NEWs: THE DUTCH ROADMAP FOR THE WWTP OF 2030 NEWs 2010 24 NEWs NEWs NEWs NEWs NEWs NEWs NEWs NEWS: THE DUTCH ROADMAP FOR THE WWTP OF 2030 1 WWTP2030E NEWs WWTP2030E 2 PREFACE 5IF%VUDI8BUFSTFDUPSIBTCFFOBWFSZJOOPWBUJWFTFDUPSEVSJOHUIFMBTUEFDBEFT*OOPWBUJPOTIBWFCFFO OFDFTTBSZ JO PSEFS UP NFFU JODSFBTJOH FGGMVFOU RVBMJUZ TUBOEBSET BU BGGPSEBCMF DPTUT 5IJT /&8T TUVEZ TIPXTQPTTJCJMJUJFTGPSSFTPVSDFBQQSPBDIJOTUFBEPGBXBTUFBQQSPBDI5IFUFSN/&8TJNQMJFTUIBUUIF OFXXBZPGXBTUFXBUFSUSFBUNFOUJTSFTPVSDFNBOBHFNFOUGPSUIFUISFFCBTJDSFTPVSDFT/VUSJFOUT&OFSHZ BOE8BUFS5IF%VUDIFYBNQMFTQSFTFOUFEJOUIJTSFQPSUTIPXUIBUOFXUSFBUNFOUTDIFNFTCBTFEPOB SFTPVSDFBQQSPBDIBSFBMSFBEZQSBDUJDFE 5IFQSPKFDUXBTJOJUJBUFECZUIF(MPCBM8BUFS3FTFBSDI$PBMJUJPO(83$ 5IFJOUFSOBUJPOBMOFUXPSLPG XBUFSPSHBOJTBUJPOTHBUIFSFEJOUIF(83$XBOUFEBMPPLBUUIFGVUVSFPGPVSXBTUFXBUFSUSFBUNFOUGBDJMJ UJFT$PVMEJUCFVTFGVMUPBQQMZSFTPVSDFUIJOLJOHUPXBTUFXBUFSUSFBUNFOU /FYUUPUIJTUIFHMPCBMJNQBDUPGUIFFDPOPNJDDSJTFTUIFFOFSHZDSJTFTBOEUIFDMJNBUFDIBOHFEDBVTFE DPVOUSJFTUPSFUIJOLUIFJSFOFSHZVTFBOEFNJTTJPOPGHSFFOIPVTFHBTFT*O5IF/FUIFSMBOETUIFXBUFS TFDUPSIBTTFUMJNJUTUPFOFSHZVTFBOEIBTQSPQPTFENPSFMBSHFQSPKFDUTPOFOFSHZFGGJDJFODZPGXBTUFXB UFSUSFBUNFOUGBDJMJUJFT *O5IF/FUIFSMBOETUIFXBUFSTFDUPSJTEJWJEFEJOEJGGFSFOUPSHBOJTBUJPOTGPSESJOLJOHXBUFSXBUFSTVQQMZ DPNQBOJFT TFXBHF TZTUFNT NVOJDJQBMJUJFT BOE XBTUFXBUFS USFBUNFOU XBUFSCPBSET $PPQFSBUJPO CFU XFFOUIFTFPSHBOJTBUJPOTJTFODPVSBHFECFDBVTFPGDPTUFGGJDJFODZQVSQPTFT 5IFTFUISFFEJGGFSFOUESJWFSTXFSFUBLFOBTUIFTUBSUJOHQPJOUPGUIJTTUVEZ8FCFMJFWFUIBUXBTUFXBUFS USFBUNFOU XJMM BMXBZT CF OFDFTTBSZ CVU UIF GVUVSF JT GPVOE JO SFTPVSDF UIJOLJOH (PPE /&8T GPS UIF XPSMEXBTUFCFDPNFTBSFTPVSDF5IF%VUDI8BUFSTFDUPSJTTFUUJOHTUFQTUPXBSET "NFSTGPPSU+VOF %JSFDUPSPG4508"JS+.+-FFOFO 3 WWTP2030E WWTP2030E 4 TA B L E O F C O N T E N T S 1 INTRODUC T ION THE PRO JEC T .FUIPE 4UBSUJOHQPJOUT 3 PER SPEC T I VE %FWFMPQNFOUTBOEUSFOET 'BDUPST *NBHFT 4 T R E AT M E N T T E C H N O L O G Y *OUSPEVDUJPO 1SFUSFBUNFOU #BTJDUSFBUNFOU 1PTUUSFBUNFOU 4MVEHFUSFBUNFOU 5SFBUNFOUPGSFKFDUJPOXBUFS &OFSHZDPOWFSTJPO 5 O U T L I N E O F 2 030 WA S T E WAT E R T R E AT M E N T P L A N T 8BUFSGBDUPSZ &OFSHZGBDUPSZ /VUSJFOUGBDUPSZ 6 ROADMAP %FTUJOBUJPO 3PVUF (14 5 WWTP2030E 1 WWTP2030E 6 INTRODUCTION *OUIF(MPCBM8BUFS3FTFBSDI$PBMJUJPOUPPLUIFJOJUJBUJWFUPSFGMFDUPOUIFGVUVSFPGNVOJDJQBMXBT UFXBUFSUSFBUNFOUDPOTJTUJOHPGDPMMFDUJPOUSBOTQPSUBOEUSFBUNFOUBJNJOHBUDMJNBUFBOEFOFSHZOFV USBMJUZ8JUIJOUIFDPOUFYUPGUIJTHMPCBMSFTFBSDIQSPHSBNTPNFDPVOUSJFTBHSFFEUPGPDVTPOUIFNVOJ DJQBMTFXBHFUSFBUNFOUQMBOUBOJNQPSUBOUFMFNFOUPGVSCBOXBTUFXBUFSNBOBHFNFOU5IF/FUIFSMBOET BSFQBSUPGUIBUHSPVQMFBECZUIF1VCMJD6UJMJUZ#PBSEPG4JOHBQPSF5IJTSFQPSUTVNNBSJ[FTUIF%VUDI SFTFBSDIDPOUSJCVUJPO 5IFNBJOPCKFDUJWFPGUIF%VUDISFTFBSDIXBTUPFMBCPSBUFUIFPVUMJOFTPGUIFNVOJDJQBMTFXBHFUSFBU NFOU QMBOU PG 'JSTU DVSSFOU BOE GVUVSF EFWFMPQNFOUT BOE USFOET UIBU NJHIU IBWF BO JNQBDU PO TFXBHFUSFBUNFOUXFSFTVNNBSJ[FEGSPNMJUFSBUVSFBOEBOBMZ[FEXJUIBOFYQFSUUFBNDIBQUFS /FYU DVSSFOU BOE QPUFOUJBM USFBUNFOU UFDIOJRVFT XFSF TVNNBSJ[FE DIBQUFS 4VCTFRVFOUMZ FYBNQMFT PG GVUVSFUSFBUNFOUQMBOUTDBMMFEUIFXBUFSGBDUPSZFOFSHZGBDUPSZBOEOVUSJFOUGBDUPSZXFSFEFTJHOFECZ UIFFYQFSUUFBNDIBQUFS 'JOBMMZBSPBENBQMFBEJOHUPBOBQQSPQSJBUFDIPJDFPGUFDIOPMPHZBOEEFTJHO XBTESBGUFE 7 WWTP2030E 2 WWTP2030E 8 THE PROJECT 2 .1 ME THOD 5IFGJSTUQSPKFDUBDUJWJUZXBTUPBOBMZ[FBOETVNNBSJ[FOBUJPOBMBOEJOUFSOBUJPOBMMJUFSBUVSFPOUSFOET BOEEFWFMPQNFOUTUIBUXJMMPSNBZBGGFDUUIFVSCBOXBTUFXBUFSNBOBHFNFOUJOHFOFSBMBOEXBTUFXBUFS USFBUNFOUJOQBSUJDVMBS *OUIFOFYUQSPKFDUQIBTFOBUJPOBMFYQFSUTXFSFJOWPMWFE*UXBTEFDJEFEUPESBJOUIFJSLOPXMFEHFFYQF SJFODFBOEWJTJPOUISPVHIUXPXPSLTIPQT*OUPUBMFYQFSUTPGXBUFSCPBSETXBUFSDPNQBOJFTBOEDPO TVMUBOUTKPJOFEUIFFYQFSUUFBN5IFGJSTUXPSLTIPQGPDVTFEPOUSFOETBOEEFWFMPQNFOUTUIFTFDPOEPO UFDIOPMPHZBOEUIFPVUMJOFPGUIFNVOJDJQBMXBTUFXBUFSUSFBUNFOUQMBOU 5IFGJOBMQSPKFDUQIBTFGPDVTFEPOFMBCPSBUJPOPGUIFSPBENBQSFQPSUJOHBOEDPNNVOJDBUJPO 2.2 S TA R T I N G - P O I N T S 3FGMFDUJOHPOUIFGVUVSFFBTJMZHFOFSBUFTQBOPSBNBTUIBUEJWFSHFGSPNBMJLFMZSFBMJUZ0OUIFPUIFSIBOE DSFBUJWJUZTIPVMEOPUCFMJNJUFECZVOOFDFTTBSZCPVOEBSZDPOEJUJPOT"XFMMCBMBODFEQMBZJOHHSPVOEXBT EFGJOFECZTFUUJOHBTFSJFTPGHFOFSBMTUBSUJOHQPJOUT 1SFEJDUBCMFDIBOHFTPGXBTUFXBUFSQSPEVDUJPOBOEDPNQPTJUJPOBSFUBLFOJOUPBDDPVOU 8BTUFXBUFSUSFBUNFOUBMTPDPNQSJTFTTMVEHFQSPEVDUJPOBOEUSFBUNFOU 5IFFYJTUFODFJOPGUSFBUNFOUQMBOUTCVJMECFGPSFNBZOPUCFBMJNJUJOHGBDUPS 5IFXBTUFXBUFSUSFBUNFOUQMBOUJTBDFOUSBMJ[FEGBDJMJUZUIBUPGGFSTJOUFHSBMUSFBUNFOUPGXBTUFXBUFSUIF FGGFDUTPGMPDBMQSFUSFBUNFOUBSFOPUUBLFOJOUPBDDPVOU 5IFFGGMVFOURVBMJUZUIBUXJMMCFQSPEVDFEJOJTIJHIFSUIBOUPEBZ *UJTBMMPXFEUPQBTTUIFMJOFPGDVSSFOUMFHBMMJNJUBUJPOTXJUISFTQFDUUPBQQMJDBUJPOPGDFSUBJOBQQBSBUVT BQQMJDBUJPOPGSFTJEVFTFUDFUFSB 