WWTP OF 2030

NEWs:
THE DUTCH
ROADMAP FOR
THE WWTP OF
2030 NEWs
2010
24
NEWs
NEWs
NEWs
NEWs
NEWs
NEWs
NEWs
NEWS: THE DUTCH ROADMAP FOR THE WWTP OF 2030
1
WWTP2030E
NEWs
WWTP2030E 2
PREFACE
5IF%VUDI8BUFSTFDUPSIBTCFFOBWFSZJOOPWBUJWFTFDUPSEVSJOHUIFMBTUEFDBEFT*OOPWBUJPOTIBWFCFFO
OFDFTTBSZ JO PSEFS UP NFFU JODSFBTJOH FGGMVFOU RVBMJUZ TUBOEBSET BU BGGPSEBCMF DPTUT 5IJT /&8T TUVEZ
TIPXTQPTTJCJMJUJFTGPSSFTPVSDFBQQSPBDIJOTUFBEPGBXBTUFBQQSPBDI5IFUFSN/&8TJNQMJFTUIBUUIF
OFXXBZPGXBTUFXBUFSUSFBUNFOUJTSFTPVSDFNBOBHFNFOUGPSUIFUISFFCBTJDSFTPVSDFT/VUSJFOUT&OFSHZ
BOE8BUFS5IF%VUDIFYBNQMFTQSFTFOUFEJOUIJTSFQPSUTIPXUIBUOFXUSFBUNFOUTDIFNFTCBTFEPOB
SFTPVSDFBQQSPBDIBSFBMSFBEZQSBDUJDFE
5IFQSPKFDUXBTJOJUJBUFECZUIF(MPCBM8BUFS3FTFBSDI$PBMJUJPO(83$
5IFJOUFSOBUJPOBMOFUXPSLPG
XBUFSPSHBOJTBUJPOTHBUIFSFEJOUIF(83$XBOUFEBMPPLBUUIFGVUVSFPGPVSXBTUFXBUFSUSFBUNFOUGBDJMJ
UJFT$PVMEJUCFVTFGVMUPBQQMZSFTPVSDFUIJOLJOHUPXBTUFXBUFSUSFBUNFOU
/FYUUPUIJTUIFHMPCBMJNQBDUPGUIFFDPOPNJDDSJTFTUIFFOFSHZDSJTFTBOEUIFDMJNBUFDIBOHFEDBVTFE
DPVOUSJFTUPSFUIJOLUIFJSFOFSHZVTFBOEFNJTTJPOPGHSFFOIPVTFHBTFT*O5IF/FUIFSMBOETUIFXBUFS
TFDUPSIBTTFUMJNJUTUPFOFSHZVTFBOEIBTQSPQPTFENPSFMBSHFQSPKFDUTPOFOFSHZFGGJDJFODZPGXBTUFXB
UFSUSFBUNFOUGBDJMJUJFT
*O5IF/FUIFSMBOETUIFXBUFSTFDUPSJTEJWJEFEJOEJGGFSFOUPSHBOJTBUJPOTGPSESJOLJOHXBUFSXBUFSTVQQMZ
DPNQBOJFT
TFXBHF TZTUFNT NVOJDJQBMJUJFT
BOE XBTUFXBUFS USFBUNFOU XBUFSCPBSET
$PPQFSBUJPO CFU
XFFOUIFTFPSHBOJTBUJPOTJTFODPVSBHFECFDBVTFPGDPTUFGGJDJFODZQVSQPTFT
5IFTFUISFFEJGGFSFOUESJWFSTXFSFUBLFOBTUIFTUBSUJOHQPJOUPGUIJTTUVEZ8FCFMJFWFUIBUXBTUFXBUFS
USFBUNFOU XJMM BMXBZT CF OFDFTTBSZ CVU UIF GVUVSF JT GPVOE JO SFTPVSDF UIJOLJOH (PPE /&8T GPS UIF
XPSMEXBTUFCFDPNFTBSFTPVSDF5IF%VUDI8BUFSTFDUPSJTTFUUJOHTUFQTUPXBSET
"NFSTGPPSU+VOF
%JSFDUPSPG4508"JS+.+-FFOFO
3
WWTP2030E
WWTP2030E 4
TA B L E O F C O N T E N T S
1
INTRODUC T ION
THE PRO JEC T
.FUIPE
4UBSUJOHQPJOUT
3
PER SPEC T I VE
%FWFMPQNFOUTBOEUSFOET
'BDUPST
*NBHFT
4
T R E AT M E N T T E C H N O L O G Y *OUSPEVDUJPO
1SFUSFBUNFOU
#BTJDUSFBUNFOU
1PTUUSFBUNFOU
4MVEHFUSFBUNFOU
5SFBUNFOUPGSFKFDUJPOXBUFS
&OFSHZDPOWFSTJPO
5
O U T L I N E O F 2 030 WA S T E WAT E R T R E AT M E N T P L A N T 8BUFSGBDUPSZ
&OFSHZGBDUPSZ
/VUSJFOUGBDUPSZ
6
ROADMAP
%FTUJOBUJPO
3PVUF
(14
5
WWTP2030E
1
WWTP2030E 6
INTRODUCTION
*OUIF(MPCBM8BUFS3FTFBSDI$PBMJUJPOUPPLUIFJOJUJBUJWFUPSFGMFDUPOUIFGVUVSFPGNVOJDJQBMXBT
UFXBUFSUSFBUNFOUDPOTJTUJOHPGDPMMFDUJPOUSBOTQPSUBOEUSFBUNFOUBJNJOHBUDMJNBUFBOEFOFSHZOFV
USBMJUZ8JUIJOUIFDPOUFYUPGUIJTHMPCBMSFTFBSDIQSPHSBNTPNFDPVOUSJFTBHSFFEUPGPDVTPOUIFNVOJ
DJQBMTFXBHFUSFBUNFOUQMBOUBOJNQPSUBOUFMFNFOUPGVSCBOXBTUFXBUFSNBOBHFNFOU5IF/FUIFSMBOET
BSFQBSUPGUIBUHSPVQMFBECZUIF1VCMJD6UJMJUZ#PBSEPG4JOHBQPSF5IJTSFQPSUTVNNBSJ[FTUIF%VUDI
SFTFBSDIDPOUSJCVUJPO
5IFNBJOPCKFDUJWFPGUIF%VUDISFTFBSDIXBTUPFMBCPSBUFUIFPVUMJOFTPGUIFNVOJDJQBMTFXBHFUSFBU
NFOU QMBOU PG 'JSTU DVSSFOU BOE GVUVSF EFWFMPQNFOUT BOE USFOET UIBU NJHIU IBWF BO JNQBDU PO
TFXBHFUSFBUNFOUXFSFTVNNBSJ[FEGSPNMJUFSBUVSFBOEBOBMZ[FEXJUIBOFYQFSUUFBNDIBQUFS
/FYU
DVSSFOU BOE QPUFOUJBM USFBUNFOU UFDIOJRVFT XFSF TVNNBSJ[FE DIBQUFS 4VCTFRVFOUMZ FYBNQMFT PG
GVUVSFUSFBUNFOUQMBOUTDBMMFEUIFXBUFSGBDUPSZFOFSHZGBDUPSZBOEOVUSJFOUGBDUPSZXFSFEFTJHOFECZ
UIFFYQFSUUFBNDIBQUFS
'JOBMMZBSPBENBQMFBEJOHUPBOBQQSPQSJBUFDIPJDFPGUFDIOPMPHZBOEEFTJHO
XBTESBGUFE
7
WWTP2030E
2
WWTP2030E 8
THE PROJECT
2 .1
ME THOD
5IFGJSTUQSPKFDUBDUJWJUZXBTUPBOBMZ[FBOETVNNBSJ[FOBUJPOBMBOEJOUFSOBUJPOBMMJUFSBUVSFPOUSFOET
BOEEFWFMPQNFOUTUIBUXJMMPSNBZBGGFDUUIFVSCBOXBTUFXBUFSNBOBHFNFOUJOHFOFSBMBOEXBTUFXBUFS
USFBUNFOUJOQBSUJDVMBS
*OUIFOFYUQSPKFDUQIBTFOBUJPOBMFYQFSUTXFSFJOWPMWFE*UXBTEFDJEFEUPESBJOUIFJSLOPXMFEHFFYQF
SJFODFBOEWJTJPOUISPVHIUXPXPSLTIPQT*OUPUBMFYQFSUTPGXBUFSCPBSETXBUFSDPNQBOJFTBOEDPO
TVMUBOUTKPJOFEUIFFYQFSUUFBN5IFGJSTUXPSLTIPQGPDVTFEPOUSFOETBOEEFWFMPQNFOUTUIFTFDPOEPO
