Undetermined Coefficients handout

UNDETERMINED COEFFICIENTS β€” SUMMARY SHEET
Goal: to solve 𝐿𝑦 = 𝑓 where 𝐿 is a constant coefficient linear differential operator and
𝑓 (π‘₯) = π‘ƒπ‘š (π‘₯)π‘’π‘Ÿπ‘₯ cos(π‘˜π‘₯)
or
= π‘ƒπ‘š (π‘₯)π‘’π‘Ÿπ‘₯ sin(π‘˜π‘₯)
or
= π‘ƒπ‘š (π‘₯)π‘’π‘Ÿπ‘₯
where π‘ƒπ‘š is some polynomial of degree π‘š β‰₯ 0, and π‘Ÿ ∈ ℝ and π‘˜ > 0 are constants. (If π‘Ÿ = 0
then the exponential π‘’π‘Ÿπ‘₯ can be ignored.)
First find the complementary solution 𝑦𝑐 (π‘₯) (the solution of 𝐿𝑦 = 0). Then. . .
Rule 1
To find a particular solution 𝑦𝑝 of 𝐿𝑦 = 𝑓 , try guessing
𝑦𝑝 (π‘₯) = [𝐴0 + 𝐴1 π‘₯ + β‹… β‹… β‹… + π΄π‘š π‘₯π‘š ]π‘’π‘Ÿπ‘₯ cos(π‘˜π‘₯)
+ [𝐡0 + 𝐡1 π‘₯ + β‹… β‹… β‹… + π΅π‘š π‘₯π‘š ]π‘’π‘Ÿπ‘₯ sin(π‘˜π‘₯)
or just
𝑦𝑝 (π‘₯) = [𝐴0 + 𝐴1 π‘₯ + β‹… β‹… β‹… + π΄π‘š π‘₯π‘š ]π‘’π‘Ÿπ‘₯
if there are no sin or cos terms in 𝑓 (π‘₯).
If no term in the guess for 𝑦𝑝 duplicates a term in the complementary solution 𝑦𝑐 ,
then substitute the guess into 𝐿𝑦 = 𝑓 and determine the coefficients 𝐴0 , 𝐴1 , . . . , π΄π‘š and
𝐡0 , 𝐡1 , . . . , π΅π‘š . Then 𝑦 = 𝑦𝑐 + 𝑦𝑝 is the general solution of 𝐿𝑦 = 𝑓 .
Rule 2
But if some terms are duplicated, change the guess to
𝑦𝑝 (π‘₯) = π‘₯𝑠 [𝐴0 + 𝐴1 π‘₯ + β‹… β‹… β‹… + π΄π‘š π‘₯π‘š ]π‘’π‘Ÿπ‘₯ cos(π‘˜π‘₯)
+ π‘₯𝑠 [𝐡0 + 𝐡1 π‘₯ + β‹… β‹… β‹… + π΅π‘š π‘₯π‘š ]π‘’π‘Ÿπ‘₯ sin(π‘˜π‘₯)
or just
𝑦𝑝 (π‘₯) = π‘₯𝑠 [𝐴0 + 𝐴1 π‘₯ + β‹… β‹… β‹… + π΄π‘š π‘₯π‘š ]π‘’π‘Ÿπ‘₯
if there are no sin or cos terms in 𝑓 (π‘₯),
where 𝑠 is the smallest exponent that succeeds in eliminating duplication with 𝑦𝑐 . That is,
keep multiplying through your original guess by powers of π‘₯ until you have eliminated all
duplication.
Then substitute into 𝐿𝑦 = 𝑓 and determine the coefficients 𝐴0 , 𝐴1 , . . . , π΄π‘š and 𝐡0 , 𝐡1 , . . . , π΅π‘š .
Then 𝑦 = 𝑦𝑐 + 𝑦𝑝 is the general solution of 𝐿𝑦 = 𝑓 .
Note. Figure 3.5.1 in the textbook summarizes the most common guesses for 𝑦𝑝 .
What if 𝑓 consists of more than one term? In that case, find 𝑦𝑝 for each term
separately, then add the 𝑦𝑝 ’s.
For example, if 𝑓 (π‘₯) = π‘₯2 sin(π‘₯)+𝑒4π‘₯ , then we should use Rules 1 and 2 to find a particular
solution 𝑦𝑝,1 (π‘₯) corresponding to 𝑓1 (π‘₯) = π‘₯2 sin(π‘₯), and then similarly find a particular
solution 𝑦𝑝,2 (π‘₯) corresponding to 𝑓2 (π‘₯) = 𝑒4π‘₯ . Then 𝑦𝑝 = 𝑦𝑝,1 + 𝑦𝑝,2 will be a particular
solution of our original problem.
(This is just an application of the Superposition Principle for nonhomogeneous linear
equations.)
1
Example 1. 𝑦 β€²β€² + 2𝑦 = 4𝑒3π‘₯
Example 2. 𝑦 β€²β€² βˆ’ 3𝑦 β€² + 2𝑦 = π‘₯2 + π‘₯ βˆ’ 5
Example 3. 2𝑦 β€²β€² βˆ’ 𝑦 β€² + 𝑦 = 3 sin(2π‘₯)
Example 4. 𝑦 β€²β€² + 9𝑦 = cos(3π‘₯)
√
Example 5. 𝑦 β€²β€² + 6𝑦 β€² + 16𝑦 = π‘’βˆ’3π‘₯ sin( 7π‘₯)
The annihilator explanation for Rule 2 (duplication):
Optional. See the Annihilators handout on the class website.