8BUFSCPBSETNBZVUJMJ[FUIFJSDBQBDJUJFTGPSPUIFSQVSQPTFTUIBOUIFDVSSFOUUBTLPGQSPUFDUJOHUIFBRVB UJDFOWJSPONFOU 5IFMPDBMTJUVBUJPOBUBTQFDJGJDUSFBUNFOUMPDBUJPONBZCFVUJMJ[FE 9 WWTP2030E 3 WWTP2030E 10 PERSPECTIVE 3.1 DE VELOPMENT S AND TRENDS 5BCMFMJTUTUIFNBKPSEFWFMPQNFOUTEFSJWFEGSPNMJUFSBUVSFUIBUXJMMPSNBZBGGFDUNVOJDJQBMXBTUFXB UFSUSFBUNFOUJO5IF/FUIFSMBOET Table 3.1. Important developments and impact on wastewater treatment. D E V EL O P ME NT DIR E CT ION IMPACT Demographic Population growth Treatment capacity Urbanization Treatment capacity Aging Wastewater: hormones, medicines Shortage of technicians Water(technology) capability Economic Environmental policy Shortage of raw materials Capital and Operational costs Globalization; commercialization Exchange; organizational change Declining industrial discharge Wastewater: less degradable matter Increasing operational costs Operational costs Demand of higher efficacy Efficiency, efficacy, quality Effect of European legislation Discharge standards Sustainability Policies on purchase, impacts Strategy of containment, storage and Treatment capacity discharge (of wastewater) Ecological Social Technological Cooperation in water cycle Optimization Climate change Peak capacity Sustainability becomes natural Reuse of resources Increase of treatment plant loading Fraction non-degradable matter Individualization Acceptance of public activities Demand of higher quality, luxury, comfort of life Dilution wastewater (virtual) Webs Knowledge exchange Raw materials from wastewater Water, N, P Energy from wastewater Production, providing ICT development Process management, information Decentralized pretreatment Chemical use Increasing knowledge of hazardous compounds Treatment performance standard Increase of build and paved area Treatment capacity Scaling-up of treatment plants Economics; technology Nano particles ? Application of nanotechnology Technology New treatment techniques Technology 11 WWTP2030E 3. 2 FAC T O R S *OBEEJUJPOUPUIFEFWFMPQNFOUTNFOUJPOFEDFSUBJOGBDUPSTNBZJOGMVFODFPSFWFOTFUUIFXBTUFXBUFSUSF BUNFOUUFDIOPMPHZUPCFBQQMJFEJOUIFGVUVSF5IFFYQFSUUFBNXBTBTLFEUPHFOFSBUFBOESBOLTVDIGBD UPSTJOUFSNTPGQSJPSJUZ5IFSFTVMUTBSFTIPXOJOGJHVSF 5IFGBDUPSTFGGMVFOURVBMJUZ FOFSHZOFVUSBMJUZ BOEOVUSJFOUTSFDPWFSZ QPJOUUIFEJSFDUJPOPGNBOVGBD UVSJOHPGQSPEVDUTBOEDBOCFNBUFSJBMJ[FEJOUFSNTPGBXBUFSGBDUPSZBOFOFSHZGBDUPSZBOEBOVUSJFOU GBDUPSZ5IFTFGBDUPSJFTXFSFBEPQUFEUPCFUIFMFBEJOHDPODFQUBUUIFEFWFMPQNFOUPGUIFUSFBUNFOU QMBOUPVUMJOF Factors of influence 10 - Landuse 9 - Water scarcity 8 - Operation, maintenance 7 - Sustainability 6 - Risc profile 5 - Wastewater policy 4 - Nutrientrecovery - Energy neutrality 3 - Costs 2 - Effluent quality 1 - Priority (1: low; 10: high) Figure 3.1. Priority of expert group for factors of influence. 3. 3 I M AG E S #BTFEPOEFWFMPQNFOUTUSFOETBOEGBDUPSTJEFOUJGJFEUIFFYQFSUUFBNXBTBTLFEUPSFGMFDUPOUIFEJSFD UJPOTNVOJDJQBMXBTUFXBUFSUSFBUNFOUNJHIUUBLFJOUIFZFBSTUPDPNF5IFSFGMFDUJPOIBEUPPDDVS XJUIJOUIFGSBNFXPSLPGBUXPEJNFOTJPOBMTQBDFEFGJOFECZDPPSEJOBUFTPGUFDIOPMPHZBOETPDJFUZ5IF NFBOJOHPGUIFGPVSTFHNFOUTJOGBDUTDFOBSJPTXBTFYQMBJOFEPOBOVNCFSPGBTQFDUTGJHVSF 5IF FYQFSUT XFSF BTLFE UP TDPSF UIF QSPCBCJMJUZ PG UIF TDFOBSJPT UP PDDVS JO BOE 5IF SFTVMUT BSF TIPXOJOGJHVSF5IFUBCMFDMFBSMZEFNPOTUSBUFTBMBOETMJEFUPCFFYQFDUFE WWTP2030E 12 A. To live is to experience B. Sustainable living together Comfort and ease Sustainable and committed High tech end of pipe technology Advanced innovative technology Tailor made Quality products Invisible government Synergy with environment D. Solitaire and simple C. Economical and diligence Simple and modest Economical and traditional Cheap, proven technology Robust and conventional technology Operate at the boundaries Life-cycle prolongation Autarchy Cooperation at water chain management Figure 3.2. Images and aspects. 2010 (%) Collective society Individual society Innovative technology Traditional technology 2030 (%) 5% 5% 24% 90% 90% 24% A. To live is to experience B. Sustainable living together C. Economical and diligence D. Solitair and simple 52% Figure 3.3. According to expert group the situation in 2010 (left) and in 2030 (right). 13 WWTP2030E H4 WWTP2030E 14 TREATMENT TECHNOLOGY 4 .1 INTRODUC T ION .VOJDJQBMXBTUFXBUFSUSFBUNFOUJO5IF/FUIFSMBOETDBOCFTDIFNBUJ[FEJOUPTJYQSPDFTTTUFQTGJHVSF 'PSFBDIQSPDFTTTUFQEJGGFSFOUUFDIOJRVFTBSFBQQMJFEBWBJMBCMFPSVOEFSEFWFMPQNFOU4PNFUJNFTUIFZ BSFDPNQBSBCMFJOUFSNTPGUSFBUNFOUPCKFDUJWFJOPUIFSDBTFTUIFZBSFBQQMJFEJOTFSJFTGPSEJGGFSFOUQVS QPTFT*UJTUPCFFYQFDUFEUIBUCFGPSFDVSSFOUUFDIOJRVFTBSFBCBOEPOFEBWBJMBCMFUFDIOJRVFTCFDP NFPQFSBUJPOBMBOEOFXUFDIOJRVFTBSFEFWFMPQFE *OUIJTDIBQUFSUSFBUNFOUUFDIOJRVFTBSFTVNNBSJ[FEBOEDMBTTJGJFEBDDPSEJOHUPQVSQPTFFYQFSJFODF SFMFWBODFUPXBUFSFOFSHZBOEOVUSJFOUGBDUPSJFTBOETQFDJBMGFBUVSFT Influent Additives Pretreatment Basic treatment Post treatment Rejection water treatment Sludge treatment Energy conversion Raw materials (water, N, P, Energy) Residues, sludges, etc. Figure 4.1. Scheme of various process steps of a wastewater treatment plant. 