UFDIOPMPHZBOEUIFPVUMJOFPGUIFNVOJDJQBMXBTUFXBUFSUSFBUNFOUQMBOU
5IFGJOBMQSPKFDUQIBTFGPDVTFEPOFMBCPSBUJPOPGUIFSPBENBQSFQPSUJOHBOEDPNNVOJDBUJPO
2.2
S TA R T I N G - P O I N T S
3FGMFDUJOHPOUIFGVUVSFFBTJMZHFOFSBUFTQBOPSBNBTUIBUEJWFSHFGSPNBMJLFMZSFBMJUZ0OUIFPUIFSIBOE
DSFBUJWJUZTIPVMEOPUCFMJNJUFECZVOOFDFTTBSZCPVOEBSZDPOEJUJPOT"XFMMCBMBODFEQMBZJOHHSPVOEXBT
EFGJOFECZTFUUJOHBTFSJFTPGHFOFSBMTUBSUJOHQPJOUT
1SFEJDUBCMFDIBOHFTPGXBTUFXBUFSQSPEVDUJPOBOEDPNQPTJUJPOBSFUBLFOJOUPBDDPVOU
8BTUFXBUFSUSFBUNFOUBMTPDPNQSJTFTTMVEHFQSPEVDUJPOBOEUSFBUNFOU
5IFFYJTUFODFJOPGUSFBUNFOUQMBOUTCVJMECFGPSFNBZOPUCFBMJNJUJOHGBDUPS
5IFXBTUFXBUFSUSFBUNFOUQMBOUJTBDFOUSBMJ[FEGBDJMJUZUIBUPGGFSTJOUFHSBMUSFBUNFOUPGXBTUFXBUFSUIF
FGGFDUTPGMPDBMQSFUSFBUNFOUBSFOPUUBLFOJOUPBDDPVOU
5IFFGGMVFOURVBMJUZUIBUXJMMCFQSPEVDFEJOJTIJHIFSUIBOUPEBZ
*UJTBMMPXFEUPQBTTUIFMJOFPGDVSSFOUMFHBMMJNJUBUJPOTXJUISFTQFDUUPBQQMJDBUJPOPGDFSUBJOBQQBSBUVT
BQQMJDBUJPOPGSFTJEVFTFUDFUFSB
8BUFSCPBSETNBZVUJMJ[FUIFJSDBQBDJUJFTGPSPUIFSQVSQPTFTUIBOUIFDVSSFOUUBTLPGQSPUFDUJOHUIFBRVB
UJDFOWJSPONFOU
5IFMPDBMTJUVBUJPOBUBTQFDJGJDUSFBUNFOUMPDBUJPONBZCFVUJMJ[FE
9
WWTP2030E
3
WWTP2030E 10
PERSPECTIVE
3.1
DE VELOPMENT S AND TRENDS
5BCMFMJTUTUIFNBKPSEFWFMPQNFOUTEFSJWFEGSPNMJUFSBUVSFUIBUXJMMPSNBZBGGFDUNVOJDJQBMXBTUFXB
UFSUSFBUNFOUJO5IF/FUIFSMBOET
Table 3.1. Important developments and impact on wastewater treatment.
D E V EL O P ME NT
DIR E CT ION
IMPACT
Demographic
Population growth
Treatment capacity
Urbanization
Treatment capacity
Aging
Wastewater: hormones, medicines
Shortage of technicians
Water(technology) capability
Economic
Environmental policy
Shortage of raw materials
Capital and Operational costs
Globalization; commercialization
Exchange; organizational change
Declining industrial discharge
Wastewater: less degradable matter
Increasing operational costs
Operational costs
Demand of higher efficacy
Efficiency, efficacy, quality
Effect of European legislation
Discharge standards
Sustainability
Policies on purchase, impacts
Strategy of containment, storage and
Treatment capacity
discharge (of wastewater)
Ecological
Social
Technological
Cooperation in water cycle
Optimization
Climate change
Peak capacity
Sustainability becomes natural
Reuse of resources
Increase of treatment plant loading
Fraction non-degradable matter
Individualization
Acceptance of public activities
Demand of higher quality, luxury, comfort of life
Dilution wastewater
(virtual) Webs
Knowledge exchange
Raw materials from wastewater
Water, N, P
Energy from wastewater
Production, providing
ICT development
Process management, information
Decentralized pretreatment
Chemical use
Increasing knowledge of hazardous compounds
Treatment performance standard
Increase of build and paved area
Treatment capacity
Scaling-up of treatment plants
Economics; technology
Nano particles
?
Application of nanotechnology
Technology
New treatment techniques
Technology
11 WWTP2030E
3. 2
FAC T O R S
*OBEEJUJPOUPUIFEFWFMPQNFOUTNFOUJPOFEDFSUBJOGBDUPSTNBZJOGMVFODFPSFWFOTFUUIFXBTUFXBUFSUSF
BUNFOUUFDIOPMPHZUPCFBQQMJFEJOUIFGVUVSF5IFFYQFSUUFBNXBTBTLFEUPHFOFSBUFBOESBOLTVDIGBD
UPSTJOUFSNTPGQSJPSJUZ5IFSFTVMUTBSFTIPXOJOGJHVSF
5IFGBDUPSTFGGMVFOURVBMJUZ
FOFSHZOFVUSBMJUZ
BOEOVUSJFOUTSFDPWFSZ
QPJOUUIFEJSFDUJPOPGNBOVGBD
UVSJOHPGQSPEVDUTBOEDBOCFNBUFSJBMJ[FEJOUFSNTPGBXBUFSGBDUPSZBOFOFSHZGBDUPSZBOEBOVUSJFOU
GBDUPSZ5IFTFGBDUPSJFTXFSFBEPQUFEUPCFUIFMFBEJOHDPODFQUBUUIFEFWFMPQNFOUPGUIFUSFBUNFOU
QMBOUPVUMJOF
Factors of influence
10
-
Landuse
9
-
Water scarcity
8
-
Operation, maintenance
7
-
Sustainability
6
-
Risc profile
5
-
Wastewater policy
4
-
Nutrientrecovery
-
Energy neutrality
3
-
Costs
2
-
Effluent quality
1
-
Priority (1: low; 10: high)
Figure 3.1. Priority of expert group for factors of influence.
