A-Math Formula List - Additional Math (4047) *Formulas highlighted in yellow are found in the formula list of the exam paper. Quadratic Equation b2 - 4ac > 0 Real and Distinct Roots / Unequal Roots b2 - 4ac = 0 Real and Equal Roots/Repeat Roots/ Coincident Roots. b2 - 4ac < 0 Imaginary roots Also known as Complex Roots. Page 1 of 17 www.tuitionwithjason.sg A-Math Formula List - Additional Math (4047) Roots of Quadratic Equation The Quadratic Equation has solutions πΆ and π· Sum of Roots is π Product of Roots is πΌπ½ πΌ + π½ = βπ = π π The Equation is x2 β (Sum of Roots) x + (Product of Roots) = 0 πΌ β π½ = ±β(πΌ β π½)2 πΌ 2 + π½2 = (πΌ + π½)2 β 2πΌπ½ πΌ 4 + π½4 = (πΌ 2 + π½2 )2 β 2(πΌπ½)2 Indices Same Base Number Same Power xa ο΄ xb ο½ xa ο«b am ο΄bm ο½ ο¨ aο΄b ο©m x a a οb ο½x b x m am ο¦ a οΆ ο½ο§ ο· m ο¨bοΈ b b ο¦ x a οΆ ο½ xaο΄b ο§ ο· ο¨ οΈ b a ο¦ οΆ NOTE: ο§ x ο· οΉ xa ο΄ xb ο¨ οΈ Base Number-Same β Power Add or Subtract Power Sameβ Base Number Multiply or Divide. Other Laws of Indices x οa ο½ 1 xa 1 b x b ο½ x1 Page 2 of 17 www.tuitionwithjason.sg A-Math Formula List - Additional Math (4047) xa a ο b x y ο½ yb 1 1 1 x bο½ ο½ 1 b 1 x b x 1 ο½ xa x οa ο¦xοΆ ο§ yο· ο¨ οΈ a b x b ο½ xa a 1 1 x bο½ ο½ a b a x xb ο οa a ο¦ yοΆ ο½ο§ ο· ο¨xοΈ ο Surds a ο΄ b ο½ aο΄b aο΄ a ο½ ο¨ ο© a 2 aοΈ bο½ a b m a ο΄ n b ο½ m ο΄ n aο΄b ο½a m a ο« n a ο½ (m ο« n) a m a ο n a ο½ (m ο n) a Rationalizing Denominator ο¨ ο© ο¨ ο© nο a nο a 1 nο a ο΄ ο½ ο½ 2 nο« a nο a n2 οa n2 ο a ο¨ ο© Page 3 of 17 www.tuitionwithjason.sg A-Math Formula List - Additional Math (4047) ο¨ ο© ο¨ ο© nο« a nο a 1 nο« a ο΄ ο½ ο½ 2 nο a nο« a n2 οa n2 ο a ο¨ ο© 1 nο a ο΄ ο½ nο« a nο a ο¨ nο a ο© ο½ ο¨ nο a ο© 2 2 nοa ο¨ n ο© οο¨ a ο© 1 nο« a ο΄ ο½ nο a nο« a ο¨ nο« a ο© ο½ ο¨ nο« a ο© 2 2 nοa ο¨ n ο© οο¨ a ο© Partial Factions Linear Factor mx ο« n A B ο½ ο« (ax ο«b)(cx οd ) (ax ο«b) (cx ο« d ) Repeat Factors mx ο« n (ax ο«b)(cx οd )2 ο½ A B C ο« ο« (ax ο«b) (cx ο« d ) (cx ο« d )2 Quadratic Factors mx ο« n A Bx ο«C ο« (ax ο«b)(cx 2 οd ) (ax ο«b) (cx 2 ο« d ) ο½ Page 4 of 17 www.tuitionwithjason.sg A-Math Formula List - Additional Math (4047) Note: If the highest coefficient of the NUMERATOR is the SAME or LARGER that the DENOMINATOR. Do LONG DIVISION before partial fractions. Logarithm ln1 = 0 log b 1 = 0 by = x y = log b x log b b = 1 ln e x = x log b bx = x ln e xa = xa