15 WWTP2030E 4.2 P R E T R E AT M E N T 5IFNBJOQVSQPTFTPGQSFUSFBUNFOUBSFUPSFNPWFDPBSTFNBUFSJBMTHSJUBOETVTQFOEFENBUUFS"USFNP WBMPGTVTQFOEFENBUUFSBMTP$0%JTSFNPWFE5IFUFDIOJRVFTDPOTJEFSFEBSFMJTUFEJOUBCMF Tabel 4.1. Overview of techniques for pretreatment. SYSTEM FE AT U RE S Basic Screen Purpose: removal of coarse materials Grit chamber Purpose: grit removal Pre-sedimentation Purpose: removal of settleble suspended matter (COD) Special: The suspended matter removed is a residue (primary sludge). It mainly consists of organic matter and water, and is a raw material of energy (biogas) production The ratio of organic matter (COD) over N and P of the wastewater is reduced (higher removal of organic matter). This may negatively impact the subsequent biological treatment Improved Coagulation + pre-sedimentation Purpose: removal of settleble and colloidal matter (COD) and P Special: In the case of inorganic coagulants, also P is removed and can be valued positive. However, again it may have adverse effects on subsequent biological treatment (ration COD/N). Necessity for the E-factory. Use of chemicals might have a negative environmental impact Biological adsorption Purpose: removal of suspended and colloidal COD (A step of AB system) Special: post separation of wastewater and biomass is required Advanced Membrane filtration Purpose: optimized removal of suspended and colloidal matter through a combination of Sand filtration straining and adsorption Micro sieve, drum sieve Special: Advanced separation of contaminants/raw materials (COD removed, N and P not removed). Reduction of COD over N and P ratio. Higher removal of suspended matter and lower sludge production (lower water content) Alternative Anaerobic pretreatment Purpose: removal of COD and nutrients Special: suitable as a local pretreatment; not suitable at municipal wastewater treatment (temperature and concentrations too low) WWTP2030E 16 4.3 B A S I C T R E AT M E N T 5IFNBJOPCKFDUJWFTBUUIFCBTJDQSPDFTTTUFQBSFUPSFNPWFSFNBJOJOH$0%/BOE1.PTUTZTUFNTBSF DPNQPTFEPGBCJPSFBDUPSBOETVCTFRVFOUTFQBSBUJPOPGXBUFSBOECJPNBTTSFTJEVFTMVEHF 5IFUFDIOJ RVFTDPOTJEFSFEBSFMJTUFEJOUBCMF8JUISFTQFDUUPUIFCJPSFBDUPSJUTIPVMECFNFOUJPOFEUIBUFWFO NPSFUFDIOJRVFTIBWFCFFOEFWFMPQFE"MMPGUIFNBSFFJUIFSBFSPCJDPSBOBFSPCJDTVTQFOEFEPSBUUBDIFE HSPXUITZTUFNT Table 4.2. Overview of techniques. SYSTEM FE AT URE S Conventional: Suspended growth Activated sludge Purpose: removal of COD, N (nitrification, denitrification), P Activated sludge + chemical P-precipitation Special: the reliability of these systems may hamper development of a new Activated sludge treatment + generation of treatment plants; external biomass-water separation (secondary biological P-removal sedimentation); return and excess biomass. Basic treatment option in all scenarios Attached growth Trickling filter + Sedimentation Purpose: removal of COD, transformation of N (nitrification) Special: extended removal of COD and P at pretreatment required; external biomass-water separation (secondary sedimentation); excess biomass Submerged systems (e.g. Biostyrtion) Purpose: removal of COD, transformation or removal of N (nitrification, denitrification) Special (Biostyr): attached growth at a synthetic carrier material; upflow treatment; packed fluidized bed retained by a screen; aerobic or anoxic and aerobic reactor; backwashing; external clarification of backwash water; hardly any experience in The Netherlands Airlift fluidized systems (e.g. Circox) Purpose: removal of COD, transformation of N (nitrification), removal of P Special (Circox): attached growth at a carrier material; internal plate separator for clarification of effluent; limited excess biomass production; limited space consumption; hardly any experience in The Netherlands Moving-bed biofilm systems (MBBR; e.g. Kaldness) Purpose: removal of COD, N (nitrification, denitrification), P Special (Kaldness): no P-removal; attached growth on a synthetic carrier material; aerobic and anaerobic reactors; air mixing and mechanical mixing; internal clarification (screen); no return biomass required; applicable as full treatment or pretreatment; hardly any experience in The Netherlands Alternative systems Aerobic suspended bed reactor (Nereda) Experience: promising system: first full scale reactor will start up in 2011 Cold Anammox reactor Purpose: removal of N through anaerobic oxidation of ammonia by nitrite Special: less space consumption, reduced CO2-emission, reduced power consumption, no external C-source required, minimal surplus sludge; until now only theoretical Membrane bioreactor (MBR) Purpose: removal of COD and N Special: high costs and energy consumption Alternatives for sedimentation Upflow sludge blanket filtration Special: compact system Lamella filtration (e.g. Actiflo) Special: widely applied abroad but not in The Netherlands; compact system 17 WWTP2030E 4.4 P O S T T R E AT M E N T 5IFPCKFDUJWFTBUUIFQPTUUSFBUNFOUQSPDFTTTUFQEJGGFS1PTUUSFBUNFOUIBTUPGJMMUIFHBQUIBUNBZSFNBJO CFUXFFOUIFUSFBUNFOUSFTVMUTBDIJFWFEUISPVHIQSFUSFBUNFOUBOECBTJDUSFBUNFOUBOEEJTDIBSHFHVJEFMJ OFT5IFPCKFDUJWFBUQPTUUSFBUNFOUDBOBMTPCFTFUCZUIFFGGMVFOURVBMJUZSFRVJSFEGPSXBUFSSFVTFQVSQP TFT5BCMFMJTUTUIFUFDIOJRVFTDPOTJEFSFE Tabel 4.3. Overview of techniques for post treatment. SYSTEM FE AT URE S Removal of particulate matter Rapid sand filtration Purpose: depending on design and operation - Removal of suspended matter and N (biological) - Removal of suspended matter and P (floc filtration) - Combined removal Special: high energy consumption Micro sieve, rotary drum sieve Purpose: removal of suspended matter and included N and P Fabric sieve Special: micro sieve and drum sieve are attractive because of low energy Fuzzy filter consumption; in The Netherlands only minor experience on full scale Removal of colloidal and dissolved matter and microorganisms Membrane techniques Microfiltration Purpose: removal of organic and inorganic compounds and pathogens; except Ultra filtration microfiltration effective at disinfection Nanofiltration Special: high treatment costs, production of a residue (brine); proven technology, Reverse osmosis mainly used for water production Other techniques Activated carbon filtration Purpose: removal of (hazardous) organic compounds Ion exchange Purpose: removal of inorganic compounds Ozonisation Purpose: removal of pathogens UV disinfection Special: regeneration and residue (carbon, ion); relatively high treatment costs; Hydrogen peroxide very limited experience on effluent treatment in The Netherlands General effluent polishing Reed bed filter (constructed wetland) Purpose: removal of colloidal organic matter (sedimentation), N and P Algae pond (plant uptake), heavy metals (adsorption), addition of oxygen Purpose: ‘natural’ bridging of the water quality gap between effluent and surface water (vitalization of effluent) Special: large space requirements; no removal of pathogens; possibility of harvesting plants en algae; until now no full-scale experience in The Netherlands WWTP2030E 18 4.5 S L U D G E T R E AT M E N T 4MVEHFJTBMJRVJESFTJEVFPGXBTUFXBUFSUSFBUNFOUDPOUBJOJOHPSHBOJDNBUUFSBOEIBWJOHIJHIXBUFSDPO UFOU4MVEHFTBSFMJCFSBUFEBUQSFUSFBUNFOUTFEJNFOU BUCBTJDUSFBUNFOUTVSQMVTCJPNBTT BOEBUTPNF QPTUUSFBUNFOUUFDIOJRVFTFHDMBSJGJDBUJPOPGCBDLXBTIXBUFSPGGJMUSBUJPO "CBTJDPCKFDUJWFPGTMVEHFUSFBUNFOUJTUPSFEVDFUIFWPMVNF5IJTDBOCFBDIJFWFECZSFEVDJOHUIFXBUFS BOE PSHBOJD NBUUFS DPOUFOU " IJHIFS PCKFDUJWF JT UP SFEVDF UIF WPMVNF BOE VTF UIF PSHBOJD NBUUFS PG TMVEHFGPSFOFSHZSFDPWFSZ5IFUFDIOJRVFTDPOTJEFSFEBSFMJTUFEJOUBCMF Tabel 4.4. Overview of techniques for sludge treatment. SYSTEM FE AT URE S Physical dewatering (free water) Gravity-belt thickener Purpose: reduction of water content (sludge volume) in view of successive sludge Centrifuge treatment Belt-filter press Biochemical dewatering (entrapped water) Enzymatic hydrolysis Purpose: reduction of water content by breaking down a complex chemical Thermal hydrolysis structure of macromolecules or the structure of microorganisms Disintegration (cavitation) Special: experience in The Netherlands limited. Worldwide experience show Biological techniques possibilities for larger scale sludge treatment Organic mass reduction Mesophylic digestion Purpose: reduction of sludge organic matter and recovery of energy and heat Thermophylic digestion Special: the energy produced is mostly applied at the wastewater treatment plant Combined digestion and sometimes elsewhere ; the water separated from digested sludge is rich of N and P. The residue requires final treatment Final treatment Composting Purpose: reduction of mass and volume of energy recovery residue Thermal drying Experience: mostly direct incineration (sludge only). In some cases first Incineration composting or thermal drying and subsequently co-incineration (domestic waste, Gasification