·1
0οƒΈ
1οƒΈ
 2οƒΈ
 n ο€­ 1οƒΈ
 nοƒΈ
OR
nοƒΆ
nοƒΆ
 n οƒΆ
n
1
2
n ο€­1
n
1

kx
ο€½
1

kx

kx

....


     

οƒ·  kx    kx 
1οƒΈ
 2οƒΈ
 n ο€­ 1οƒΈ
Page 6 of 17
www.tuitionwithjason.sg
A-Math Formula List - Additional Math (4047)
Trigonometry
cos ec ο€½
1
sin 
sin 2   cos 2  ο€½ 1
sec ο€½
1
cos
1  cot 2  ο€½ cos ec 2
cot  ο€½
1 cos
ο€½
tan  sin 
1  tan 2  ο€½ sec 2 
Compound Angle Formula
sin  A ο‚± B  ο€½ sin A cos B ο‚± cos A sin B
cos  A ο‚± B  ο€½ cos A cos B sin A sin B
tan  A ο‚± B  ο€½
tan A ο‚± tan B
1 tan A tan B
Page 7 of 17
www.tuitionwithjason.sg
A-Math Formula List - Additional Math (4047)
Double Angle Formula
sin 2 A ο€½ 2sin Acos A
cos 2 A ο€½ 2 cos 2 A ο€­ 1 / cos 2 A ο€½ cos 2 A ο€­ sin 2 A / cos 2 A ο€½ 1 ο€­ 2sin 2 A
tan 2 A ο€½
2 tan A
1 ο€­ tan 2 A
Half Angle Formula
sin
A
1 ο€­ cos A
ο€½ο‚±
2
2
cos
A
1  cos A
ο€½ο‚±
2
2
tan
A
1 ο€­ cos A 1 ο€­ cos A
ο€½
ο€½
2
1  cos A
sin A
R-Formula
aCos ο‚± bSin ο€½ RCos(  )
aSin ο‚± bCos ο€½ RSin( ο‚±  )
Where
R ο€½ a 2  b2
tan  ο€½
b
a
Page 8 of 17
www.tuitionwithjason.sg
A-Math Formula List - Additional Math (4047)
Coordinate Geometry
Gradient(m) =
y2 ο€­ y1
x2 ο€­ x1
General Equation Y ο€­ y1 ο€½ m( X ο€­ x1 )
where ( x1 , y1 ) is a point on the
graph.
Alternatively you may use y=mx+c
Mid-point of a line
(
x1  x2 y1  y2
,
)
2
2
Distance between two points
( x2 ο€­ x1 )2  ( y2 ο€­ y1 ) 2
If two lines have the same gradient
If two line have perpendicular
gradient
m1 ο€½ m2
i.e. 90° to each other.
m1 ο€½ ο€­
1
m2
or
m1 ο‚΄ m2 ο€½ ο€­1
Page 9 of 17
www.tuitionwithjason.sg
A-Math Formula List - Additional Math (4047)
Perpendicular Bisector
1. The two lines AB and PQ must
intersect at 90°
m1 ( AB ) ο€½ ο€­
1
m2 ( PQ )
2. One Line (AB) will cut the mid-point of the other line (PQ)
x2  x1 y2  y1 οƒΆ
,
οƒ·
2 οƒΈ
 2
Mid-point PQ = 
Area of Plane Figure (Polygon Figure)
Vertices A(x1,y1), B(x2,y2),C (x3,y3)
1 π‘₯1
|
2 𝑦1
π‘₯2 π‘₯3
𝑦2 𝑦3
π‘₯4
𝑦4
π‘₯1
𝑦1 |
1
