fx-5800P_Supplement - Support

J E S G I Sw K Ch Ck
fx-5800P
Tillägg
付録
Supplement
Suplemento
Ergänzung
Supplemento
http://edu.casio.jp/
http://world.casio.com/edu/
RJA516833-001V01
#01
3-5 µµ
–4.49044799×10–26 J T –1
3-6
F
96485.3383 C mol –1
1-3 me 9.1093826×10–31 kg
3-7
e
1.60217653×10–19 C
1.8835314×10–28 kg
3-8
NA 6.0221415×1023 mol –1
4-1
k
4-2
Vm 22.413996×10–3 m3 mol –1
1-7 µ N 5.05078343×10–27 J T –1
4-3
R
1-8 µ B
927.400949×10–26 J
4-4
C0 299792458 m s–1
2-1 H
1.05457168×10–34 J s
4-5
C1 3.74177138×10–16 W m2
2-2 α
7.297352568×10–3
4-6
C2 1.4387752×10–2 m K
2-3
re 2.817940325×10–15 m
4-7
σ
2-4
λc
4-8
ε0 8.854187817×10–12 F m–1
2-5
γp 2.67522205×108 s–1 T –1
5-1
µ 0 12.566370614×10–7 N A–2
m
5-2
φ 0 2.06783372×10–15 Wb
2-7 λcn 1.3195909067×10–15 m
5-3
g
5-4
G0 7.748091733×10–5 S
5-5
Z0 376.730313461 Ω
1-1 mp 1.67262171×10–27 kg
1-2 mn
1-4 mµ
1.67492728×10–27 kg
1-5 a0 0.5291772108×10–10 m
1-6
h
2-6 λcp
6.6260693×10–34
Js
2.426310238×10–12
m
1.3214098555×10–15
2-8 R∞ 10973731.568525
3-1 u
T –1
m–1
1.66053886×10–27 kg
1.3806505×10–23 J K–1
8.314472 J mol –1 K –1
5.670400×10–8 W m–2 K–4
9.80665 m s–2
3-2 µ p 1.41060671×10–26 J T–1
5-6
t
273.15 K
3-3 µ e –928.476412×10–26 J T–1
5-7
G
6.6742×10–11 m3 kg–1 s–2
3-4 µ n –0.96623645×10–26 J T–1
5-8 atm 101325 Pa
––
#02
n.Σxiyi – Σxi.Σyi
n.Σxi2 – (Σxi)2
a=
Σyi – a.Σxi
b=
n
n.Σxiyi – Σxi.Σyi
2
.
{n Σxi – (Σxi)2}{n.Σyi2 – (Σyi)2}
r=
y–b
a
n = ax + b
m=
#03
Sx2y.Sxx – Sxy.Sxx2
a=
Sxx.Sx2x2 – (Sxx2)2
Sxy.Sx2x2 – Sx2y.Sxx2
b=
Sxx.Sx2x2 – (Sxx2)2
Σyi – a Σxi2 – b Σxi
c=
n
n
n
( ) ( )
Sxx = Σxi –
2
(Σxi)2
Sxy = Σxiyi –
n
(Σxi .Σyi)
n
– b + b2 – 4a(c – y)
2a
– b – b2 – 4a(c – y)
m2 =
2a
n = a x2 + bx + c
(Σxi.Σxi2)
n
(Σx 2)2
Sx2x2 = Σxi4 – ni
(Σxi2.Σyi)
Sx2y = Σxi2yi –
n
Sxx2 = Σxi3 –
m1 =
#04
a=
Σyi – b.Σlnxi
n
n.Σ(lnxi)yi – Σlnxi.Σyi
b=
n.Σ(lnxi)2 – (Σlnxi)2
n.Σ(lnxi)yi – Σlnxi.Σyi
r=
.
{n Σ(lnxi)2 – (Σlnxi)2}{n.Σyi2 – (Σyi)2}
y–a
m=e b
n = a + blnx
––
#05
(Σ
a = exp
lnyi – b.Σxi
n
)
n.Σxilnyi – Σxi.Σlnyi
b=
n.Σxi2 – (Σxi)2
n.Σxilnyi – Σxi.Σlnyi
r=
2
.
{n Σxi – (Σxi)2}{n.Σ( lnyi)2 – (Σlnyi)2}
lny – lna
m=
n = aebx
#06
b
(Σ ny –n n .Σx )
( n.Σnx.Σnyx ––ΣΣx x.Σ ny )
l
a = exp
l b
i
il
b = exp
r=
m=
#07
2
i)
l
2
i
lnb
( Σ ny –n .Σ nx )
l
a = exp
r=
i
(
i
n.Σ xilnyi – Σ xi.Σlnyi
2
.