and pyrolysis coal, cement ovens). Pyrolysis, gasification and wet oxidation are not applied Wet oxidation 19 WWTP2030E 4.6 T R E AT M E N T O F R E J E C T I O N WAT E R "UTMVEHFUSFBUNFOUTPMJENBUUFSJTTFQBSBUFEGSPNTPDBMMFESFKFDUJPOXBUFS5IFSFKFDUJPOXBUFSPGEJHF TUFETMVEHFIBTBIJHI/BOE1DPOUFOU5IFCBTJDPCKFDUJWFBUGVSUIFSUSFBUNFOUJTUPSFEVDFUIF/BOE1 DPOUFOU5IFIJHIFSPCKFDUJWFJTUPSFDPWFS/BOE15BCMFMJTUTUIFUFDIOJRVFTDPOTJEFSFE Tabel 4.5. Overview of techniques for treatment of rejection water. SYSTEM FE AT URE S N removal Sharon process Purpose: removal of dissolved N (ammonia) from water De-ammonification (e.g. Anammox) Special: Sharon process requires an external (added) C-source, deammonification processes not; widely accepted as proven technology N recovery Steam stripping Air stripping Purpose: removal of N from water and recovery of N from stripping gas (after partial oxidation as NH4NO3) Special: in general N is a renewable resource. Recovery from wastewater may not be competitive to other options. Limited experience P recovery Crystalactor technology Purpose: removal of P from water and recovery of P. Recovery as calciumphosphate Struvite reactor grains (Crystal) or magnesiumammoniaphosphate (Struvite) Special: reuse may be obstructed by pollution of phosphate produced; high operation costs (Crystalactor) WWTP2030E 20 4 .7 E N E R G Y CO N V E R S I O N "UTMVEHFEJHFTUJPOHBTJTQSPEVDFE5IFNBJOPCKFDUJWFPGHBTUSFBUNFOUJTUPSFDPWFSUIFFOFSHZDPO UBJOFE5IFUFDIOJRVFTDPOTJEFSFEBSFMJTUFEJOUBCMF Tabel 4.6. Overview of techniques for energy conversion. SYSTEM FE AT URE S Basic Boiler Purpose: combustion of digestion gas and recovery of heat for heating purposes Cogenerator Purpose: combustion of digestion gas for production of electricity and recovery of combustion heat for heating purposes Special: relatively low efficiency at electricity production (35%); contamination of digestion gas Advanced Dual fuel Purpose: combustion of digestion gas for production of electricity and recovery of Cogenerator applying ORC combustion heat for heating purposes (organic ranking cycle) Special: higher efficiency at energy production (> 40%); NOx-emission (Dual Fuel), Fuel cell high costs (fuel cell); all systems require a certain scale; limited experience in The Netherlands Alternatives Heat pump Purpose: use of combustion gas heat to produce work Special: reuse should be possible in the vicinity of the treatment plant, because of heat losses at transport Geothermal heat pump Purpose: subsurface storage and use of combustion gas heat Special: low thermal efficiency; not applied for wastewater treatment heat in The Netherlands; increasing applications at reuse of other forms of residual heat Production of green gas Purpose: production of natural gas from digester gas Special: maximal thermal efficiency (at direct delivery of gas); the energy required by the wastewater treatment plant has to be purchased 21 WWTP2030E 5 WWTP2030E 22 OUTLINE OF 2030 WASTEWATER TREATMENT PLANT 5 .1 WAT E R FA C T O R Y *GPOFDPOTJEFSTBXBTUFXBUFSUSFBUNFOUQMBOUUPCFBXBUFSQSPEVDUJPOGBDJMJUZBUQSFTFOUUIFQSPEVDUJO NPTU%VUDIDBTFTIBTUPNFFUBEJTDIBSHFQFSNJUBJNJOHBUNBJOUBJOJOHBHPPERVBMJUZPGUIFSFDFJWJOH TVSGBDFXBUFS5IFEJTDIBSHFQFSNJUJTCBTFEPOBEFHSFFPGEJMVUJPOPGFGGMVFOU*OTPNFFYDFQUJPOBMDBTFT UIFQSPEVDURVBMJUZJTTFUCZNPSFTFWFSFRVBMJUZHVJEFMJOFTEFUFSNJOFECZJUTBQQMJDBUJPO%VUDIFYBNQMFT BSFBQQMJDBUJPOGPSJOEVTUSJBMDPPMJOHBOEQSPDFTTFTBOEBHSJDVMUVSBMJSSJHBUJPO"OPUIFSUZQFPGBQQMJDBUJ POJTUIFVTFBTTVSGBDFXBUFSJOBSJEBSFBTXJUIMJNJUFEQPTTJCJMJUJFTPGEJMVUJPO*O5IF/FUIFSMBOETUIFTF BQQMJDBUJPOTNBZSFNBJOFYFNQUJPOTPOUIFTIPSUUFSNCFDBVTFPGUIFBCVOEBOUOBUVSBMXBUFSSFTPVSDFT "QSFEJDUBCMFUSFOEBUUIFNPNFOUJTUIBUGVUVSF&VSPQFBOTVSGBDFXBUFSRVBMJUZHVJEFMJOFTXJMMJOEVDF UIFOFFEPGGVSUIFSOVUSJFOUSFNPWBM Influent Additives Pretreatment Basic treatment Post treatment Rejection water treatment Sludge treatment Energy conversion Raw materials (water, N, P, Energy) Residues, sludges, etc. Figure 5.1. Scheme of various process steps of a wastewater treatment plant, in blue treatment scheme for a Water Factory. 