Note: log b m + log b n = log b (m × n) ln x = log e x log e e=1 thus ln e =1 log b m + log b n β log b m × log b n log b m β log b n = log b ( Remember: m ) n log b m a = a × log b m log v u ο½ log a u log a v log v u ο½ log u u 1 ο½ log u v log u v Page 5 of 17 www.tuitionwithjason.sg A-Math Formula List - Additional Math (4047) Binomial Theorem ο¦nοΆ n! ο§ ο·ο½ ο¨ r οΈ r !(n ο r )! ο¦nοΆ ο¦nοΆ n ο§ ο· ο½ Cr ο¨rοΈ ο¦nοΆ ο¦ n οΆ n(n ο1) ο¦ n οΆ n(n ο1)(n ο 2) 1ο΄2ο΄3 Remember: ο§ ο· ο½ 1, ο§ ο· ο½ n, ο§ ο· ο½ , ο§ ο·ο½ 0 1 2 1 ο΄ 2 ο¨ οΈ ο¨ οΈ ο¨ οΈ ο¨ 3οΈ Since: ο¦nοΆ ο¦nοΆ ο¦nοΆ ο¦nοΆ (a ο« bx) n ο½ a n ο« ο§ ο· a n ο1 (bx)1 ο« ο§ ο· a n ο 2 (bx) 2 ο« ο§ ο· a n ο3 (bx)3 .... ο§ ο· a n οr (bx) r ο« (bx) n ο¨1οΈ ο¨ 2οΈ ο¨ 3οΈ ο¨rοΈ Therefore: n (n)(n ο 1) n ο 2 (n)(n ο 1)(n ο 2) n ο3 (a ο« bx) n ο½ a n ο« a n ο1 (bx)1 ο« a (bx) 2 ο« a (bx)3 .... ο« (bx) n 1 1ο΄ 2 1ο΄ 2 ο΄ 3 Alternate formula if a=1 ο¨1 ο« kx ο© n ο¦nοΆ ο¦nοΆ ο¦nοΆ ο¦ n οΆ n ο( n ο1) ο¦nοΆ 0 1 2 n ο1 n ο½ ο§ ο·1n ο¨ kx ο© ο« ο§ ο·1n ο1 ο¨ kx ο© ο« ο§ ο·1n ο 2 ο¨ kx ο© ο« .... ο§ ο¨ kx ο© ο« ο§ ο·1nοn ο¨ kx ο© ο·1 ο¨0οΈ ο¨1οΈ ο¨ 2οΈ ο¨ n ο 1οΈ ο¨ nοΈ OR ο¦nοΆ ο¦nοΆ ο¦ n οΆ n 1 2 n ο1 n 1 ο« kx ο½ 1 ο« kx ο« kx ο« .... ο¨ ο© ο§ ο·ο¨ ο© ο§ ο·ο¨ ο© ο§ ο· ο¨ kx ο© ο« ο¨ kx ο© ο¨1οΈ ο¨ 2οΈ ο¨ n ο 1οΈ Page 6 of 17 www.tuitionwithjason.sg A-Math Formula List - Additional Math (4047) Trigonometry cos ecο± ο½ 1 sin ο± sin 2 ο± ο« cos 2 ο± ο½ 1 secο± ο½ 1 cosο± 1 ο« cot 2 ο± ο½ cos ec 2ο± cot ο± ο½ 1 cosο± ο½ tan ο± sin ο± 1 ο« tan 2 ο± ο½ sec 2 ο± Compound Angle Formula sin ο¨ A ο± B ο© ο½ sin A cos B ο± cos A sin B cos ο¨ A ο± B ο© ο½ cos A cos B sin A sin B tan ο¨ A ο± B ο© ο½ tan A ο± tan B 1 tan A tan B Page 7 of 17 www.tuitionwithjason.sg A-Math Formula List - Additional Math (4047) Double Angle Formula sin 2 A ο½ 2sin Acos A cos 2 A ο½ 2 cos 2 A ο 1 / cos 2 A ο½ cos 2 A ο sin 2 A / cos 2 A ο½ 1 ο 2sin 2 A tan 2 A ο½ 2 tan A 1 ο tan 2 A Half Angle Formula sin A 1 ο cos A ο½ο± 2 2 cos A 1 ο« cos A ο½ο± 2 2 tan A 1 ο cos A 1 ο cos A ο½ ο½ 2 1 ο« cos A sin A R-Formula aCosο± ο± bSinο± ο½ RCos(ο± ο‘ ) aSinο± ο± bCosο± ο½ RSin(ο± ο± ο‘ ) Where R ο½ a 2 ο« b2 tan ο‘ ο½ b a Page 8 of 17 www.tuitionwithjason.sg A-Math Formula List - Additional Math (4047) Coordinate Geometry Gradient(m) = y2 ο y1 x2 ο x1 General Equation Y ο y1 ο½ m( X ο x1 ) where ( x1 , y1 ) is a point