Dividing Polynomials Dividing Terms Example 24 x5 ⇒ 4 x3 −45 x 7 ⇒ 9 x3 30 x 6 ⇒ 12 x 4 Concept 1. Divide or reduce the coefficients. 2. Subtract the exponents (powers) of the same variable. Examples 42 x8 ⇒ −7 x5 35 x 6 ⇒ 14 x 2 Dividing Polynomials by a Monomial 1. Rewrite using the denominator under each term. a+b a b = + c c c 2. Divide the terms. Examples 15 x 2 + 30 x 5x 45 x5 + 12 x 4 − 15 x3 3x 2 18 x 4 − 24 x3 6x2 52 x5 − 30 x3 12 x 2 1 Dividing Polynomials by a Binomial We will use Long Division to divide. Quotient Divisor Dividend _________ Re mainder Concept 1. Divide the highest degree term of divisor into highest degree term of dividend. 2. Multiply the Quotient term from step 1 onto the divisor. 3. Subtract the product in step 2 from the dividend. 4. Repeat steps 1, 2, and 3 until degree of remainder is less than degree of divisor. Example 6x2 + 2x − 5 2x + 4 ⇒ 2x + 4 6x2 + 2x − 5 Example 6 x3 + 11x 2 − 31x + 16 3x − 2 Example 6 x3 − 44 x + 33 2x + 6 ⇒ 3 x − 2 6 x3 + 11x 2 − 31x + 16 ⇒ 2 We can divide by more terms in the divisor. Example 3 x5 − 4 x 4 − 15 x3 − 8 x + 20 3x 2 + 2 x + 4 Homework: Divide 6 x2 + 8x 1. 2x 2. 14 x 4 − 42 x 2 7 x2 4. 24 x 4 − 54 x3 −18 x 2 7. 75 x3 + 35 x 2 − 25 x 25 x 2 Use Long Division to divide. 5 x 2 + 17 x + 6 10. x+3 3. 24 x5 + 18 x3 12 x 2 5. 15 x3 + 25 x 2 − 35 x 5x 6. 30 x5 − 18 x3 + 42 x 12 x 2 8. 24 x 4 − 18 x3 − 30 x 2 8x2 9. 85 x 7 − 51x5 17 x3 11. x2 − 4x + 5 x −5 12. 6 x3 − 4 x 2 + 8 x − 13 2x + 4 13. 6 x 2 + 7 x − 18 3x − 4 14. 6 x 2 − 27 3x − 6 15. 8 x3 + 14 x 2 − 11x + 14 2x + 5 16. 10 x3 + 33 x 2 − 20 5x + 4 17. 8 x3 − 1 2x −1 18. 27 x3 + 8 3x + 2 19. 10x 3 + x 2 − 16 2x − 3 20. 15x 3 + 11x 2 − 2x + 7 5x − 3 21. 16x 4 + 6x − 5 4x − 2 22. 5 x3 + 6 x 2 − 23 x + 12 x2 + 2x − 3 6 x 4 − 8 x3 − x 2 + 20 x − 36 2 x 2 −5 23. 24. 18 x 4 + 15 x3 + 20 x − 32 3x 2 + 4 3
© Copyright 2026 Paperzz