5 .1 .1 WAT E R FA C T O R Y I N S P I R AT I O N – D U T C H E X A M P L E S 5FSOFV[FOXBTUFXBUFSUSFBUNFOUQMBOUQSPDFTTXBUFS 5IF;FFVXT7MBBOEFSFO8BUFS#PBSEBOE&WJEFT*OEVTUSJBM8BUFSIBWFTUBSUFEUIFDPOTUSVDUJPOPGBNFN CSBOF CJPSFBDUPS BU UIF 5FSOFV[FO XBTUFXBUFS USFBUNFOU QMBOU 4JODF &WJEFT VTFT FGGMVFOU GPS UIF QVSQPTFPGQSPEVDUJPOPGEFNJOFSBMJTFEXBUFS5IFOFXNFNCSBOFCJPSFBDUPSIBWJOHBEFTJHOFEDBQB DJUZPGNIPVSJTNFBOUUPVQHSBEFUIFFGGMVFOURVBMJUZJOPSEFSUPQSPEVDFQSPDFTTXBUFSGJHVSF 23 WWTP2030E &NNFOXBTUFXBUFSUSFBUNFOUQMBOUCPJMFSGFFEXBUFS "KPJOUWFOUVSFPGUIF%SFOUIF8BUFS$PNQBOZBOEUIF7FMUBOE7FDIU8BUFS#PBSEIBTFNCBSRVFEPO VQHSBEJOHPGFGGMVFOUUPCPJMFSGFFEXBUFSGPSTUFBNQSPEVDUJPO5IFVQHSBEJOHQSPDFTTDPNQSJTFTTUFQT 5IFTF BSF JO DISPOPMPHJDBM PSEFS VMUSB GJMUSBUJPO CJPMPHJDBM BDUJWBUFE DBSCPO GJMUSBUJPO QIBTF SFWFSTF PTNPTJTBOEQPMJTIJOHCZFMFDUSPEFJPOJTBUJPOGJHVSF ,BBUTIFVWFMXBTUFXBUFSUSFBUNFOUQMBOUSFDSFBUJPOXBUFS 4JODFUIFFGGMVFOUJTVTFEBTSFDSFBUJPOXBUFSJOPSEFSUPBWPJEBCTUSBDUJPOPGTDBSDFHSPVOEXBUFS 5IFFGGMVFOUJTQPMJTIFEJOBDPNQBSUNFOUSFFECFEGJMUFS*OPSEFSUPCFUUFSDPOUSPMUIFOVUSJFOUDPO UFOUBSBQJETBOEGJMUFSJTJOTFSUFECFGPSFUIFSFFECFEGJMUFS5IFGJMUFSIBTBDBQBDJUZPGBCPVUN QFSZFBSGJHVSF -BOEWBO$VJKLXBTUFXBUFSUSFBUNFOUQMBOUBHSJDVMUVSBMXBUFS *OUIF"BBOE.BBT8BUFS#PBSEJOUSPEVDFEBSFFECFEGJMUFSGPSQPMJTIJOHPGUIFFGGMVFOU*OESZ QFSJPETUIFFGGMVFOUJTEJTDIBSHFEUPUIFTVSGBDFXBUFSTZTUFNPGBOFBSCZBHSJDVMUVSBMBSFB5IFTVSGBDF XBUFSJTVTFEGPSTQSBZJSSJHBUJPO*OPSEFSUPQSPEVDFBNPSFOBUVSBMDPNQPTJUJPOPGUIFXBUFSEJTDIBSHFE UIFSFFECFEGJMUFSXBTUSBOTGPSNFEJOUPBTXBNQTZTUFNDPNQPTFEPGTVDDFTTJWFMZBTVQQMZQPOEQBSBMMFM SFFECFEDBOBMTBEJTDIBSHFDBOBMBOEBRVBUJDQMBOUQPOETGJHVSF F 5.2 F 5.4 F 5.3 F 5.5 Figure 5.2. Design of Membrane Bioreactor at wwtp Terneuzen (NWP, 2009). Figure 5.3. Building of facility for ultrapure water at wwtp Emmen (Kampen Industrial Care, 2009). Figure 5.4. Reed bed at wwtp Kaatsheuvel (Brabants Dagblad, 2007). Figure 5.5. Reed beds at wwtp Land van Cuijk (STOWA, 2004). WWTP2030E 24 5 .1 . 2 E X P E R I E N C E I N T H E N E T H E R L A N D S *OPSEFSUPJOTQJSFBOFYBNQMFDPOGJHVSBUJPOPGBXBUFSGBDUPSZXBTEFWFMPQFECZUIFFYQFSUUFBN GJHVSF 5IFUFSNTPGSFGFSFODFXFSFUPNBOVGBDUVSFQSPEVDUTCPJMFSGFFEBOETVSGBDFXBUFS Oxidation (O3) A step MBR Metalsalts + C-source Contact reactor Reverse Osmosis Biological Activated Carbon 30% Filtration 20% 10% Boiler feedwater/ drinking water Filtration wastewater 70% Conventional sludge treatment Regeneration of Activated Carbon Reed beds and surface water Figuur 5.6. Water factory scheme by expert group. "GBWPVSBCMFDPOEJUJPOBUBQQMJDBUJPOPGUIJTDPOGJHVSBUJPOJTUIBUXBTUFXBUFSJTDPMMFDUFECZBTFQBSBUFE TFXFSBHFTZTUFN5IJTHVBSBOUFFTUIFNPTUDPOTUBOUTVQQMZBOERVBMJUZPGUIFSBXNBUFSJBMUIFXBTUFXB UFS BOEUIFSFGPSFPGGFSTUIFCFTUUSFBUNFOUDPOEJUJPOT"MTPBHSJUDIBNCFSDBOCFBWPJEFE 4PNFJNQPSUBOUDIBSBDUFSJTUJDTPGUIFDPOGJHVSBUJPOBSF 1IZTJDBMSFNPWBMPG$0% #JPMPHJDBMSFNPWBMPG/ #JPMPHJDBMBOEDIFNJDBMQIZTJDBMSFNPWBMPG1 #JPMPHJDBMQSPDFTTFTCBTFEPOBDUJWBUFETMVEHFBOEBUUBDIFEHSPXUINFNCSBOFBDUJWBUFEDBSCPO *OTIPVMECFOPUFEUIBUUSFBUNFOUPGSFTJEVFTXBTOPUFMBCPSBUFECVUXJMMUPTPNFFYUFOUBMTPCFQBSUPG UIFXBUFSGBDUPSZ 25 WWTP2030E 5.2 E N E R G Y FAC T O R Y 5SBEJUJPOBMMZFOFSHZQSPEVDUJPOXBTOPUUIFNBJOJTTVFBUXBTUFXBUFSUSFBUNFOU)PXFWFSFOFSHZJTCFDP NJOHBTQFBSIFBEDPOTJEFSJOHUIBUPVUPG XBUFSCPBSETJO5IF/FUIFSMBOETTUBSUFEUPDPPQFSBUFJO EFWFMPQJOHUIFGVUVSFFOFSHZGBDUPSZ Influent Additives Pretreatment Basic treatment Post treatment Rejection water treatment Sludge treatment Energy conversion Raw materials (water, N, P, Energy) Residues, sludges, etc. Figuur 5.7. Scheme of various process steps of a wastewater treatment plant, in red treatment scheme for a Energy Factory 5.2. E N E R G Y FAC T O R Y I N S P I R AT I O N – D U T C H E X A M P L E S "QFMEPPSOXBTUFXBUFSUSFBUNFOUQMBOU 0OFPGUIFNBKPSTUFQTUBLFOUPNBLFUIFXBTUFXBUFSUSFBUNFOUQMBOUFOFSHZOFVUSBMXBTUPTVQQMZSFTJ EVBMIFBUGPSIFBUJOHPGOFXMZCVJMEIPVTFTJOUIFWJDJOJUZPGUIFQMBOU'PSUIJTQVSQPTFBDPPQF SBUJPOXBTTUBSUFEPGUIF7FMVXF8BUFS#PBSEUIFNVOJDJQBMJUZPG"QFMEPPSOBOE&TTFOU1PXFS4VQQMZ "TBTJEFFGGFDUBUPSFEVDUJPOPGUIFDBSCPOEJPYJEFGPPUQSJOUPGUIFIPVTJOHBSFBJTBDIJFWFE "OPUIFSTUFQXBTUIFJOUSPEVDUJPOPGBDPEJHFTUFSBOETVCTFRVFOUEFBNNPOJGJDBUJPOSFBDUPS%&.0/ 5IFDPEJHFTUFSOPUPOMZUSFBUTTMVEHFCVUBMTPFYUFSOBMXBTUFTGJHVSF (BSNFSXPMEFXBTUFXBUFSUSFBUNFOUQMBOU "MTPBUUIJTQMBOUTUFQTXFSFBJNJOHBUFOFSHZOFVUSBMJUZ"O"TUFQXBTJOTFSUFEJOUIFXBTUFXBUFSUSFBU NFOUQSPDFTTBOEUIFQSPDFTTGVSUIFSDPNQSJTFTEJHFTUFSTJOTFSJFT5IFEJHFTUFSOPUPOMZUSFBUTMPDBMMZ QSPEVDFETMVEHFCVUBMTPTMVEHFTPGPUIFSQMBOUT'SPNUIFCJPHBTFMFDUSJDJUZJTQSPEVDFEDPWFSJOHBCPVU PGUIFJOUFSOBMEFNBOE3FTJEVBMIFBUJTVTFEGPSIFBUJOHPGUIFEJHFTUFST"UUSFBUNFOUPGEJHFTUFS SFKFDUJPOXBUFSUIFFOFSHZFGGJDJFOU4)"30/QSPDFTTXBTDIPTFOGJHVSF WWTP2030E 26 F 5.8 F 5.10 F 5.9 F 5.11 F 5.12 Figure 5.8. Co-digestion, de-ammonification (DEMON) and digestion at wwtp Apeldoorn (Waterschap Veluwe, 2009). Figure 5.9. Wwtp Garmerwolde (Waterschap Noorderzijlvest, 2006). Figure 5.10. Wwtp Amsterdam-West (Waternet, 2010). Figure 5.11. Biogas as car fuel at wwtp Beverwijk (HHNK, 2009). Figure 5.12. Treatment of sludge from wwtp Ede and wwtp Apeldoorn (GMB, 2010). 