3. 3
I M AG E S
#BTFEPOEFWFMPQNFOUTUSFOETBOEGBDUPSTJEFOUJGJFEUIFFYQFSUUFBNXBTBTLFEUPSFGMFDUPOUIFEJSFD
UJPOTNVOJDJQBMXBTUFXBUFSUSFBUNFOUNJHIUUBLFJOUIFZFBSTUPDPNF5IFSFGMFDUJPOIBEUPPDDVS
XJUIJOUIFGSBNFXPSLPGBUXPEJNFOTJPOBMTQBDFEFGJOFECZDPPSEJOBUFTPGUFDIOPMPHZBOETPDJFUZ5IF
NFBOJOHPGUIFGPVSTFHNFOUTJOGBDUTDFOBSJPTXBTFYQMBJOFEPOBOVNCFSPGBTQFDUTGJHVSF
5IF
FYQFSUT XFSF BTLFE UP TDPSF UIF QSPCBCJMJUZ PG UIF TDFOBSJPT UP PDDVS JO BOE 5IF SFTVMUT BSF
TIPXOJOGJHVSF5IFUBCMFDMFBSMZEFNPOTUSBUFTBMBOETMJEFUPCFFYQFDUFE
WWTP2030E 12
A. To live is to experience
B. Sustainable living together
Comfort and ease
Sustainable and committed
High tech end of pipe technology
Advanced innovative technology
Tailor made
Quality products
Invisible government
Synergy with environment
D. Solitaire and simple
C. Economical and diligence
Simple and modest
Economical and traditional
Cheap, proven technology
Robust and conventional technology
Operate at the boundaries
Life-cycle prolongation
Autarchy
Cooperation at water chain management
Figure 3.2. Images and aspects.
2010 (%)
Collective society
Individual society
Innovative technology
Traditional technology
2030 (%)
5% 5%
24%
90%
90%
24%
A. To live is to experience
B. Sustainable living together
C. Economical and diligence
D. Solitair and simple
52%
Figure 3.3. According to expert group the situation in 2010 (left) and in 2030 (right).
13 WWTP2030E
H4
WWTP2030E 14
TREATMENT TECHNOLOGY
4 .1
INTRODUC T ION
.VOJDJQBMXBTUFXBUFSUSFBUNFOUJO5IF/FUIFSMBOETDBOCFTDIFNBUJ[FEJOUPTJYQSPDFTTTUFQTGJHVSF
'PSFBDIQSPDFTTTUFQEJGGFSFOUUFDIOJRVFTBSFBQQMJFEBWBJMBCMFPSVOEFSEFWFMPQNFOU4PNFUJNFTUIFZ
BSFDPNQBSBCMFJOUFSNTPGUSFBUNFOUPCKFDUJWFJOPUIFSDBTFTUIFZBSFBQQMJFEJOTFSJFTGPSEJGGFSFOUQVS
QPTFT*UJTUPCFFYQFDUFEUIBUCFGPSFDVSSFOUUFDIOJRVFTBSFBCBOEPOFEBWBJMBCMFUFDIOJRVFTCFDP
NFPQFSBUJPOBMBOEOFXUFDIOJRVFTBSFEFWFMPQFE
*OUIJTDIBQUFSUSFBUNFOUUFDIOJRVFTBSFTVNNBSJ[FEBOEDMBTTJGJFEBDDPSEJOHUPQVSQPTFFYQFSJFODF
SFMFWBODFUPXBUFSFOFSHZBOEOVUSJFOUGBDUPSJFTBOETQFDJBMGFBUVSFT
Influent
Additives
Pretreatment
Basic treatment
Post treatment
Rejection water treatment
Sludge treatment
Energy conversion
Raw materials
(water, N, P, Energy)
Residues, sludges, etc.
Figure 4.1. Scheme of various process steps of a wastewater treatment plant.
15 WWTP2030E
4.2
P R E T R E AT M E N T
5IFNBJOQVSQPTFTPGQSFUSFBUNFOUBSFUPSFNPWFDPBSTFNBUFSJBMTHSJUBOETVTQFOEFENBUUFS"USFNP
WBMPGTVTQFOEFENBUUFSBMTP$0%JTSFNPWFE5IFUFDIOJRVFTDPOTJEFSFEBSFMJTUFEJOUBCMF
Tabel 4.1. Overview of techniques for pretreatment.
SYSTEM
FE AT U RE S
Basic
Screen
Purpose: removal of coarse materials
Grit chamber
Purpose: grit removal
Pre-sedimentation
Purpose: removal of settleble suspended matter (COD)
Special: The suspended matter removed is a residue (primary sludge). It mainly consists
of organic matter and water, and is a raw material of energy (biogas) production
The ratio of organic matter (COD) over N and P of the wastewater is reduced (higher
removal of organic matter). This may negatively impact the subsequent biological
treatment
Improved
Coagulation + pre-sedimentation
Purpose: removal of settleble and colloidal matter (COD) and P
Special: In the case of inorganic coagulants, also P is removed and can be valued
positive. However, again it may have adverse effects on subsequent biological treatment
(ration COD/N). Necessity for the E-factory. Use of chemicals might have a negative
environmental impact
Biological adsorption
Purpose: removal of suspended and colloidal COD
(A step of AB system)
Special: post separation of wastewater and biomass is required
Advanced
Membrane filtration
Purpose: optimized removal of suspended and colloidal matter through a combination of
Sand filtration
straining and adsorption
Micro sieve, drum sieve
Special: Advanced separation of contaminants/raw materials (COD removed, N and P not
removed). Reduction of COD over N and P ratio. Higher removal of suspended matter and
lower sludge production (lower water content)
Alternative
Anaerobic pretreatment
Purpose: removal of COD and nutrients
Special: suitable as a local pretreatment; not suitable at municipal wastewater treatment
(temperature and concentrations too low)
WWTP2030E 16
4.3
B A S I C T R E AT M E N T
5IFNBJOPCKFDUJWFTBUUIFCBTJDQSPDFTTTUFQBSFUPSFNPWFSFNBJOJOH$0%/BOE1.PTUTZTUFNTBSF
DPNQPTFEPGBCJPSFBDUPSBOETVCTFRVFOUTFQBSBUJPOPGXBUFSBOECJPNBTTSFTJEVFTMVEHF
5IFUFDIOJ
RVFTDPOTJEFSFEBSFMJTUFEJOUBCMF8JUISFTQFDUUPUIFCJPSFBDUPSJUTIPVMECFNFOUJPOFEUIBUFWFO
NPSFUFDIOJRVFTIBWFCFFOEFWFMPQFE"MMPGUIFNBSFFJUIFSBFSPCJDPSBOBFSPCJDTVTQFOEFEPSBUUBDIFE
HSPXUITZTUFNT
Table 4.2. Overview of techniques.
SYSTEM
FE AT URE S
Conventional: Suspended growth
Activated sludge
Purpose: removal of COD, N (nitrification, denitrification), P
Activated sludge + chemical P-precipitation
Special: the reliability of these systems may hamper development of a new
Activated sludge treatment +
generation of treatment plants; external biomass-water separation (secondary
biological P-removal
sedimentation); return and excess biomass. Basic treatment option in all scenarios
Attached growth
Trickling filter + Sedimentation
Purpose: removal of COD, transformation of N (nitrification)
Special: extended removal of COD and P at pretreatment required;
external biomass-water separation (secondary sedimentation); excess biomass
Submerged systems (e.g. Biostyrtion)
Purpose: removal of COD, transformation or removal of N (nitrification,
denitrification)
Special (Biostyr): attached growth at a synthetic carrier material; upflow
treatment; packed fluidized bed retained by a screen; aerobic or anoxic and
aerobic reactor; backwashing; external clarification of backwash water; hardly any
experience in The Netherlands
Airlift fluidized systems (e.g. Circox)
Purpose: removal of COD, transformation of N (nitrification), removal of P
Special (Circox): attached growth at a carrier material; internal plate separator for
clarification of effluent; limited excess biomass production; limited space
consumption; hardly any experience in The Netherlands
Moving-bed biofilm systems
(MBBR; e.g. Kaldness)
Purpose: removal of COD, N (nitrification, denitrification), P
Special (Kaldness): no P-removal; attached growth on a synthetic carrier
material; aerobic and anaerobic reactors; air mixing and mechanical mixing;
internal clarification (screen); no return biomass required; applicable as full
treatment or pretreatment; hardly any experience in The Netherlands
Alternative systems
Aerobic suspended bed reactor (Nereda)
Experience: promising system: first full scale reactor will start up in 2011
Cold Anammox reactor
Purpose: removal of N through anaerobic oxidation of ammonia by nitrite
Special: less space consumption, reduced CO2-emission, reduced power
consumption, no external C-source required, minimal surplus sludge; until now only
theoretical
Membrane bioreactor (MBR)
Purpose: removal of COD and N
Special: high costs and energy consumption
Alternatives for sedimentation
Upflow sludge blanket filtration
Special: compact system
Lamella filtration (e.g. Actiflo)
Special: widely applied abroad but not in The Netherlands; compact system
17 WWTP2030E
4.4
P O S T T R E AT M E N T
5IFPCKFDUJWFTBUUIFQPTUUSFBUNFOUQSPDFTTTUFQEJGGFS1PTUUSFBUNFOUIBTUPGJMMUIFHBQUIBUNBZSFNBJO
CFUXFFOUIFUSFBUNFOUSFTVMUTBDIJFWFEUISPVHIQSFUSFBUNFOUBOECBTJDUSFBUNFOUBOEEJTDIBSHFHVJEFMJ
OFT5IFPCKFDUJWFBUQPTUUSFBUNFOUDBOBMTPCFTFUCZUIFFGGMVFOURVBMJUZSFRVJSFEGPSXBUFSSFVTFQVSQP
TFT5BCMFMJTUTUIFUFDIOJRVFTDPOTJEFSFE
Tabel 4.3. Overview of techniques for post treatment.
