INVESTIGATION OF THE HETEROGENEOUS REACTION BETWEEN AMMONIA, SULFATE/BISULFATE AND SULFURIC ACID AEROSOLS Colette Noonan Dr Arnaud Allanic and Prof John R. Sodeau Centre for Research into Atmospheric Chemistry CRAC, University College Cork Environmental Research Institute, Cork AEROSOLS Typical aerosols Visibility reduction dueortosolid light reduction • Suspensions ofatmospheric liquid particles in gas 1979 • Man-made or natural • Why study particles? g/m3 Particulate Conc. 7 Forest fires 10 μm < Ø 2003 3 μm < Ø < 10 μm Particulate Conc. 12 g/m3 Soil erosion 1. Health effects 0.03 μm < Ø < 3 μm 2. Visibility Most of the aerosol mass is deposited in the upper Particulate while Conc. 21 highest g/m3 effects Particulate Conc. 65 g/m3 airways, the numbers deposit in alveoli 3. Climate Volcano eruptions Industrial activities SULFATE PRODUCTION IN THE TROPOSPHERE O2 HOSO2 H2 O SO3 H2 SO4 (g) GAS OH SO2 H2O2, O3, O2, OH, NO2 Condensation Nucleation SO42- AQUEOUS AEROSOL ???????? Roughly 4% of the S emitted by combustion sources is sulfate. AMMONIA IN THE TROPOSPHERE 5 x 1010 kg per year emitted to atmosphere S E C REDU ENTAL RONM TION I V N E IFIC A ACID ONIA M M A NCE S A H N E IC LE PART ION AT FORM LE I N E O R Y KE LFAT U S / E AT NITR I TIONIN G PART SULFATE AND AMMONIA INTERACTION IN THE TROPOSPHERE Ammonia OBJECTIVES OF THIS WORK Using NH3(g) as a trace gas we are looking at: Interaction with sulfuric acid aerosol Determinin g uptake coefficient Determining effect of humidity on reaction Using FTIR to help follow the mechanism of reaction Experimental Setup Dilution Unit P Aerosol Generator Humidifier Aerosol Flow Carrier Flow Z0 Comp. Air Unit Z1 SMPS TSI 3081 NH3 Analyser Z2 NH3/N2 Z3 FTIR MCT Catalytic Converter Aerosol sampling NH3/NH4+ sampling Exhaust Denuder RH To DETECTION 1: NOx BOX NH3 on Diffusion separator NH3 NH3 off Chemiluminescence Cell (NOx Box) Flowtube Denuder coated with Oxalic acid NH4+ 750oC Z0 4NH3 5O2 Z1 Z2 Yb/P r/Cuoxides,750o C NO O3 * 2 NO * 2 NO NO2 h Lanthanide oxides doped with copper Z3 oxides 4NO 6H2O O2 f Determination of uptake (γ) Surface area of particle d NH4 dt kr NH4 Mean molecular speed of ammonia " Wall losses" Ln([NH4]/[NH4]o) γ 4k r A c 1st order rate coefficient First- order rate coefficient, kr: kr Aerosol on 0 0/zo Time (s) / injector position values at 25% RH (Relative Humidity) Aerosol 0.1% w NaHSO4 1.1*10-5 0.1% w Na2SO4 No uptake 0.1% w NaHSO4 + 0.2% w H2SO4 H2SO4 9*10-5 4*10-3 DETECTION 2: SMPS Scanning Mobility Particle Sizer H2SO4 / H2O aerosol sizing 9.00E+05 8.00E+05 7.00E+05 6.00E+05 5.00E+05 4.00E+05 3.00E+05 2.00E+05 1.00E+05 0.00E+00 1% Relative Humidity Number NH3 off 10 100 Mean size Number- coarse mode 306 nm 1000 Diameter (nm) 8.0E+03 Mean size 27nm 50% Relative Humidity Number (/cm3) Number (/cm3) Number transition 02 Sept 03 (c) 6.0E+03 Number- coarse mode 4.0E+03 2.0E+03 0.0E+00 10 100 Diameter (nm) 1000 H2SO4 /H2O / NH3 aerosol sizing Mean size 33 nm Number transition 2.0E+06 1.5E+06 Number pre 1.0E+06 Number post 1% Relative Humidity 5.0E+05 0.0E+00 100 Number Transition 1000 Diameter (nm) 2.0E+05 Mean size 38 nm 50% Relative Humidity 7.0E+03 6.0E+03 5.0E+03 4.0E+03 3.0E+03 2.0E+03 1.0E+03 0.0E+00 1000 1.5E+05 1.0E+05 5.0E+04 0.0E+00 10 100 Diameter (nm) Number post Number pre Number pre (/cm3) 10 Number post (/cm3) Number (/cm3) 2.5E+06 DETECTION 3: FTIR Sulfuric Acid Aerosol 1.6% water H2O 36% water H3O+ HSO4- Gaseous ammonia with water 1.5% water 4 2 No “condensation nuclei” available to form aerosol Ammonium sulfate and bisulfate aerosol SO42- Sulfate NH4+ Bisulfate HSO4- H2SO4 /H2O / NH3 aerosol IR (1) NH4+ 36% water SO42- H2SO4 /H2O / NH3 aerosol IR (2) NH4 SO42- + HSO4- 29% water NH3…H2O H2SO4 /H2O / NH3 aerosol IR (3) 1.6% water NH4+ HSO4SO3? SO42- NH3…H2O CONCLUSIONS: UPTAKE No sulfate uptake but bisulfate system is reactive IR data indicate that uptake proceeds via an NH4+ forming reaction. Likely mechanism: NH3(g) + H2SO4(s) (NH4)HSO4(s) (1) (NH4)HSO4(s) + NH3(g) (NH4)2SO4(s) (2) Based on the γ measured for NaHSO4, step (2) is slow and therefore rate controlling CONCLUSIONS: MECHANISM At high %RH (>35%): reaction “complete” and only production of [NH4]2SO4 is observed by FTIR At lower %RH (< 30%): the bisulfate intermediate is observable as well as interfacial, NH3…H2O. At very low %RH (<2%) the possible release of SO3 is observable. This is the first experiment to follow the full details of this “simple” chemistry on an aerosol ACKNOWLEDGEMENTS! Prof John Sodeau Dr Arnaud Allanic All the crew in the CRAC lab Enterprise Ireland 56th Irish Universities Chemistry Research Colloquium University of Limerick 23rd-25th June 2004 Uptake, Accommodation and Reaction NH3 H2SO4 36-50% 1-2% water water NH3…H2O SO3 ? HSO4- NH4+ SO42- Mean Meansize size =38nm =33nm NaHSO4 /H2O / NH3 aerosol IR + NHHSO 4 4 1.6% water NH4+ SO3? HSO4SO42SO42- NH3…H2O Aerosol Flow Carrier Flow Entrance region Turbulent mixing Movable Injector Laminar flow conditions NH3/N2 z Reaction region Sampling line
© Copyright 2026 Paperzz