on the graph. Alternatively you may use y=mx+c Mid-point of a line ( x1 ο« x2 y1 ο« y2 , ) 2 2 Distance between two points ( x2 ο x1 )2 ο« ( y2 ο y1 ) 2 If two lines have the same gradient If two line have perpendicular gradient m1 ο½ m2 i.e. 90° to each other. m1 ο½ ο 1 m2 or m1 ο΄ m2 ο½ ο1 Page 9 of 17 www.tuitionwithjason.sg A-Math Formula List - Additional Math (4047) Perpendicular Bisector 1. The two lines AB and PQ must intersect at 90° m1 ( AB ) ο½ ο 1 m2 ( PQ ) 2. One Line (AB) will cut the mid-point of the other line (PQ) x2 ο« x1 y2 ο« y1 οΆ , ο· 2 οΈ ο¨ 2 Mid-point PQ = ο¦ο§ Area of Plane Figure (Polygon Figure) Vertices A(x1,y1), B(x2,y2),C (x3,y3) 1 π₯1 | 2 π¦1 π₯2 π₯3 π¦2 π¦3 π₯4 π¦4 π₯1 π¦1 | 1 |(π₯ π¦ + π₯2 π¦3 + π₯3 π¦4 + π₯4 π¦1 ) β (π₯2 π¦1 + π₯3 π¦2 + π₯4 π¦3 + π₯1 π¦4 )| 2 1 2 *It does NOT matter if you calculate in a clockwise or anti-clockwise direction. The is a |modulus| in the formula Page 10 of 17 www.tuitionwithjason.sg A-Math Formula List - Additional Math (4047) Circles Radius of a circle r ο½ ( x ο a)2 ο« ( y ο b)2 Equation of a Circle (π₯ β π)2 + (π¦ β π )2 = π 2 (Standard Form) or π₯ 2 + π¦ 2 + 2ππ₯ + 2ππ¦ + π = 0 (General Form) where π = βπ, π = βπ and π = βπ2 + π 2 β π Proofs in Plane Geometry Midpoint Theorem Tangent βChord Theorem (Alternate Segment Theorem) If X and Y are midpoints, then YZ // WX Angle W = Angle X Angle Y = Angle Z YZ = ½ WX Page 11 of 17 www.tuitionwithjason.sg A-Math Formula List - Additional Math (4047) Differentiation dy (ax n ) ο½ anx n ο1 dx Whereβ aβ is a constant Sum/Difference of Function dy (a) ο½ 0 dx d du dv (u ο± v) ο½ ο± dx dx dx and βnβ is an integer. Chain Rule dy dy du ο½ ο΄ dx du dx Quotient Rule du dv οu d ο¦uοΆ dx dx ο§ ο·ο½ 2 dx ο¨ v οΈ v v Product Rule d dv du (uv) ο½ u ο« v dx dx dx d (sin x) ο½ cos x dx d (tan x) ο½ sec 2 x dx d (cos x) ο½ ο sin x dx Chain Rule is use to differentiate the functions below. d ο©ο« a sin ο¨ bx ο« c ο© οΉο» ο½ a ο΄ cos(bx ο« c) ο΄ b dx d ο© a cos ο¨ bx ο« c ο© οΉο» ο½ a ο΄ ο sin(bx ο« c) ο΄ b dx ο« d ο©ο« a tan ο¨ bx ο« c ο© οΉο» ο½ a ο΄ sec 2 (bx ο« c) ο΄ b dx Page 12 of 17 www.tuitionwithjason.sg A-Math Formula List - Additional Math (4047) d ο©ο« a sin n ο¨ bx ο« c ο© οΉο» ο½ a ο΄ n ο΄ sin n ο1 (bx ο« c) ο΄ cos(bx ο« c) ο΄ b dx d ο©ο« a cos n ο¨ bx ο« c ο© οΉο» ο½ a ο΄ n ο΄ cos n ο1 (bx ο« c) ο΄ ο sin(bx ο« c) ο΄ b