SYSTEM
FE AT URE S
Removal of particulate matter
Rapid sand filtration
Purpose: depending on design and operation
- Removal of suspended matter and N (biological)
- Removal of suspended matter and P (floc filtration)
- Combined removal
Special: high energy consumption
Micro sieve, rotary drum sieve
Purpose: removal of suspended matter and included N and P
Fabric sieve
Special: micro sieve and drum sieve are attractive because of low energy
Fuzzy filter
consumption; in The Netherlands only minor experience on full scale
Removal of colloidal and dissolved matter and microorganisms
Membrane techniques
Microfiltration
Purpose: removal of organic and inorganic compounds and pathogens; except
Ultra filtration
microfiltration effective at disinfection
Nanofiltration
Special: high treatment costs, production of a residue (brine); proven technology,
Reverse osmosis
mainly used for water production
Other techniques
Activated carbon filtration
Purpose: removal of (hazardous) organic compounds
Ion exchange
Purpose: removal of inorganic compounds
Ozonisation
Purpose: removal of pathogens
UV disinfection
Special: regeneration and residue (carbon, ion); relatively high treatment costs;
Hydrogen peroxide
very limited experience on effluent treatment in The Netherlands
General effluent polishing
Reed bed filter (constructed wetland)
Purpose: removal of colloidal organic matter (sedimentation), N and P
Algae pond
(plant uptake), heavy metals (adsorption), addition of oxygen
Purpose: ‘natural’ bridging of the water quality gap between effluent and surface
water (vitalization of effluent)
Special: large space requirements; no removal of pathogens; possibility of
harvesting plants en algae; until now no full-scale experience in The Netherlands
WWTP2030E 18
4.5
S L U D G E T R E AT M E N T
4MVEHFJTBMJRVJESFTJEVFPGXBTUFXBUFSUSFBUNFOUDPOUBJOJOHPSHBOJDNBUUFSBOEIBWJOHIJHIXBUFSDPO
UFOU4MVEHFTBSFMJCFSBUFEBUQSFUSFBUNFOUTFEJNFOU
BUCBTJDUSFBUNFOUTVSQMVTCJPNBTT
BOEBUTPNF
QPTUUSFBUNFOUUFDIOJRVFTFHDMBSJGJDBUJPOPGCBDLXBTIXBUFSPGGJMUSBUJPO
"CBTJDPCKFDUJWFPGTMVEHFUSFBUNFOUJTUPSFEVDFUIFWPMVNF5IJTDBOCFBDIJFWFECZSFEVDJOHUIFXBUFS
BOE PSHBOJD NBUUFS DPOUFOU " IJHIFS PCKFDUJWF JT UP SFEVDF UIF WPMVNF BOE VTF UIF PSHBOJD NBUUFS PG
TMVEHFGPSFOFSHZSFDPWFSZ5IFUFDIOJRVFTDPOTJEFSFEBSFMJTUFEJOUBCMF
Tabel 4.4. Overview of techniques for sludge treatment.
SYSTEM
FE AT URE S
Physical dewatering (free water)
Gravity-belt thickener
Purpose: reduction of water content (sludge volume) in view of successive sludge
Centrifuge
treatment
Belt-filter press
Biochemical dewatering (entrapped water)
Enzymatic hydrolysis
Purpose: reduction of water content by breaking down a complex chemical
Thermal hydrolysis
structure of macromolecules or the structure of microorganisms
Disintegration (cavitation)
Special: experience in The Netherlands limited. Worldwide experience show
Biological techniques
possibilities for larger scale sludge treatment
Organic mass reduction
Mesophylic digestion
Purpose: reduction of sludge organic matter and recovery of energy and heat
Thermophylic digestion
Special: the energy produced is mostly applied at the wastewater treatment plant
Combined digestion
and sometimes elsewhere ; the water separated from digested sludge is rich of
N and P. The residue requires final treatment
Final treatment
Composting
Purpose: reduction of mass and volume of energy recovery residue
Thermal drying
Experience: mostly direct incineration (sludge only). In some cases first
Incineration
composting or thermal drying and subsequently co-incineration (domestic waste,
Gasification and pyrolysis
coal, cement ovens). Pyrolysis, gasification and wet oxidation are not applied
Wet oxidation
19 WWTP2030E
4.6
T R E AT M E N T O F R E J E C T I O N WAT E R
"UTMVEHFUSFBUNFOUTPMJENBUUFSJTTFQBSBUFEGSPNTPDBMMFESFKFDUJPOXBUFS5IFSFKFDUJPOXBUFSPGEJHF
TUFETMVEHFIBTBIJHI/BOE1DPOUFOU5IFCBTJDPCKFDUJWFBUGVSUIFSUSFBUNFOUJTUPSFEVDFUIF/BOE1
DPOUFOU5IFIJHIFSPCKFDUJWFJTUPSFDPWFS/BOE15BCMFMJTUTUIFUFDIOJRVFTDPOTJEFSFE
Tabel 4.5. Overview of techniques for treatment of rejection water.
SYSTEM
FE AT URE S
N removal
Sharon process
Purpose: removal of dissolved N (ammonia) from water
De-ammonification (e.g. Anammox)
Special: Sharon process requires an external (added) C-source, deammonification
processes not; widely accepted as proven technology
N recovery
Steam stripping
Air stripping
Purpose: removal of N from water and recovery of N from stripping gas
(after partial oxidation as NH4NO3)
Special: in general N is a renewable resource. Recovery from wastewater may not be
competitive to other options. Limited experience
P recovery
Crystalactor technology
Purpose: removal of P from water and recovery of P. Recovery as calciumphosphate
Struvite reactor
grains (Crystal) or magnesiumammoniaphosphate (Struvite)
Special: reuse may be obstructed by pollution of phosphate produced;
high operation costs (Crystalactor)
WWTP2030E 20
4 .7
E N E R G Y CO N V E R S I O N
"UTMVEHFEJHFTUJPOHBTJTQSPEVDFE5IFNBJOPCKFDUJWFPGHBTUSFBUNFOUJTUPSFDPWFSUIFFOFSHZDPO
UBJOFE5IFUFDIOJRVFTDPOTJEFSFEBSFMJTUFEJOUBCMF
Tabel 4.6. Overview of techniques for energy conversion.
