Page 1 of 2 ACTIVITY 14.2 Developing Concepts GROUP ACTIVITY Group Activity for use with Lesson 14.2 Translating and Reflecting Trigonometric Graphs QUESTION How can you graph reflections and horizontal and vertical translations of graphs of trigonometric functions? Work with a partner. MATERIALS graphing calculator EXPLORING THE CONCEPT 1 Use a graphing calculator to graph each pair of functions in the same viewing window. How are the graphs geometrically related? a. y = cos x 3 c. y = sin 3x 5 3 y = º sin 3x 5 b. y = 2 sin x y = ºcos x y = º2 sin x 2 Use a graphing calculator to graph each pair of functions in the same viewing window. How are the graphs geometrically related? a. y = cos x b. y = 2 sin x y = cos x º π 2 c. y = sin 3x y = 2 sin x + π 2 y = sin 3(x + π) 3 Use a graphing calculator to graph each pair of functions in the same viewing window. How are the graphs geometrically related? a. y = cos x 1 c. y = sin 3x 4 1 y = 4 sin 3x º 2 b. y = 2 sin x y = cos x + 1 y = 2 sin x º 1 DRAWING CONCLUSIONS 1. Predict what the graph of each function looks like by making a sketch. Check your prediction by graphing the function on a graphing calculator. a. y = º3 cos x 3π b. y = sin x + 4 c. y = sin x º 4 2. Predict what the graph of each function looks like by making a sketch. Check your prediction by graphing the function on a graphing calculator. 1 a. y = º cos x º 2 2 b. y = º3 cos (x + π) c. y = 2 sin (x º π) + 3 π d. y = º4 sin x º º 6 4 3. CRITICAL THINKING Use the following phrases to describe how the graph of each function in parts (a)–(d) is related to the graph of y = sin x. • • • shifted up 1 unit shifted left 1 unit • • shifted down 1 unit shifted right 1 unit reflected in a horizontal line a. y = sin (x º 1) + 1 b. y = ºsin (x º 1) º 1 c. y = ºsin (x + 1) + 1 d. y = sin (x + 1) º 1 14.2 Concept Activity 839
© Copyright 2026 Paperzz