27 WWTP2030E "NTUFSEBN8FTUXBTUFXBUFSUSFBUNFOUQMBOU 5IJTQMBOUPGJTPOFPGUIFCJHHFTUJO5IF/FUIFSMBOETIBWJOHBDBQBDJUZPGBCPVUNJMMJPOJOIBCJUBOU FRVJWBMFOUT5IFQMBOUBQQMJFTDPOWFOUJPOBMTMVEHFEJHFTUJPOBOEEFMJWFSTUIFCJPHBTUPUIFOFBSCZXBTUF JODJOFSBUJPOQMBOUUIBUBMTPUSFBUTUIFEJHFTUJPOTMVEHF5IFXBTUFJODJOFSBUJPOQMBOUTVQQMJFTIFBUUPUIF XBTUFXBUFSUSFBUNFOUQMBOUGJHVSF #FWFSXJKLXBTUFXBUFSUSFBUNFOUQMBOU #JPHBT BU XXUQ #FWFSXJKL XBT VTFE GPS UIF QSPEVDUJPO PG FMFDUSJDJUZ BOE IFBU 5IF TVSQMVT CJPHBT XBT CVSOFE *O B OFX CJPHBT USFBUNFOU GBDJMJUZ XBT CVJME XIJDI QVSJGJFT UIF CJPHBT UP OBUVSBM HBT TUBOEBSET"UUIJTNPNFOUNPGOBUVSBMHBTBSFQSPEVDFEBEBZIPVTFIPMET BOEDBSTPGUIF XBUFSCPBSE"UUIJTNPNFOUJNQSPWFNFOUTBSFCFJOHNBEFGPSBIJHIFSSFDPWFSZPGOBUVSBMHBTPVUPGCJP HBTVQUP (PWFSEF))/, &EFBOE"QFMEPPSOXBTUFXBUFSUSFBUNFOUQMBOUT 5IF(.#DPNQBOZUSFBUTTMVEHFPGUIFQMBOUTPGUXPEJGGFSFOU8BUFS#PBSET7FMVXFBOE7BMMFJBOE&FN 5IFNBKPSQBSUPGUIFTMVEHFTJTFYQPSUFEEJSFDUMZUP(FSNBOZBOEUSFBUFEJOBDPBMESZJOHQSPDFTT"MTPJO (FSNBOZUIFNJOPSQBSUJTVQHSBEFEUPBTFDPOEBSZGVFMGJHVSF 5 . 2 .1 . E X P E R I E N C E I N T H E N E T H E R L A N D S *OPSEFSUPJOTQJSFBOFYBNQMFDPOGJHVSBUJPOPGBFOFSHZGBDUPSZXBTEFWFMPQFECZUIFFYQFSUUFBN GJHVSF 5IFUFSNTPGSFGFSFODFXFSFUPDSFBUFBOFUQSPEVDUJPOPGFOFSHZ5IJTSFRVJSFTNJOJNJ[B UJPOPGFOFSHZDPOTVNQUJPOPGUIFQMBOUJUTFMGBOENBYJNJ[BUJPOPGJUTFOFSHZSFDPWFSZ*OUFSNTPGUSFBU NFOUPQUJPOT 4FQBSBUJPO PG $0% JOTUFBE PG BFSPCJD EFHSBEBUJPO PQUJNJ[BUJPO PG CJPHBT QSPEVDUJPO BOE FOFSHZ DPO TVNQUJPOBUBFSBUJPO *OUFSNTPGFOFSHZDPOTVNQUJPOFDPOPNJDSFNPWBMPG/1BOESFTJEVBM$0%EFBNNPOJGJDBUJPOXJMMCF BOJNQPSUBOUUPPM .BYJNBMSFDPWFSZPGTMVEHFDBMPSJDDPOUFOU *UTIPVMECFOPUFEUIBUTVQFSDSJUJDBMHBTJGJDBUJPOBOEBOBNNPYBSFOPUZFUBQQMJFEPOBUFDIOJDBMTDBMF WWTP2030E 28 Metalsalt, polymer A step or anaerobic reactor PreSieve? sedimentation Sedimentation Screen Heat recovery for houses Anammox Dry weather flow COD 20% Dry Solids 10-15% CH4 P crystallization Supercritical gasification Saltwaste H2 OH4 Water Fuel cell Drying Salt Electricity Figure 5.13. Energy factory scheme by expert group. 29 WWTP2030E 5.3 N U T R I E N T FA C T O R Y 5IFOVUSJFOUTFODPVOUFSFEJONVOJDJQBMXBTUFXBUFSTPGBSBSFDPOTJEFSFEBQPMMVUBOUSBUIFSUIBOBSBX NBUFSJBM)PXFWFSUIFGJSTUFYBNQMFTPG1SFDPWFSZIBWFFSBTFE Influent Additives Pretreatment Basic treatment Post treatment Rejection water treatment Sludge treatment Energy conversion Raw materials (water, N, P, Energy) Residues, sludges, etc. Figuur 5.14. Scheme of various process steps of a wastewater treatment plant, in green treatment scheme for a Nutrient Factory 5 . 3.1 N U T R I E N T FA C T O R Y I N S P I R AT I O N – D U T C H E X A M P L E S (FFTUNFSBNCBDIUXBTUFXBUFSUSFBUNFOUQMBOU 1IPTQIBUFDBOCFSFDPWFSFEBUBXXUQBT$BMDJVN1IPTQIBUF4JODFUIJTJTEPOFBUUIFXXUQ(FFTU NFSBNCBDIUCZVTJOHB$SZTUBMBDUPSHSBOVMBSSFBDUPS 5IJTQSPDFTTVTFEUPCFBQQMJFEBUNPSFXXUQµT CVUGSPN(FFTUNFSBNCBDIUJTUIFMBTUPOF1IPTQIBUFJTSFNPWFEGSPNUIFTMVEHFXJUIUIF1IPTU SJQQSPDFTTVTJOHBDFUJDBDJESFTVMUJOHJO$BMDJVN1IPTQIBUFHSBOVMFT5IJTQSPEVDUJTUSBOTQPSUFEUPUIF 1IPTQIBUFJOEVTUSZ5IFQSPDFTTJTDPTUMZCFDBVTFPGUIFVTFPGMBSHFWPMVNFTPGDIFNJDBMT"MTPPQFSBUJP OBMQSPCMFNTMFEUPBEFDSFBTFPG1IPTUSJQQMBOUT4508"D 8BTUFXBUFSUSFBUNFOUQMBOUTPG4UFFOEFSFOBOE0MCVSHFO "UXXUQ4UFFOEFSFOUIFXBTUFXBUFSPGBQPUBUPJOEVTUSZJTUSFBUFEUPHFUIFSXJUIUIFNVOJDJQBMXBTUFXB UFSGSPNXXUQ0MCVSHFO.BHOFTJVNPYJEF.H0 JTEPTFEJOPSEFSUPQSPEVDFTUSVWJUF4USVWJUFJTCFJOH VTFE BT B GFSUJMJ[FS "EEJUJPOBMMZ UIJT QSPDFTT SFTVMUT JO B EFDSFBTFE CJPMPHJDBM TMVEHF QSPEVDUJPO 'PS FOFSHZFGGJDJFODZUIFBOBNNPYQSPDFTTJTJNQMFNFOUFE"NNPOJBJTPYJEJTFEWJBOJUSJUFBUPYZHFOMJNJ UJOHDPOEJUJPOTUPOJUSPHFOHBT 4MVEHFUSFBUNFOUBU4/# *OUIFTPVUIPG5IF/FUIFSMBOETBU4/#TMVEHFGSPNNVOJDJQBMXXUQµTJTJODJOFSBUFEUPOOFTQFS ZFBS %VSJOHJODJOFSBUJPOUIFQIPTQIBUFJODPODFOUSBUFEJOUIFBTIFTBUBDPODFOUSBUJPOPGHSBNTQFS WWTP2030E 30 LJMPHSBNBTIFT5IFZFBSMZQIPTQIBUFQSPEVDUJPOJTUPOOFTQBSUPGJUJTTPMEUPUIFQIPTQIBUFJOEVT USZ5IFSNQIPT 5IFNVOJDJQBMTMVEHFTOFFEUPCFMPXJOJSPOTBMUTFTQFDJBMMZCJPMPHJDBMMZ1GJYFETMVEHF BOE1GJYBUJPOCZBMVNTBMUTJTOFFEFEGPSQIPTQIBUFSFDPWFSZ %FWFOUFSXBTUFXBUFSUSFBUNFOUQMBOU 8851%FWFOUFSJTCVJMUBTB#$'4QSPDFTTXIJDIJTBQSPDFTTDPOGJHVSBUJPOXJUIBQIPTQIBUFSJDITJEF TUSFBN*OUIFTFDPOEBOBFSPCJDDPNQBSUNFOUUIFQIPTQIBUFSJDIXBTUFXBUFSJTTUSJQQFEVTJOHJSPODIMPSJ EF%PSUNVOESFBDUPS 5IFDIFNJDBMQSFDJQJUBUFETMVEHFJTMFEUPUIFTMVEHFUIJDLFOFSTMFBWJOHUIFNBJO CJPMPHJDBMQSPDFTTXJUIDIFNJDBMTMVEHFT'PSQIPTQIBUFSFDPWFSZUIFVTFPGJSPOTBMUTNVTUCFNJOJNJTFE UIFSFGPSFSFTFBSDIIBTCFFOEPOFVTJOHDBMDJVNBMVNJOJVNBOENBHOFTJVN3FTFBSDITIPXFEUIBUDBMDJ VNJTUIFCFTUBMUFSOBUJWFUPJSPOBOEUIFBEEJUJPOBMDPTUTBSFMPXFSUIBOUIFBEEJUJPOBMCFOFGJUT4508" D F 5.15 F 5.17 F 5.16 F 5.18 Figure 5.15. Crystalactor at wwtp Geestmerambacht (Giesen, 2009). Figure 5.16. Struvite production at wwtp Steenderen (TUDelft/Paques, 2009). Figure 5.17. The phosphate cycle (SNB, 2009). Figure 5.18. BCFS reactor at wwtp Deventer (Waterschap Groot Salland, 2009). 