Chap. 8 Reaction Kinetics (1) Definition of reaction rate The change of number of component i with time is define as the rate of reaction: ri = 1 dN i * (Based on unit volume of reactor) V dt = dCi (V = constant) dt e.g. A + 2 B → C , V = cons. rC = dCC dC dC , rB = − B , rA = − A dt dt dt (2) Homogeneous reactions ri = f ( state of system ) = f ( T, P, component ) ∵ homogeneous, P = constant → ri = f ( T, component ) (3) Rate equation 1. Single & multiple reactions: a. single rxn: A → B or A + B → C + D b. multiple rxn: (i) Series rxn: A → B → C (ii) Parallel rxn: A → B A→C 2. Elementary & nonelementary rxns: Elementary reactions: rate equation corresponds to the stoichiometic equation. K e.g. A + 2 B ⎯⎯→ C , − rA = k * C 1A * C B2 , where k: rate constant 1 Edited by Prof. Yung-Jung Hsu Nonelementary reactions: rate equation isn’t related to the stoichiometic equation. K 3B , − rA = k e.g. 2 A ⎯⎯→ C A2 , where k: rate constant CB 3. Order of reaction: − rA = k * C Aa * C Bb * CCc * C Dd , a + b + c + d = n For A: of order a, for B: of order b Overall: of order n 4. Expression of rate equation: a. elementary rxns: A → B or A + B → C + D K A + 2 B ⎯⎯→ 3C − rA = k * C A * C B2 , − rB = k * C A * C B2 , rC = k * C A * C B2 → − rA = −rB = rC (wrong!!) ∵ stoichiometic equation. → − rA = k * C A * C B2 − rB = k ' * C A * C B2 , k ' = 2k rC = k '' * C A * C B2 , k '' = 3k b. nonelementary rxns: Choose suitable mechanism By rate-limiting step method. 速率決定步驟 1 is at equilibrium, K = ∵○ [O ] [O2 ][O] ⇒ [O] = K 3 [O3 ] [O2 ] 2 is the rate-determine step, − RO 3 = k3 [O][O3 ] = k ' ∵○ 2 [O3 ]2 [O2 ] Edited by Prof. Yung-Jung Hsu (4) Temperature dependence 1. Rate equation: ri = f (T, component), P=const. = k* f (component) By Arrhenius Law: k = k0 * exp[− E RT →k~T ] , where k0: frequency factor E: activation energy 2. How to find E, k0? From k = k0 * exp[− E RT ] → ln k = ln k0 − E RT Plot lnk vs. 1/T (5) Equilibrium constant & rate constant Consider a “reversible” reaction at constant volume: − rA = − dC A = kC A − k −1CB * CC (A 濃度隨時間變化之量) dt If the reaction is at equilibrium, the rate of change of concentration of A will be zero ⇒ dC A = 0 帶入上式 dt ⇒ kC A, E − k −1CB , E * CC , E = 0 ⇒ C * CC , E k = B, E =K −1 k C A, E ⇒K CB , E * CC , E k , where K is equilibrium constant & K = −1 k C A, E 3 Edited by Prof. Yung-Jung Hsu (6) Interpretation of reaction data → to find k 1. Unimolecular irreversible 1st-order reaction: k A⎯ ⎯→ P , V=constant − rA = − dC A dC A = kC A ⇒ = k * dt CA dt t dC A C = ∫ k * dt ⇒ − ln A = kt 0 C A0 C C A0 A ⇒ −∫ CA 2. Pseudo 1st-order reaction: k A+ B ⎯ ⎯→ P , with B excess (V=const.) − rA = − dC A = kC A * CB dt If B is excess ⇒ CB ≅ CB 0 >> C A (超過 20 倍) dC A = kC A * CB 0 dt C − ln A = kCB 0 * t C A0 − ln C A = − kCB 0 * t + ln C A0 3. Irreversible 2nd-order reaction: k Type I: 2 A ⎯ ⎯→ P − rA = − dC A 2 = kC A dt t dC A = − k ∫ dt 2 0 C A0 C A ⇒∫ CA 4 Edited by Prof. Yung-Jung Hsu ⇒ 1 1 = + kt C A C A0 k Type II: A + B ⎯⎯→ P dC A = kC A * C B dt Q C A − C A0 = C B − C B 0 ⇒ C B = C A + C B 0 − C A0 − rA = − a. if C A0 = C B 0 ⇒ C A = C B − rA = − dC A 2 = kC A ……type I dt b. if C A0 ≠ C B 0 dC A = kC A * (C A + C B 0 − C A0 ) dt C C ⇒ ln A − ln B = −k (C B 0 − C A0 )t C A0 CB 0 − rA = − ⇒ ln[ C A CB0 * ] = −k (C B 0 − C A0 )t C B C A0 4. Irreversible nth-order reaction & n ≠ 1 : k nA ⎯ ⎯→ P dC n − rA = − A = kC A dt ⇒ ln(−rA ) = ln k + n ln C A 5 Edited by Prof. Yung-Jung Hsu Then plot ln(−rA ) vs. ln C A : 6 Edited by Prof. Yung-Jung Hsu
© Copyright 2026 Paperzz