SYSTEM
FE AT URE S
Basic
Boiler
Purpose: combustion of digestion gas and recovery of heat for heating purposes
Cogenerator
Purpose: combustion of digestion gas for production of electricity and recovery of
combustion heat for heating purposes
Special: relatively low efficiency at electricity production (35%); contamination of
digestion gas
Advanced
Dual fuel
Purpose: combustion of digestion gas for production of electricity and recovery of
Cogenerator applying ORC
combustion heat for heating purposes
(organic ranking cycle)
Special: higher efficiency at energy production (> 40%); NOx-emission (Dual Fuel),
Fuel cell
high costs (fuel cell); all systems require a certain scale; limited experience in
The Netherlands
Alternatives
Heat pump
Purpose: use of combustion gas heat to produce work
Special: reuse should be possible in the vicinity of the treatment plant, because of
heat losses at transport
Geothermal heat pump
Purpose: subsurface storage and use of combustion gas heat
Special: low thermal efficiency; not applied for wastewater treatment heat in
The Netherlands; increasing applications at reuse of other forms of residual heat
Production of green gas
Purpose: production of natural gas from digester gas
Special: maximal thermal efficiency (at direct delivery of gas); the energy required
by the wastewater treatment plant has to be purchased
21 WWTP2030E
5
WWTP2030E 22
OUTLINE OF 2030 WASTEWATER TREATMENT PLANT
5 .1
WAT E R FA C T O R Y
*GPOFDPOTJEFSTBXBTUFXBUFSUSFBUNFOUQMBOUUPCFBXBUFSQSPEVDUJPOGBDJMJUZBUQSFTFOUUIFQSPEVDUJO
NPTU%VUDIDBTFTIBTUPNFFUBEJTDIBSHFQFSNJUBJNJOHBUNBJOUBJOJOHBHPPERVBMJUZPGUIFSFDFJWJOH
TVSGBDFXBUFS5IFEJTDIBSHFQFSNJUJTCBTFEPOBEFHSFFPGEJMVUJPOPGFGGMVFOU*OTPNFFYDFQUJPOBMDBTFT
UIFQSPEVDURVBMJUZJTTFUCZNPSFTFWFSFRVBMJUZHVJEFMJOFTEFUFSNJOFECZJUTBQQMJDBUJPO%VUDIFYBNQMFT
BSFBQQMJDBUJPOGPSJOEVTUSJBMDPPMJOHBOEQSPDFTTFTBOEBHSJDVMUVSBMJSSJHBUJPO"OPUIFSUZQFPGBQQMJDBUJ
POJTUIFVTFBTTVSGBDFXBUFSJOBSJEBSFBTXJUIMJNJUFEQPTTJCJMJUJFTPGEJMVUJPO*O5IF/FUIFSMBOETUIFTF
BQQMJDBUJPOTNBZSFNBJOFYFNQUJPOTPOUIFTIPSUUFSNCFDBVTFPGUIFBCVOEBOUOBUVSBMXBUFSSFTPVSDFT
"QSFEJDUBCMFUSFOEBUUIFNPNFOUJTUIBUGVUVSF&VSPQFBOTVSGBDFXBUFSRVBMJUZHVJEFMJOFTXJMMJOEVDF
UIFOFFEPGGVSUIFSOVUSJFOUSFNPWBM
Influent
Additives
Pretreatment
Basic treatment
Post treatment
Rejection water treatment
Sludge treatment
Energy conversion
Raw materials
(water, N, P, Energy)
Residues, sludges, etc.
Figure 5.1. Scheme of various process steps of a wastewater treatment plant, in blue treatment scheme for a Water Factory.
5 .1 .1 WAT E R FA C T O R Y I N S P I R AT I O N – D U T C H E X A M P L E S
5FSOFV[FOXBTUFXBUFSUSFBUNFOUQMBOUQSPDFTTXBUFS
5IF;FFVXT7MBBOEFSFO8BUFS#PBSEBOE&WJEFT*OEVTUSJBM8BUFSIBWFTUBSUFEUIFDPOTUSVDUJPOPGBNFN
CSBOF CJPSFBDUPS BU UIF 5FSOFV[FO XBTUFXBUFS USFBUNFOU QMBOU 4JODF &WJEFT VTFT FGGMVFOU GPS UIF
QVSQPTFPGQSPEVDUJPOPGEFNJOFSBMJTFEXBUFS5IFOFXNFNCSBOFCJPSFBDUPSIBWJOHBEFTJHOFEDBQB
DJUZPGNIPVSJTNFBOUUPVQHSBEFUIFFGGMVFOURVBMJUZJOPSEFSUPQSPEVDFQSPDFTTXBUFSGJHVSF
23 WWTP2030E
&NNFOXBTUFXBUFSUSFBUNFOUQMBOUCPJMFSGFFEXBUFS
"KPJOUWFOUVSFPGUIF%SFOUIF8BUFS$PNQBOZBOEUIF7FMUBOE7FDIU8BUFS#PBSEIBTFNCBSRVFEPO
VQHSBEJOHPGFGGMVFOUUPCPJMFSGFFEXBUFSGPSTUFBNQSPEVDUJPO5IFVQHSBEJOHQSPDFTTDPNQSJTFTTUFQT
5IFTF BSF JO DISPOPMPHJDBM PSEFS VMUSB GJMUSBUJPO CJPMPHJDBM BDUJWBUFE DBSCPO GJMUSBUJPO QIBTF SFWFSTF
PTNPTJTBOEQPMJTIJOHCZFMFDUSPEFJPOJTBUJPOGJHVSF
,BBUTIFVWFMXBTUFXBUFSUSFBUNFOUQMBOUSFDSFBUJPOXBUFS
4JODFUIFFGGMVFOUJTVTFEBTSFDSFBUJPOXBUFSJOPSEFSUPBWPJEBCTUSBDUJPOPGTDBSDFHSPVOEXBUFS
5IFFGGMVFOUJTQPMJTIFEJOBDPNQBSUNFOUSFFECFEGJMUFS*OPSEFSUPCFUUFSDPOUSPMUIFOVUSJFOUDPO
UFOUBSBQJETBOEGJMUFSJTJOTFSUFECFGPSFUIFSFFECFEGJMUFS5IFGJMUFSIBTBDBQBDJUZPGBCPVUN
QFSZFBSGJHVSF
-BOEWBO$VJKLXBTUFXBUFSUSFBUNFOUQMBOUBHSJDVMUVSBMXBUFS
*OUIF"BBOE.BBT8BUFS#PBSEJOUSPEVDFEBSFFECFEGJMUFSGPSQPMJTIJOHPGUIFFGGMVFOU*OESZ
QFSJPETUIFFGGMVFOUJTEJTDIBSHFEUPUIFTVSGBDFXBUFSTZTUFNPGBOFBSCZBHSJDVMUVSBMBSFB5IFTVSGBDF
XBUFSJTVTFEGPSTQSBZJSSJHBUJPO*OPSEFSUPQSPEVDFBNPSFOBUVSBMDPNQPTJUJPOPGUIFXBUFSEJTDIBSHFE
UIFSFFECFEGJMUFSXBTUSBOTGPSNFEJOUPBTXBNQTZTUFNDPNQPTFEPGTVDDFTTJWFMZBTVQQMZQPOEQBSBMMFM
SFFECFEDBOBMTBEJTDIBSHFDBOBMBOEBRVBUJDQMBOUQPOETGJHVSF
F 5.2
F 5.4
F 5.3
F 5.5
Figure 5.2. Design of Membrane Bioreactor at wwtp Terneuzen (NWP, 2009).
Figure 5.3. Building of facility for ultrapure water at wwtp Emmen (Kampen Industrial Care, 2009).
Figure 5.4. Reed bed at wwtp Kaatsheuvel (Brabants Dagblad, 2007).
Figure 5.5. Reed beds at wwtp Land van Cuijk (STOWA, 2004).
WWTP2030E 24
5 .1 . 2 E X P E R I E N C E I N T H E N E T H E R L A N D S
*OPSEFSUPJOTQJSFBOFYBNQMFDPOGJHVSBUJPOPGBXBUFSGBDUPSZXBTEFWFMPQFECZUIFFYQFSUUFBN
GJHVSF
5IFUFSNTPGSFGFSFODFXFSFUPNBOVGBDUVSFQSPEVDUTCPJMFSGFFEBOETVSGBDFXBUFS
Oxidation (O3)
A step
MBR
Metalsalts + C-source
Contact reactor
Reverse Osmosis
Biological Activated
Carbon
30%
Filtration
20%
10%
Boiler feedwater/
drinking water
Filtration wastewater
70%
Conventional sludge treatment
Regeneration of
Activated Carbon
Reed beds and
surface water
Figuur 5.6. Water factory scheme by expert group.