31 WWTP2030E 5 . 3. 2 E X P E R I E N C E I N T H E N E T H E R L A N D S *OPSEFSUPJOTQJSFBOFYBNQMFDPOGJHVSBUJPOPGBOVUSJFOUGBDUPSZXBTEFWFMPQFECZUIFFYQFSUUFBN GJHVSF 5IFUFSNTPGSFGFSFODFXFSFUPPQUJNJ[FUIFQSPEVDUJPOPGBSBXNBUFSJBMGSPNTMVEHFBOE SFKFDUXBUFSUIBUDBOCFVTFECZUIFOVUSJFOUJOEVTUSZ5IJTSFRVJSFTJOUFSNTPGUSFBUNFOUPQUJPOT 4FQBSBUJPOPGOVUSJFOUTGSPN$0% $PODFOUSBUJPOPGOVUSJFOUT Biological P fixation Grit chamber Post sedimentation Sludge thickening Water Digestion Centrifuge Dry solids NH4PO4 Ash Figuur 5.19. Nutrient factory scheme by expert group. WWTP2030E 32 NH4NO3 Oxidation Sludge P-recovery 33 WWTP2030E 6 WWTP2030E 34 ROADMAP 6 .1 D E S T I N AT I O N 5IF%VUDIXBUFSCPBSETIBWFEFWFMPQFEBDPNNPOQFSTQFDUJWFPOUIFGVUVSFPGVSCBOXBTUFXBUFSNBOBHF NFOU*USFBET There will be one institution responsible of the integral urban wastewater management. It will act as a directing linking pin that cooperates in several strategic alliances, to efficiently treat wastewater and transform wastes into raw materials and energy. 5IFQSPGJMFTPGGVUVSFXBUFSFOFSHZFONJOFSBMTGBDUPSJFTBTUIFOFXHFOFSBUJPOPGDVSSFOUXBTUFXBUFS USFBUNFOUQMBOUTIBWFCFFOEFWFMPQFE"DIBMMFOHFTUJMMUPCFNFUJTUPDPNCJOFUIFNJOUPPOFDPIFSFOU DPODFQUUIF/VUSJFOUT&OFSHZ8BUFSGBDUPSZ/&8T "UUIFNBUFSJBMJ[BUJPOPGUIFQFSTQFDUJWFBOEDPODFQUMPDBMDPOEJUJPOTBSFJNQPSUBOUBOEXJMMDBVTFBDFS UBJOWBSJFUZPGBQQSPQSJBUFBMUFSOBUJWFT 6.2 ROUTE 5IFEFTUJOBUJPOJTEFGJOFEJOHFOFSBMUFSNTCVUOPUBTBGJYFETFUPGDPPSEJOBUFT*OUIFZFBSTUPDPNF TFWFSBMQIFOPNFOBXJMMHSBEVBMMZEFGJOFGJSTUUIFSPVUFBOEMBUFSUIFEFTUJOBUJPO5IFTFQIFOPNFOBDBO CFDMVTUFSFEBTTUBSUJOHQPJOUTCPVOEBSZDPOEJUJPOTGBDUPSTPGJOGMVFODFBOEGBDUPSTUIBUSFRVJSFBUUFO UJPO5IFTFQIFOPNFOBIBWFUPNPOJUPSFESFHVMBSMZJOPSEFSUPTUBZPOUSBDL Tabel 6.1. Important phenomena. PHENOMENA Starting-points MO NI TOR I NG Will effluent be discharged into surface water or used as a water source? Will it be possible to utilize local circumstances in favour of the viability of a kind of factory? Boundary conditions Protection of public health by safe discharge and treatment of human wastes is a prime objective Protection of surface water quality and environment by prevention of discharge of oxygen demand and nutrients is a second important objective Setting up water, energy and nutrients factories requires a guaranteed sales of products Sales requires marketing; this is a new skill that has to be developed Factors of influence The choice of technology is not only determined by boundary conditions but also Factors that require attention Process steps should be tuned, in order to design a well balanced plant by effluent quality, costs, energy neutrality and nutrient recovery Plants should be flexible (modular), in order to accomodate developments smoothly 35 WWTP2030E 6.3 GPS 5IFPOHPJOHEFWFMPQNFOUPGDVSSFOUUSFBUNFOUUFDIOJRVFTBOEEFTJHONFUIPETIBTUPCFNPOJUPSFEDBSF GVMMZBOENBZIBWFUPCFTUJNVMBUFE5IFUBCMFTVNNBSJ[FTTPNFSFMFWBOUBDUJWJUJFT Tabel 6.2. Future activities. TO PIC ACT I V I TY Technology known and proven in Knowledge and experience is well documented by STOWA The Netherlands This database should always be consulted Technology known in The Netherlands but Participation in an international network only proven abroad Excursions Development of business cases Demonstration projects at a Dutch wastewater treatment plant Technology known but not proven Design Similar Development of existing models for the purpose of design of water, energy and nutrient production 'VSUIFSNPSF POHPJOH SFTFBSDI IBT UP CF FWBMVBUFE BOE GVUVSF SFTFBSDI IBT UP CF EJSFDUFE JO PSEFS UP PQUJNJ[FUIFFGGPSUTBOESFTVMUTJOUIFQFSTQFDUJWFPGUIFXBTUFXBUFSUSFBUNFOUQMBOU*UJTPGVUNPTU JNQPSUBODFUPEFWFMPQBDPIFSFOUSFTFBSDIQSPHSBNPOTFQBSBUFBOEDPNCJOFEQSPEVDUJPOPGXBUFSFOFS HZBOEOVUSJFOUT WWTP2030E 36 37 WWTP2030E CO L O P H O N "NFSTGPPSU+VOF PUBL I SHER 4508""NFSTGPPSU 5IF/FUIFSMBOET AU T H O R S JS1BVM3PFMFWFME.8)/PSUI&VSPQF ESJS+FMMF3PPSEB.8)/PSUI&VSPQF .BBSUFO4DIBBGTNB.TD.8)/PSUI&VSPQF WORK ING GROUP JOH1BUSJDL#MPN8BUFSTDIBQ7FMVXF ESJS+BO)PGNBO,838BUFSDZDMF3FTFBSDI*OTUJUVUF JS,FFTEF,PSUF8BUFSOFU ESJS.FSMFEF,SFVL8BUFSTDIBQ)PMMBOETF%FMUB JS'SBOT4DIVMUJOH(MPCBM8BUFS3FTFBSDI$PBMJUJPO JS$PSB6JKUFSMJOEF4508" T R A N S L AT I O N JS+FMUFWBOEFS)FJEF.8)/PSUI&VSPQF GR APHIC DE SIGN 4UVEJP##SJHJUUF#FFOFO/JFVXLPPQ PHOTOGR APHY #FOOP8POJOL.8)*4UPDLDPN 4508"SFQPSU *4#/ WWTP2030E 38 NEWs NEWs NEWs NEWs NEWs NEWs NEWs [email protected] www.stowa.nl TEL + 31 33 460 32 00 FAX +31 33 460 32 01 Stationsplein 89 4th floor P.O. BOX 2180 3800 CD AMERSFOORT THE NETHERLANDS
© Copyright 2026 Paperzz