{n Σ xi – (Σ xi)2}{n.Σ(lnyi)2 – (Σlnyi)2}
lny – lna
n = abx
b=
i
i
i
b
l
i
n.Σlnxilnyi – Σlnxi.Σlnyi
n.Σ(lnxi)2 – (Σlnxi)2
n.Σlnxilnyi – Σlnxi.Σlnyi
{n.Σ(lnxi)2 – (Σlnxi)2}{n.Σ(lnyi)2 – (Σlnyi)2}
ln y – ln a
m=e
n = axb
b
––
#08
Σyi – b.Σxi–1
a=
n
Sxy
b=
Sxx
Sxy
r=
Sxx.Syy
Sxx = Σ (xi–1)2 –
Syy = Σyi –
2
(Σxi–1)2
(Σyi)2
n
Sxy = Σ(xi –1)yi –
m=
n
Σxi–1.Σyi
n
b
y–a
n=a+
b
x
#09
1
m m
tan θ = 2 – 1
1 + m1 m2
(m1 m2 G 1)
y = m2 x + k2
y
θ
y = m 1 x + k1
x
υ2 – υ1
t2 – t1
2
a=
3
S = υ 0 t + 1 at 2
4
5
(t2 > t1 > 0)
2
(t > 0)
2
2
2
cos A = b + c – a
2bc
2
2
2
cos B = c + a – b
2ca
c
2
2
2
cos C = a + b – c
2ab
n{2a + (n – 1)d}
S=
2
B
––
A
a
b
C
6
7
RT
υ = 3M
(M, T > 0)
y
[(xp, yp)→(Xp, Yp)]
(xp, yp)
Y
Xp = (xp–x0)cosα + (yp–y0)sinα
α
Yp = (yp–y0)cosα – (xp–x0)sinα
x y0)
( 0,
(0, 0)
8
[ γP + 2υg
2
P2 = P1 + γ
[ γP + 2υg
2
9
υ2 =
10
+ Z = Const.
(
]
υ12 – υ22 + Z – Z
1
2
2g
+ Z = Const.
]
)
2
(υ , P, γ , Z > 0)
]
+ Z = Const.
2
2
Z2 = P1 – P2 + υ1 – υ 2 + Z1
2g
γ
(
(υ, P, γ , Z > 0)
)
11
Px = nCx Px ( 1 – P)n–x 0 < P < 1
x = 0, 1, 2······
12
Pol(XB – XA, YB – YA)
(XB, YB)
XP = Rcos α + XA
R
(XA, YA)
η=
Q1 – Q2
Q1
(Xp, Yp)
α
YP = Rsin α + YA
13
x
(υ, P, γ , Z > 0)
2g(P1 – P2)
+ υ12 + 2g( Z1 – Z2)
γ
[ γP + 2υg
(Xp, Yp)
X
( Q1 G 0)
––
T1 – T2
T1
( T1 G 0)
14
η=
15
F = mrω 2 (m, r, ω > 0)
16
2
F=m υ
r
17
υ=
18
S0 = π rR (r,R> 0)
19
V = 1 π r2h
(r, h > 0)
20
S0 = 2 π rh
(r, h > 0)
21
V = π r 2h
22
T = 2ωπ
(r, m, υ > 0)
T
( T, σ > 0 )
σ
3
(r, h > 0)
( ω G 0)
23
T = 2υπ r
24
T = 1f
25
S = π r 2 (r > 0)
26
R=ρ R
S
27
[ A υ ρ = A υ ρ = Const. ]
1
υ2 =
28
1
( υ G 0)
( f > 0)
1
(S,R, ρ > 0)
2
A1υ 1 ρ1
A2 ρ 2
2
2
(A2, ρ 2 > 0)
[ A υ ρ = A υ ρ = Const. ]
1
A2 =
1
1
2
A1υ 1 ρ1
υ 2 ρ2
2
2
(υ2 G 0, ρ 2 > 0)
––
29
30
R4R5 + R5R6 + R6R4
R5
R4R5 + R5R6 + R6R4
R2 =
R6
R4R5 + R5R6 + R6R4
R3 =
R4
R1 =
R4 =
(R4, R5, R6 > 0)
R1R2
R2R3
R 3R 1
, R5 =
, R6 =
R1 + R2 + R3
R1 + R2 + R3
R1 + R2 + R3
(R1, R2, R3 > 0)
31
X
[(XA, YA), Rec(R, α )→(Xp, Yp)]
(Xp, Yp)
XP = Rcos α + XA
YP = Rsin α + YA
α
R
(XA, YA)
32
33
a = b + c – 2bc cos A → a = b + c – 2bc cos A
b2 = c2 + a2 – 2ca cos B
(b, c > 0, 0˚ < A < 180˚)
c2 = a2 + b2 – 2ab cos C
Qq
F= 1
(r > 0)
4 π ε 0 r2
2
2
2
2
34
S = 13 + 23 + ······ + n3 =
35
Ai [d B] = 20 log10
36
y = x – xA × 10 + 50