"GBWPVSBCMFDPOEJUJPOBUBQQMJDBUJPOPGUIJTDPOGJHVSBUJPOJTUIBUXBTUFXBUFSJTDPMMFDUFECZBTFQBSBUFE
TFXFSBHFTZTUFN5IJTHVBSBOUFFTUIFNPTUDPOTUBOUTVQQMZBOERVBMJUZPGUIFSBXNBUFSJBMUIFXBTUFXB
UFS
BOEUIFSFGPSFPGGFSTUIFCFTUUSFBUNFOUDPOEJUJPOT"MTPBHSJUDIBNCFSDBOCFBWPJEFE
4PNFJNQPSUBOUDIBSBDUFSJTUJDTPGUIFDPOGJHVSBUJPOBSF
1IZTJDBMSFNPWBMPG$0%
#JPMPHJDBMSFNPWBMPG/
#JPMPHJDBMBOEDIFNJDBMQIZTJDBMSFNPWBMPG1
#JPMPHJDBMQSPDFTTFTCBTFEPOBDUJWBUFETMVEHFBOEBUUBDIFEHSPXUINFNCSBOFBDUJWBUFEDBSCPO
*OTIPVMECFOPUFEUIBUUSFBUNFOUPGSFTJEVFTXBTOPUFMBCPSBUFECVUXJMMUPTPNFFYUFOUBMTPCFQBSUPG
UIFXBUFSGBDUPSZ
25 WWTP2030E
5.2
E N E R G Y FAC T O R Y
5SBEJUJPOBMMZFOFSHZQSPEVDUJPOXBTOPUUIFNBJOJTTVFBUXBTUFXBUFSUSFBUNFOU)PXFWFSFOFSHZJTCFDP
NJOHBTQFBSIFBEDPOTJEFSJOHUIBUPVUPG
XBUFSCPBSETJO5IF/FUIFSMBOETTUBSUFEUPDPPQFSBUFJO
EFWFMPQJOHUIFGVUVSFFOFSHZGBDUPSZ
Influent
Additives
Pretreatment
Basic treatment
Post treatment
Rejection water treatment
Sludge treatment
Energy conversion
Raw materials
(water, N, P, Energy)
Residues, sludges, etc.
Figuur 5.7. Scheme of various process steps of a wastewater treatment plant, in red treatment scheme for a Energy Factory
5.2.
E N E R G Y FAC T O R Y I N S P I R AT I O N – D U T C H E X A M P L E S
"QFMEPPSOXBTUFXBUFSUSFBUNFOUQMBOU
0OFPGUIFNBKPSTUFQTUBLFOUPNBLFUIFXBTUFXBUFSUSFBUNFOUQMBOUFOFSHZOFVUSBMXBTUPTVQQMZSFTJ
EVBMIFBUGPSIFBUJOHPGOFXMZCVJMEIPVTFTJOUIFWJDJOJUZPGUIFQMBOU'PSUIJTQVSQPTFBDPPQF
SBUJPOXBTTUBSUFEPGUIF7FMVXF8BUFS#PBSEUIFNVOJDJQBMJUZPG"QFMEPPSOBOE&TTFOU1PXFS4VQQMZ
"TBTJEFFGGFDUBUPSFEVDUJPOPGUIFDBSCPOEJPYJEFGPPUQSJOUPGUIFIPVTJOHBSFBJTBDIJFWFE
"OPUIFSTUFQXBTUIFJOUSPEVDUJPOPGBDPEJHFTUFSBOETVCTFRVFOUEFBNNPOJGJDBUJPOSFBDUPS%&.0/
5IFDPEJHFTUFSOPUPOMZUSFBUTTMVEHFCVUBMTPFYUFSOBMXBTUFTGJHVSF
(BSNFSXPMEFXBTUFXBUFSUSFBUNFOUQMBOU
"MTPBUUIJTQMBOUTUFQTXFSFBJNJOHBUFOFSHZOFVUSBMJUZ"O"TUFQXBTJOTFSUFEJOUIFXBTUFXBUFSUSFBU
NFOUQSPDFTTBOEUIFQSPDFTTGVSUIFSDPNQSJTFTEJHFTUFSTJOTFSJFT5IFEJHFTUFSOPUPOMZUSFBUTMPDBMMZ
QSPEVDFETMVEHFCVUBMTPTMVEHFTPGPUIFSQMBOUT'SPNUIFCJPHBTFMFDUSJDJUZJTQSPEVDFEDPWFSJOHBCPVU
PGUIFJOUFSOBMEFNBOE3FTJEVBMIFBUJTVTFEGPSIFBUJOHPGUIFEJHFTUFST"UUSFBUNFOUPGEJHFTUFS
SFKFDUJPOXBUFSUIFFOFSHZFGGJDJFOU4)"30/QSPDFTTXBTDIPTFOGJHVSF
WWTP2030E 26
F 5.8
F 5.10
F 5.9
F 5.11
F 5.12
Figure 5.8. Co-digestion, de-ammonification (DEMON) and digestion at wwtp Apeldoorn (Waterschap Veluwe, 2009).
Figure 5.9. Wwtp Garmerwolde (Waterschap Noorderzijlvest, 2006).
Figure 5.10. Wwtp Amsterdam-West (Waternet, 2010).
Figure 5.11. Biogas as car fuel at wwtp Beverwijk (HHNK, 2009).
Figure 5.12. Treatment of sludge from wwtp Ede and wwtp Apeldoorn (GMB, 2010).
