Homework week 8 solutions Daniel Rakotonirina March 10, 2017 2 Z 5x dx x2 − x − 6 1. Evaluate the following integral −1 (2.5 marks) Solution: x2 5x A1 A2 A1 (x + 2) + A2 (x − 3) = + = (1 mark) −x−6 x−3 x+2 (x − 3)(x + 2) We have: 5x = (A1 + A2 )x + 2A1 − 3A2 (1 mark): From that we have a system of 2 equations 5 = A1 + A2 (1) 0 = 2A1 − 3A2 (2) The resolution of the system gives A1 = 3 and A2 = 2. Thus, 2 2 Z 2 Z 2 Z 2 3 2 5x dx = dx + dx = 3 ln |x − 3| + 2 ln |x + 2| 2−x−6 x x − 3 x + 2 −1 −1 −1 −1 −1 Z 2 −1 5x dx = − ln 4 (0.5 mark) x2 − x − 6 1 2 Z xe2x−1 dx (2.5 marks) 2. Evaluate the following integral − 32 Solution: • Integration by part (1 mark): Functions in original integral u=x dv = e2x−1 dx Functions in new integral du = dx v = 12 e2x−1 Thus, the integral becomes: Z 1 2 2x−1 xe − 32 Z 1 2 • Substitution for 1 Z 1 x 2x−1 2 1 2 2x−1 dx = e e dx 3−2 2 − 23 − 2 e2x−1 dx: w = 2x − 1 =⇒ dw = 2dx (1 mark) − 23 Z 1 2 e − 23 2x−1 Z 0 dx = e −4 1 0 1 w 1 = e = (1 − e−4 ) 2 2 2 −4 w dw Finally, we have (0.5 mark): Z 12 1 3 1 1 xe2x−1 dx = + e−4 − (1 − e−4 ) = + e−4 2 4 4 4 − 23 Z 3. Evaluate the following integral ln(tan x) dx sin x cos x (2.5 marks) Solution: • Substitution u = tan x. So, du = sec2 x dx. Thus, Z Z Z ln u du ln u ln(tan x) dx = = 2 sin x cos x sin x cos x sec x sin x cos x du 1 cos2 x Z = ln u du = tan x Z ln u du (1 mark) u Z ln u 1 du using a second substitution w = ln u =⇒ dw = du u u Z Z Z w2 ln2 u ln2 (tan x) ln u w du = · u dw = w dw = +c= +c= + c (1 mark) u u 2 2 2 • Deal with Finally, ln2 (tan x) ln(tan x) dx = + c (0.5 mark) sin x cos x 2 Z Z √ 4. Evaluate the following integral 25x2 − 4 dx x (2.5 marks) Solution: We have: Z √ q 25x2 −4 x Z x2 − dx = 5 4 25 x dx 2 2 sec θ =⇒ dx = sec θ tan θ dθ (0.5 mark) 5 5 r r p 4 4 4 2 2 x2 − = sec2 θ − = tan2 θ = tan θ (0.5 mark) 25 25 25 5 5 We use trigonometric substitution with x = So, Z √ 25x2 − 4 dx = 5 x Z 2/5 tan θ (2/5 sec θ tan θ dθ) 2/5 sec θ Z Z = 2 tan2 θ dθ = 2 (sec2 θ − 1) dθ Z =2 sec2 θ dθ − 2 Z dθ = 2 tan θ − 2θ + c (0.5 mark) Since x = 2 sec θ, we get 5 5x 2 = sec θ so cos θ = 2 2 . Hence, θ = arccos( 5x ). 5x (0.5 mark) Finally, Z √ r 25x2 − 4 4 2 dx = 2 tan θ − 2θ + c = 5 x2 − − 2 arccos( ) + c (0.5 mark) x 25 5x 2
© Copyright 2026 Paperzz