σ
{
( )
Ι2
Ι1
n(n + 1)
2
}
[d B]
(σ > 0)
––
2
2
(Ι2 / Ι1 > 0)
37
X
Pol(XB – XA, YB – YA)
(XB, YB)
α
(XA, YA)
(
)
υ–u
υ G υ 0, f0 > 0, υ – υ 0 > 0
38
υ
f = f0 υ –– υu
0
39
S = υ 0 t + 1 gt 2
40
Up = 1 kx 2
41
W = 1 CV 2
42
Q2
W= 1
2 C
43
W = 1 QV
44
W = 1 ED
2
45
W = 1 ε E 2 ( ε , E > 0)
46
E=
47
f=
48
S = π ab
2
2
(t > 0)
(k, x > 0)
2
(C > 0)
2
2
Q
4 π ε0r2
1
2 π LC
(E, D > 0)
( = 9 × 10 9
Q
)
r2
( r > 0)
(L, C > 0)
(a, b > 0)
b
a
49
R
H = U + PV (U, P, V> 0)
––
50
y = λ e– λ x x > 0
51
P x = ( 1 – P )x P
52
S=
y=0
x<0
( λ > 0)
(
)
x = 0, 1, 2······
0<P<1
53
a (r n –1)
r–1
Q = mcT
54
S = s(s – a)(s – b)(s – c), s = a + b + c
55
Px =
56
V e = υ BR
57
58
59
60
61
2
Cx · N – k C n – x
NCn
k
P = nRT
V
V = nRT
P
PV
T=
nR
n = PV
RT
( υ , B, R> 0)
(n, T, P > 0)
(P, V, n > 0)
(P, V, T > 0)
sin ic = n1
(1 < n12 )
W = 1 L I2
(L , I > 0)
2
(
a+b>c >0
b+c>a >0
c+a>b >0
(0 < k < N, 0 < n < N )
(n, T, V > 0)
12
62
(r G 1)
––
)
63
64
x = nX3 – mX1 + Y1 – Y3
n–m
y = m (x – X 1) + Y 1
(
(X4, Y4)
)
m = Y2 – Y1
X2 – X1
Y
n = 4 – Y3
X4 – X3
(X1, Y1)
(x, y)
nX3 – mX1 + Y1 – Y3
n–m
y = m (x – X 1) + Y 1
x=
(
m = Y2 – Y1
X2 – X1
n = tan α
X
)
(X1, Y1)
(x, y)
(X3, Y3)
P = RI2
(R > 0)
66
P= V
R
(R > 0)
67
Uk = 1 mυ2
68
X = 2π f L –
69
Z = R2 + (2 π f L )2 (= R2 + ω 2 L2 )
71
72
2
(m, υ > 0)
2
Z=
Z=
1
1
( =ω L –
= XL – XC )
ωC
2π f C
1
( R) ( f C
R ( fL
1
F = mH
2
2
+
α
(X2, Y2)
65
70
(X3, Y3)
(X2, Y2)
2π
+ 2π
–
–
1
2π f L
1
2π f C
)
2
)
2
(
(m, H > 0)
– 10 –
=
( f, L, C > 0)
(R, f , L > 0)
(R, f, C, L > 0)
(
R2 + ω L – 1
ωC
)
)
(R, f, L, C > 0)
73
T = 1 mυ2 = 1
q2 B2 2
R
m
74
F = iBRsin θ
(R> 0, 0˚< θ  < 90˚)
75
R1 = Z0 1–
2
2
Z1
,R =
Z0 2
L min = 20 log
76
[ M = DZ
1
=
1
77
(
)
Z0 –1
Z1
Z0
[d B]
R2
(Z0 > Z1 > 0)
]
(P > 0)
π
[ M = DZ
1
=
1
D1Z2
Z1
D2 =
79
R1
(D, Z > 0)
M= D
Z
[ M = DZ11 = DZ22 = πP ]
M= P
78
Z1
Z
1– 1
Z0
Z0
+
Z1
D2 = P
π
Z2
(m > 0, B > 0, R > 0)
[ M = DZ
1
D2 = P
π
Z2
]
(D1, Z1, Z2 > 0)
=
1
D = PZ
D2 = P
π
Z2
(P, Z > 0)
π
80
y=
1
e–
2π σ
81
YR =
82
S = ab sin α
]
(x –µ)
2
( σ > 0)
2σ 2
1 ,
YX = 2 π f C –
R
(a b>
1
2π f L
,
0
0˚< α < 180˚
(R, f , C , L > 0)
)
– 11 –
Z1
83
C=
84
d=
εS
(S, d > 0)
d
ax1 + by1 + c
a2 + b2
P(x1, y1)
(a, b G 0)
d
ax1 + by1 + c = 0
85
R= (x2 – x1)2 + (y2 – y1)2
y
y2
y1
(x
86
–µ
Px = µ e
x!