|(π‘₯ 𝑦 + π‘₯2 𝑦3 + π‘₯3 𝑦4 + π‘₯4 𝑦1 ) βˆ’ (π‘₯2 𝑦1 + π‘₯3 𝑦2 + π‘₯4 𝑦3 + π‘₯1 𝑦4 )|
2 1 2
*It does NOT matter if you calculate in a clockwise or anti-clockwise direction.
The is a |modulus| in the formula
Page 10 of 17
www.tuitionwithjason.sg
A-Math Formula List - Additional Math (4047)
Circles
Radius of a circle
r ο€½ ( x ο€­ a)2  ( y ο€­ b)2
Equation of a Circle
(π‘₯ βˆ’ π‘Ž)2 + (𝑦 βˆ’ 𝑏 )2 = π‘Ÿ 2 (Standard Form)
or
π‘₯ 2 + 𝑦 2 + 2𝑔π‘₯ + 2𝑓𝑦 + 𝑐 = 0 (General Form)
where π‘Ž = βˆ’π‘”, 𝑏 = βˆ’π‘“
and π‘Ÿ = βˆšπ‘”2 + 𝑓 2 βˆ’ 𝑐
Proofs in Plane Geometry
Midpoint Theorem
Tangent –Chord Theorem
(Alternate Segment Theorem)
If X and Y are midpoints,
then YZ // WX
Angle W = Angle X
Angle Y = Angle Z
YZ = ½ WX
Page 11 of 17
www.tuitionwithjason.sg
A-Math Formula List - Additional Math (4047)
Differentiation
dy
(ax n ) ο€½ anx n ο€­1
dx
Where’ a’ is a constant
Sum/Difference of Function
dy
(a) ο€½ 0
dx
d
du dv
(u ο‚± v) ο€½
ο‚±
dx
dx dx
and β€˜n’ is an integer.
Chain Rule
dy dy du
ο€½
ο‚΄
dx du dx
Quotient Rule
du
dv
ο€­u
d uοƒΆ
dx
dx
 οƒ·ο€½
2
dx  v οƒΈ
v
v
Product Rule
d
dv
du
(uv) ο€½ u  v
dx
dx
dx
d
(sin x) ο€½ cos x
dx
d
(tan x) ο€½ sec 2 x
dx
d
(cos x) ο€½ ο€­ sin x
dx
Chain Rule is use to differentiate the functions below.
d
 a sin  bx  c   ο€½ a ο‚΄ cos(bx  c) ο‚΄ b
dx
d
 a cos  bx  c   ο€½ a ο‚΄ ο€­ sin(bx  c) ο‚΄ b
dx 
d
 a tan  bx  c   ο€½ a ο‚΄ sec 2 (bx  c) ο‚΄ b
dx
Page 12 of 17
www.tuitionwithjason.sg
A-Math Formula List - Additional Math (4047)
d
 a sin n  bx  c   ο€½ a ο‚΄ n ο‚΄ sin n ο€­1 (bx  c) ο‚΄ cos(bx  c) ο‚΄ b
dx
d
 a cos n  bx  c   ο€½ a ο‚΄ n ο‚΄ cos n ο€­1 (bx  c) ο‚΄ ο€­ sin(bx  c) ο‚΄ b
dx
d
 ata n n  bx  c   ο€½ a ο‚΄ n ο‚΄ tan n ο€­1 (bx  c) ο‚΄ sec 2 (bx  c ) ο‚΄ b
dx
Exponential/Natural Logarithm Function
d ax b
( e ) ο€½ a e ax  b
dx
d x
(e ) ο€½ e x
dx
β€˜a’ is a constant
d
1
(ln x) ο€½ (where x>0)
dx
x
d
a
ln(ax  b) ο€½
dx
ax  b
(where ax +b>0)
Page 13 of 17
www.tuitionwithjason.sg
A-Math Formula List - Additional Math (4047)
Integration
ax n 1