dx d ο©ο« ata n n ο¨ bx ο« c ο© οΉο» ο½ a ο΄ n ο΄ tan n ο1 (bx ο« c) ο΄ sec 2 (bx ο« c ) ο΄ b dx Exponential/Natural Logarithm Function d ax ο«b ( e ) ο½ a e ax ο« b dx d x (e ) ο½ e x dx βaβ is a constant d 1 (ln x) ο½ (where x>0) dx x d a οln(ax ο« b)ο ο½ dx ax ο« b (where ax +b>0) Page 13 of 17 www.tuitionwithjason.sg A-Math Formula List - Additional Math (4047) Integration ax n ο«1 ο² ax dx ο½ n ο« 1 ο« c ο² ο¨ ax ο« b ο© n n ο² a dx ο½ ax ο« c where nβ -1 ο¨ ax ο« b ο© dx ο½ n ο«1 (n ο« 1)(a) ο«c nβ 1,aβ 0; a & b are constants Product of constant and a function Sum and Difference of function ο² af ( x)dx ο½ a ο² f ( x)dx ο² οο‘ f ( x) ο± ο’ g ( x)οdx ο½ ο‘ ο² f ( x)dx ο± ο’ ο² g ( x)dx ο² a cos bx dx ο½ where f(x) is a function a sin bx ο«c b 1 ο² x dx ο½ ln x ο« c ο² a sin bx dx ο½ ο where x>0 a cos bx ο«c b β« 2 ο² a sec bx dx ο½ a tan bx ο«c b 1 ln(ππ₯ + π) ππ₯ = +πΆ ππ₯ + π π 1 ln(ππ₯ π + π) β« π ππ₯ = +πΆ ππ₯ + π π × π × π₯ πβ1 x x ο² e dx ο½ e ο« c β«π ππ₯+π π ππ₯+π ππ₯ = +πΆ π π β«π ππ₯ π +π π ππ₯ +π ππ₯ = +πΆ π × π × π₯ πβ1 Page 14 of 17 www.tuitionwithjason.sg A-Math Formula List - Additional Math (4047) Integration of Area Area between Curve and X-axis Area between Curve and X-axis π π β« π (π₯ )ππ₯ β β« π(π₯ )ππ₯ π π Area between Curve and Y-axis Area between Curve and Y-axis π π β« π(π¦)ππ¦ β β« π(π¦)ππ¦ π π Area between the Curves f(x) (u-shape) and g(x) (n-shape). π π β« π(π₯)ππ₯ β β« π (π₯)ππ₯ π π Area between the Curves g(x)(n-shape) and f(x) (u-shape). π π β[β« π (π₯)ππ₯ β β« π(π₯)ππ₯] π π Page 15 of 17 www.tuitionwithjason.sg A-Math Formula List - Additional Math (4047) Area between the Curves g(y) (inverted c-shape) and shape). π f(y) (c- π β« π(π¦)ππ¦ β β« π (π¦)ππ¦ π π Area between the Curves f(y) (c-shape) and g(y) (inverted c-shape). π π β[β« π(π₯ )ππ₯ β β« π(π₯ )ππ₯] π π Kinematics Velocity is the RATE of CHANGE of Acceleration is the RATE of CHANGE Displacement of Velocity vο½ ds dt aο½ or v ο½ ο² a dt ο½ ο² dv dt dt where v:velocity, s:displacement, t:time dv dt where a:accleration Some other methods to find acceleration d 2s aο½ 2 dt aο½ dv ds ο΄ ds dt Page 16 of 17 www.tuitionwithjason.sg A-Math Formula List - Additional Math (4047) ππ ππ ππ‘ Displacement (s) ππ‘ Velocity (v) β«β«π£ π£ππ‘ππ‘ ππ£ ππ‘ Acceleration (a) β« π ππ‘ The End Page 17 of 17 www.tuitionwithjason.sg
© Copyright 2026 Paperzz