27 WWTP2030E
"NTUFSEBN8FTUXBTUFXBUFSUSFBUNFOUQMBOU
5IJTQMBOUPGJTPOFPGUIFCJHHFTUJO5IF/FUIFSMBOETIBWJOHBDBQBDJUZPGBCPVUNJMMJPOJOIBCJUBOU
FRVJWBMFOUT5IFQMBOUBQQMJFTDPOWFOUJPOBMTMVEHFEJHFTUJPOBOEEFMJWFSTUIFCJPHBTUPUIFOFBSCZXBTUF
JODJOFSBUJPOQMBOUUIBUBMTPUSFBUTUIFEJHFTUJPOTMVEHF5IFXBTUFJODJOFSBUJPOQMBOUTVQQMJFTIFBUUPUIF
XBTUFXBUFSUSFBUNFOUQMBOUGJHVSF
#FWFSXJKLXBTUFXBUFSUSFBUNFOUQMBOU
#JPHBT BU XXUQ #FWFSXJKL XBT VTFE GPS UIF QSPEVDUJPO PG FMFDUSJDJUZ BOE IFBU 5IF TVSQMVT CJPHBT XBT
CVSOFE *O B OFX CJPHBT USFBUNFOU GBDJMJUZ XBT CVJME XIJDI QVSJGJFT UIF CJPHBT UP OBUVSBM HBT
TUBOEBSET"UUIJTNPNFOUNPGOBUVSBMHBTBSFQSPEVDFEBEBZIPVTFIPMET
BOEDBSTPGUIF
XBUFSCPBSE"UUIJTNPNFOUJNQSPWFNFOUTBSFCFJOHNBEFGPSBIJHIFSSFDPWFSZPGOBUVSBMHBTPVUPGCJP
HBTVQUP
(PWFSEF))/,
&EFBOE"QFMEPPSOXBTUFXBUFSUSFBUNFOUQMBOUT
5IF(.#DPNQBOZUSFBUTTMVEHFPGUIFQMBOUTPGUXPEJGGFSFOU8BUFS#PBSET7FMVXFBOE7BMMFJBOE&FN
5IFNBKPSQBSUPGUIFTMVEHFTJTFYQPSUFEEJSFDUMZUP(FSNBOZBOEUSFBUFEJOBDPBMESZJOHQSPDFTT"MTPJO
(FSNBOZUIFNJOPSQBSUJTVQHSBEFEUPBTFDPOEBSZGVFMGJHVSF
5 . 2 .1 . E X P E R I E N C E I N T H E N E T H E R L A N D S
*OPSEFSUPJOTQJSFBOFYBNQMFDPOGJHVSBUJPOPGBFOFSHZGBDUPSZXBTEFWFMPQFECZUIFFYQFSUUFBN
GJHVSF
5IFUFSNTPGSFGFSFODFXFSFUPDSFBUFBOFUQSPEVDUJPOPGFOFSHZ5IJTSFRVJSFTNJOJNJ[B
UJPOPGFOFSHZDPOTVNQUJPOPGUIFQMBOUJUTFMGBOENBYJNJ[BUJPOPGJUTFOFSHZSFDPWFSZ*OUFSNTPGUSFBU
NFOUPQUJPOT
4FQBSBUJPO PG $0% JOTUFBE PG BFSPCJD EFHSBEBUJPO PQUJNJ[BUJPO PG CJPHBT QSPEVDUJPO BOE FOFSHZ DPO
TVNQUJPOBUBFSBUJPO
*OUFSNTPGFOFSHZDPOTVNQUJPOFDPOPNJDSFNPWBMPG/1BOESFTJEVBM$0%EFBNNPOJGJDBUJPOXJMMCF
BOJNQPSUBOUUPPM
.BYJNBMSFDPWFSZPGTMVEHFDBMPSJDDPOUFOU
*UTIPVMECFOPUFEUIBUTVQFSDSJUJDBMHBTJGJDBUJPOBOEBOBNNPYBSFOPUZFUBQQMJFEPOBUFDIOJDBMTDBMF
WWTP2030E 28
Metalsalt, polymer
A step or
anaerobic reactor
PreSieve?
sedimentation
Sedimentation
Screen
Heat recovery for houses
Anammox
Dry weather
flow
COD
20%
Dry
Solids
10-15%
CH4
P crystallization
Supercritical gasification
Saltwaste
H2
OH4
Water
Fuel cell
Drying
Salt
Electricity
Figure 5.13. Energy factory scheme by expert group.
29 WWTP2030E
5.3
N U T R I E N T FA C T O R Y
5IFOVUSJFOUTFODPVOUFSFEJONVOJDJQBMXBTUFXBUFSTPGBSBSFDPOTJEFSFEBQPMMVUBOUSBUIFSUIBOBSBX
NBUFSJBM)PXFWFSUIFGJSTUFYBNQMFTPG1SFDPWFSZIBWFFSBTFE
Influent
Additives
Pretreatment
Basic treatment
Post treatment
Rejection water treatment
Sludge treatment
Energy conversion
Raw materials
(water, N, P, Energy)
Residues, sludges, etc.
Figuur 5.14. Scheme of various process steps of a wastewater treatment plant, in green treatment scheme for a Nutrient Factory
5 . 3.1 N U T R I E N T FA C T O R Y I N S P I R AT I O N – D U T C H E X A M P L E S
(FFTUNFSBNCBDIUXBTUFXBUFSUSFBUNFOUQMBOU
1IPTQIBUFDBOCFSFDPWFSFEBUBXXUQBT$BMDJVN1IPTQIBUF4JODFUIJTJTEPOFBUUIFXXUQ(FFTU
NFSBNCBDIUCZVTJOHB$SZTUBMBDUPSHSBOVMBSSFBDUPS
5IJTQSPDFTTVTFEUPCFBQQMJFEBUNPSFXXUQµT
CVUGSPN(FFTUNFSBNCBDIUJTUIFMBTUPOF1IPTQIBUFJTSFNPWFEGSPNUIFTMVEHFXJUIUIF1IPTU
SJQQSPDFTTVTJOHBDFUJDBDJESFTVMUJOHJO$BMDJVN1IPTQIBUFHSBOVMFT5IJTQSPEVDUJTUSBOTQPSUFEUPUIF
1IPTQIBUFJOEVTUSZ5IFQSPDFTTJTDPTUMZCFDBVTFPGUIFVTFPGMBSHFWPMVNFTPGDIFNJDBMT"MTPPQFSBUJP
OBMQSPCMFNTMFEUPBEFDSFBTFPG1IPTUSJQQMBOUT4508"D
8BTUFXBUFSUSFBUNFOUQMBOUTPG4UFFOEFSFOBOE0MCVSHFO
"UXXUQ4UFFOEFSFOUIFXBTUFXBUFSPGBQPUBUPJOEVTUSZJTUSFBUFEUPHFUIFSXJUIUIFNVOJDJQBMXBTUFXB
UFSGSPNXXUQ0MCVSHFO.BHOFTJVNPYJEF.H0
JTEPTFEJOPSEFSUPQSPEVDFTUSVWJUF4USVWJUFJTCFJOH
VTFE BT B GFSUJMJ[FS "EEJUJPOBMMZ UIJT QSPDFTT SFTVMUT JO B EFDSFBTFE CJPMPHJDBM
TMVEHF QSPEVDUJPO 'PS
FOFSHZFGGJDJFODZUIFBOBNNPYQSPDFTTJTJNQMFNFOUFE"NNPOJBJTPYJEJTFEWJBOJUSJUFBUPYZHFOMJNJ
UJOHDPOEJUJPOTUPOJUSPHFOHBT
4MVEHFUSFBUNFOUBU4/#
*OUIFTPVUIPG5IF/FUIFSMBOETBU4/#TMVEHFGSPNNVOJDJQBMXXUQµTJTJODJOFSBUFEUPOOFTQFS
ZFBS
%VSJOHJODJOFSBUJPOUIFQIPTQIBUFJODPODFOUSBUFEJOUIFBTIFTBUBDPODFOUSBUJPOPGHSBNTQFS
WWTP2030E 30
LJMPHSBNBTIFT5IFZFBSMZQIPTQIBUFQSPEVDUJPOJTUPOOFTQBSUPGJUJTTPMEUPUIFQIPTQIBUFJOEVT
USZ5IFSNQIPT
5IFNVOJDJQBMTMVEHFTOFFEUPCFMPXJOJSPOTBMUTFTQFDJBMMZCJPMPHJDBMMZ1GJYFETMVEHF
BOE1GJYBUJPOCZBMVNTBMUTJTOFFEFEGPSQIPTQIBUFSFDPWFSZ
%FWFOUFSXBTUFXBUFSUSFBUNFOUQMBOU
8851%FWFOUFSJTCVJMUBTB#$'4QSPDFTTXIJDIJTBQSPDFTTDPOGJHVSBUJPOXJUIBQIPTQIBUFSJDITJEF
TUSFBN*OUIFTFDPOEBOBFSPCJDDPNQBSUNFOUUIFQIPTQIBUFSJDIXBTUFXBUFSJTTUSJQQFEVTJOHJSPODIMPSJ
EF%PSUNVOESFBDUPS
5IFDIFNJDBMQSFDJQJUBUFETMVEHFJTMFEUPUIFTMVEHFUIJDLFOFSTMFBWJOHUIFNBJO
CJPMPHJDBMQSPDFTTXJUIDIFNJDBMTMVEHFT'PSQIPTQIBUFSFDPWFSZUIFVTFPGJSPOTBMUTNVTUCFNJOJNJTFE
UIFSFGPSFSFTFBSDIIBTCFFOEPOFVTJOHDBMDJVNBMVNJOJVNBOENBHOFTJVN3FTFBSDITIPXFEUIBUDBMDJ
VNJTUIFCFTUBMUFSOBUJWFUPJSPOBOEUIFBEEJUJPOBMDPTUTBSFMPXFSUIBOUIFBEEJUJPOBMCFOFGJUT4508"
D
F 5.15
F 5.17
F 5.16
F 5.18
Figure 5.15. Crystalactor at wwtp Geestmerambacht (Giesen, 2009).