87
Up = mgh
88
cos ϕ = R = P
EI
Z
89
Ap [dB] = 10
10
90
V = 1 Ah
(A, h > 0)
91
a +b = c
x
3
2
2
= 0, 1, 2······
0< µ
(m, h > 0)
( ) R
log ( P )
[d B]
P
)
R
x2
x1
> 0)
(
2
1
(P2 / P1 > 0)
2
c
b
a
– 12 –
92
S=
(X1 – X2) (Y3 – Y1) + (X1 – X3) (Y4 – Y2) + (X1 – X4) (Y1 – Y3)
2
Y
(X4, Y4)
(X1, Y1)
(X3, Y3)
(X2, Y2)
X
93
VR = V· e
94
Z = R2 +
95
v
–
t
CR
1
(2 π f C )2
(
R2 + 12 2
ω C
=
)
[Xn = XA +Rn cos α n, Yn = YA +Rnsinα n ]
α n = α 0 + θn – 180: Xn = XA +Rn cos α n
(R, f, C > 0)
X
Yn = YA +Rnsin α n
α0
θ1
(X1, Y1)
α1
R
(XA, YA)
96
n = sin i
sin r
(i , r > 0)
i
r
Hr =
(n + r – 1) !
r ! (n – 1) !
97
n
98
n
99
R = uR
v
100
∏r = nr
E = 1 Iω 2
2
(
0<r
1<n
)
(v G 0)
(I, ω > 0)
– 13 –
I
II
101
102
v
ZR = R, ZX = 2 π f L –
1
2π f C
(R, f, L, C, Z > 0)
IA = 2sin–1 l
2R
2
π R2IA
S=
– R sinIA
CL IA
2
360
CL = π × R × IA
R
180
103
S = 1 rR
(r,R> 0)
2
104 τ =
P
A
S
l
R
r
(A, P > 0)
105
τ = Gγ
(G, γ > 0)
106
F = – mg sin θ
(m > 0)
F
θ
θ mg
107
F=–
mg
R
x
(m )
R> 0
>0
O
F
H
108
x = r sin θ
( r > 0)
109
x = r sin ω t
( r > 0)
– 14 –
x
mg
110
T = 2π
R
111
[ sina A
= 2R
g
(R> 0)
(R
)
0˚ < A < 180˚
>0
]
a = 2Rsin A
A
R
0
a
112
[ sina A
= 2R
a
R=
2sin A
113
114
v
]
(0˚< A < 180˚, a > 0 )
a
b
c
=
=
= 2R
sin A sin B sin C
(
0˚< A, B, C < 180˚
a, b, c, R > 0
I
TL = R tan 2A
TL
π
CL = 180 · R· IA
SL = R
(
)
1
cos IA
2
( r > 0)
116
S = 4π r2
( r > 0)
117
3
V= 4 πr
118
T = 2π m
k
3
L
)
I = 4 πPr 2
L
C
–1
115
IA
S
R
( r > 0)
(m > 0, k > 0)
– 15 –
119
S = 12 + 22 + ······ + n2 = 1 n (n + 1)(2 n + 1)
120
S = KRcos2α + C cos α
6
(K
0 < α < 90˚
,R, C > 0
h = 1 KRsin 2 α + C sin α
2
121
S = 1 (a + b) h
122
λ=
123
S = 1 bc sin A
124
S=
(a, b, h > 0)
2
σ
E
)
(E, σ ,R> 0)
R
(0˚ < A < 180˚)
2
(X1 – X2) (Y3 – Y1) + (X1 – X3) (Y1 – Y2)
Y
2
(X1, Y1)
(X3, Y3)
(X2, Y2)
1
125 y =
b–a
a<x<b
y=0
126
127
x<a,x<b
F = G Mm
r2
(M, m, r > 0)
[(XA, YA) to (XC, YC) → (x, y), R]
x=
(XC, YC)
1 X –Y +Y
mXA + m
C
A
C
m+ 1
m
y = Y A + m (x – X A )
Aυ [d B]= 20 log10
(XB, YB)
R
(x, y)
(XA, YA)
R= (XC – x)2 + (YC – y)2
128
X
( VV ) [d B]
2
1
– 16 –
(
m=
Y A – YB
X A – XB
(V2 / V1 > 0)
)
CASIO COMPUTER CO., LTD.
6-2, Hon-machi 1-chome
Shibuya-ku, Tokyo 151-8543, Japan
SA0606-A
Printed in China