 ax dx ο€½ n  1  c
  ax  b 
n
n
 a dx ο€½ ax  c
where n≠-1
 ax  b 
dx ο€½
n 1
(n  1)(a)
c
n≠1,a≠0; a & b are constants
Product of constant and a function
Sum and Difference of function
 af ( x)dx ο€½ a  f ( x)dx
  f ( x) ο‚±  g ( x)dx ο€½   f ( x)dx ο‚±   g ( x)dx
 a cos bx dx ο€½
where f(x) is a function
a sin bx
c
b
1
 x dx ο€½ ln x  c
 a sin bx dx ο€½ ο€­
where x>0
a cos bx
c
b
∫
2
 a sec bx dx ο€½
a tan bx
c
b
1
ln(π‘Žπ‘₯ + 𝑏)
𝑑π‘₯ =
+𝐢
π‘Žπ‘₯ + 𝑏
π‘Ž
1
ln(π‘Žπ‘₯ 𝑛 + 𝑏)
∫ 𝑛
𝑑π‘₯ =
+𝐢
π‘Žπ‘₯ + 𝑏
π‘Ž × π‘› × π‘₯ π‘›βˆ’1
x
x
 e dx ο€½ e  c
βˆ«π‘’
π‘Žπ‘₯+𝑏
𝑒 π‘Žπ‘₯+𝑏
𝑑π‘₯ =
+𝐢
π‘Ž
𝑛
βˆ«π‘’
π‘Žπ‘₯ 𝑛 +𝑏
𝑒 π‘Žπ‘₯ +𝑏
𝑑π‘₯ =
+𝐢
π‘Ž × π‘› × π‘₯ π‘›βˆ’1
Page 14 of 17
www.tuitionwithjason.sg
A-Math Formula List - Additional Math (4047)
Integration of Area
Area between
Curve and X-axis
Area between
Curve and X-axis
𝑏
𝑏
∫ 𝑓 (π‘₯ )𝑑π‘₯
βˆ’ ∫ 𝑓(π‘₯ )𝑑π‘₯
π‘Ž
π‘Ž
Area between
Curve and Y-axis
Area between
Curve and Y-axis
𝑏
𝑏
∫ 𝑓(𝑦)𝑑𝑦
βˆ’ ∫ 𝑓(𝑦)𝑑𝑦
π‘Ž
π‘Ž
Area between the Curves f(x) (u-shape) and g(x)
(n-shape).
𝑏
𝑏
∫ 𝑔(π‘₯)𝑑π‘₯ βˆ’ ∫ 𝑓 (π‘₯)𝑑π‘₯
π‘Ž
π‘Ž
Area between the Curves g(x)(n-shape) and f(x)
(u-shape).
𝑏
𝑏
βˆ’[∫ 𝑓 (π‘₯)𝑑π‘₯ βˆ’ ∫ 𝑔(π‘₯)𝑑π‘₯]
π‘Ž
π‘Ž
Page 15 of 17
www.tuitionwithjason.sg
A-Math Formula List - Additional Math (4047)
Area between the Curves g(y) (inverted c-shape) and
shape).
𝑏
f(y) (c-
𝑏
∫ 𝑔(𝑦)𝑑𝑦 βˆ’ ∫ 𝑓 (𝑦)𝑑𝑦
π‘Ž
π‘Ž
Area between the Curves f(y) (c-shape) and g(y)
(inverted c-shape).
𝑏
𝑏
βˆ’[∫ 𝑓(π‘₯ )𝑑π‘₯ βˆ’ ∫ 𝑔(π‘₯ )𝑑π‘₯]
π‘Ž
π‘Ž
Kinematics
Velocity is the RATE of CHANGE of
Acceleration is the RATE of CHANGE
Displacement
of Velocity
vο€½
ds
dt
aο€½
or
v ο€½  a dt ο€½ 
dv
dt
dt
where v:velocity, s:displacement,
t:time
dv
dt
where a:accleration
Some other methods to find
acceleration
d 2s
aο€½ 2
dt
aο€½
dv ds
ο‚΄
ds dt
Page 16 of 17
www.tuitionwithjason.sg
A-Math Formula List - Additional Math (4047)
𝑑𝑠
𝑑𝑠
𝑑𝑑
Displacement (s)
𝑑𝑑
Velocity (v)
βˆ«βˆ«π‘£ 𝑣𝑑𝑑𝑑𝑑
𝑑𝑣
𝑑𝑑
Acceleration (a)
∫ π‘Ž 𝑑𝑑
The End
Page 17 of 17
www.tuitionwithjason.sg