Figure 5.16. Struvite production at wwtp Steenderen (TUDelft/Paques, 2009).
Figure 5.17. The phosphate cycle (SNB, 2009).
Figure 5.18. BCFS reactor at wwtp Deventer (Waterschap Groot Salland, 2009).
31 WWTP2030E
5 . 3. 2 E X P E R I E N C E I N T H E N E T H E R L A N D S
*OPSEFSUPJOTQJSFBOFYBNQMFDPOGJHVSBUJPOPGBOVUSJFOUGBDUPSZXBTEFWFMPQFECZUIFFYQFSUUFBN
GJHVSF
5IFUFSNTPGSFGFSFODFXFSFUPPQUJNJ[FUIFQSPEVDUJPOPGBSBXNBUFSJBMGSPNTMVEHFBOE
SFKFDUXBUFSUIBUDBOCFVTFECZUIFOVUSJFOUJOEVTUSZ5IJTSFRVJSFTJOUFSNTPGUSFBUNFOUPQUJPOT
4FQBSBUJPOPGOVUSJFOUTGSPN$0%
$PODFOUSBUJPOPGOVUSJFOUT
Biological
P fixation
Grit chamber
Post
sedimentation
Sludge
thickening
Water
Digestion
Centrifuge
Dry solids
NH4PO4
Ash
Figuur 5.19. Nutrient factory scheme by expert group.
WWTP2030E 32
NH4NO3
Oxidation
Sludge
P-recovery
33 WWTP2030E
6
WWTP2030E 34
ROADMAP
6 .1
D E S T I N AT I O N
5IF%VUDIXBUFSCPBSETIBWFEFWFMPQFEBDPNNPOQFSTQFDUJWFPOUIFGVUVSFPGVSCBOXBTUFXBUFSNBOBHF
NFOU*USFBET
There will be one institution responsible of the integral urban wastewater management.
It will act as a directing linking pin that cooperates in several strategic alliances, to efficiently treat wastewater and
transform wastes into raw materials and energy.
5IFQSPGJMFTPGGVUVSFXBUFSFOFSHZFONJOFSBMTGBDUPSJFTBTUIFOFXHFOFSBUJPOPGDVSSFOUXBTUFXBUFS
USFBUNFOUQMBOUTIBWFCFFOEFWFMPQFE"DIBMMFOHFTUJMMUPCFNFUJTUPDPNCJOFUIFNJOUPPOFDPIFSFOU
DPODFQUUIF/VUSJFOUT&OFSHZ8BUFSGBDUPSZ/&8T
"UUIFNBUFSJBMJ[BUJPOPGUIFQFSTQFDUJWFBOEDPODFQUMPDBMDPOEJUJPOTBSFJNQPSUBOUBOEXJMMDBVTFBDFS
UBJOWBSJFUZPGBQQSPQSJBUFBMUFSOBUJWFT
6.2
ROUTE
5IFEFTUJOBUJPOJTEFGJOFEJOHFOFSBMUFSNTCVUOPUBTBGJYFETFUPGDPPSEJOBUFT*OUIFZFBSTUPDPNF
TFWFSBMQIFOPNFOBXJMMHSBEVBMMZEFGJOFGJSTUUIFSPVUFBOEMBUFSUIFEFTUJOBUJPO5IFTFQIFOPNFOBDBO
CFDMVTUFSFEBTTUBSUJOHQPJOUTCPVOEBSZDPOEJUJPOTGBDUPSTPGJOGMVFODFBOEGBDUPSTUIBUSFRVJSFBUUFO
UJPO5IFTFQIFOPNFOBIBWFUPNPOJUPSFESFHVMBSMZJOPSEFSUPTUBZPOUSBDL
Tabel 6.1. Important phenomena.
PHENOMENA
Starting-points
MO NI TOR I NG
Will effluent be discharged into surface water or used as a water source?
Will it be possible to utilize local circumstances in favour of the viability of a kind
of factory?
Boundary conditions
Protection of public health by safe discharge and treatment of human wastes is a
prime objective
Protection of surface water quality and environment by prevention of discharge of
oxygen demand and nutrients is a second important objective
Setting up water, energy and nutrients factories requires a guaranteed sales of
products
Sales requires marketing; this is a new skill that has to be developed
Factors of influence
The choice of technology is not only determined by boundary conditions but also
Factors that require attention
Process steps should be tuned, in order to design a well balanced plant
by effluent quality, costs, energy neutrality and nutrient recovery
Plants should be flexible (modular), in order to accomodate developments smoothly
35 WWTP2030E
6.3
GPS
5IFPOHPJOHEFWFMPQNFOUPGDVSSFOUUSFBUNFOUUFDIOJRVFTBOEEFTJHONFUIPETIBTUPCFNPOJUPSFEDBSF
GVMMZBOENBZIBWFUPCFTUJNVMBUFE5IFUBCMFTVNNBSJ[FTTPNFSFMFWBOUBDUJWJUJFT
Tabel 6.2. Future activities.
TO PIC
ACT I V I TY
Technology known and proven in
Knowledge and experience is well documented by STOWA
The Netherlands
This database should always be consulted
Technology known in The Netherlands but
Participation in an international network
only proven abroad
Excursions
Development of business cases
Demonstration projects at a Dutch wastewater treatment plant
Technology known but not proven
Design
Similar
Development of existing models for the purpose of design of water, energy and
nutrient production
'VSUIFSNPSF POHPJOH SFTFBSDI IBT UP CF FWBMVBUFE BOE GVUVSF SFTFBSDI IBT UP CF EJSFDUFE JO PSEFS UP
PQUJNJ[FUIFFGGPSUTBOESFTVMUTJOUIFQFSTQFDUJWFPGUIFXBTUFXBUFSUSFBUNFOUQMBOU*UJTPGVUNPTU
JNQPSUBODFUPEFWFMPQBDPIFSFOUSFTFBSDIQSPHSBNPOTFQBSBUFBOEDPNCJOFEQSPEVDUJPOPGXBUFSFOFS
HZBOEOVUSJFOUT
WWTP2030E 36
37 WWTP2030E
CO L O P H O N
"NFSTGPPSU+VOF
PUBL I SHER
4508""NFSTGPPSU
5IF/FUIFSMBOET
AU T H O R S
JS1BVM3PFMFWFME.8)/PSUI&VSPQF
ESJS+FMMF3PPSEB.8)/PSUI&VSPQF
.BBSUFO4DIBBGTNB.TD.8)/PSUI&VSPQF
WORK ING GROUP
JOH1BUSJDL#MPN8BUFSTDIBQ7FMVXF
ESJS+BO)PGNBO,838BUFSDZDMF3FTFBSDI*OTUJUVUF
JS,FFTEF,PSUF8BUFSOFU
ESJS.FSMFEF,SFVL8BUFSTDIBQ)PMMBOETF%FMUB
JS'SBOT4DIVMUJOH(MPCBM8BUFS3FTFBSDI$PBMJUJPO
JS$PSB6JKUFSMJOEF4508"
T R A N S L AT I O N
JS+FMUFWBOEFS)FJEF.8)/PSUI&VSPQF
GR APHIC DE SIGN
4UVEJP##SJHJUUF#FFOFO/JFVXLPPQ
PHOTOGR APHY
#FOOP8POJOL.8)*4UPDLDPN
4508"SFQPSU
*4#/
WWTP2030E 38
NEWs
NEWs
NEWs
NEWs
NEWs
NEWs
NEWs
[email protected] www.stowa.nl
TEL + 31 33 460 32 00 FAX +31 33 460 32 01
Stationsplein 89 4th floor
P.O. BOX 2180 3800 CD AMERSFOORT THE NETHERLANDS