Lecture 25Section 11.5 Taylor Polynomials in x; Taylor Series in x Jiwen He 1 1.1 Taylor Polynomials Taylor Polynomials Taylor Polynomials Taylor Polynomials The nth Taylor polynomial at 0 for a function f is 00 f (n) (0) n f (0) 2 x + ··· + x ; Pn (x) = f (0) + f 0 (0)x + 2! n! Pn is the polynomial that has the same value as f at 0 and the same first n derivatives: 00 00 Pn (0) = f (0), Pn0 (0) = f 0 (0), Pn (0) = f (0), · · · , Pn(n) (0) = f (n) (0). Best Approximation Pn provides the best local approximation of f (x) near 0 by a polynomial of degree ≤ n. P0 (x) = f (0), P1 (x) = f (0) + f 0 (0)x, 00 f (0) 2 P2 (x) = f (0) + f (0)x + x . 2! 0 Taylor Polynomials of the Exponential f (x) = ex 00 f (n) (0) n f (0) 2 x + ··· + x ; Pn (x) = f (0) + f 0 (0)x +00 x (n) 2! x n! f (x) = ex , f 0 (x) = e , f · · · , f (x) = ex ; 00 (x) = e , f (0) = 1, f 0 (0) = 1, f (0) = 1, · · · , f (n) (0) = 1. 1 Taylor Polynomials of f (x) = ex P0 (x) = 1, P1 (x) = 1 + x, x2 , 2! 2 x x3 + , P3 (x) = 1 + x + 2! 3! .. . 2 x x3 xn Pn (x) = 1 + x + + + ··· + . 2! 3! n! P2 (x) = 1 + x + Taylor Polynomials of the Sine f (x) = sin x 2 00 f (0) 2 f (n) (0) n 000 P (x) = x + · · · + 0 f (0) + f 00(0)x + n f (x) = sin x, f0 (x) = cos x, f (x) 2! =000− sin x, f (x) = −xcos; x, · · · ; f (0) = 0, f (0) = 1, f (0) = 0, f (0) = −1, f (4)n! (0) = 0, · · · ; 0 00 Taylor Polynomials of f (x) = sin x P0 (x) = 0, P1 (x) = P2 (x) = x, x3 , 3! x3 + P5 (x) = P6 (x) = x − 3! x3 P7 (x) = P8 (x) = x − + 3! P3 (x) = P4 (x) = x − 1.2 x5 , 5! x5 x7 − , 5! 7! Remainder Term Remainder Term Remainder Term Define the nth remainder by Rn (x) = f (x) − Pn (x); that is f (x) = Pn (x) + Rn (x). Then lim Pn (x) = f (x) if and only if lim Rn (x) = 0 n→∞ n→∞ Taylor’s Theorem If f has n + 1 continuous derivatives on an open interval I that contains 0, then Z for each x ∈ I, 1 x (n+1) Rn (x) = f (t)(x − t)n dt. n! 0 Lagrange Formula for the Remainder For some number c between 0 and x, f (n+1) (c) n+1 Rn (x) = x . (n + 1)! 3 Taylor Polynomials of the Exponential f (x) = ex f (n) (0) n f (n+1) (c) n+1 Pn (x) = f (0) + f 0 (0)x + · · · + x ; Rn (x) = x . n! (n + 1)! x Taylor Polynomials of the Exponential f (x) = e x2 x3 xn f (x) = ex , Pn (x) = 1 + x + + + ··· + . 2! 3! n! Remainder Term For each real x, Rn (x) → 0 as n → ∞. Proof. Let J be the interval that joins 0 to x and let M = max et . t∈J f (n+1) (t) = et for all n, then max |f (n+1) (t)| = M. t∈J |x|n+1 → 0 as |Rn (x)| ≤ M (n + 1)! Note that n → ∞. Taylor Polynomials of the Sine f (n) (x) = sin x f (0) n f (n+1) (c) n+1 n+1 Pn (x) = f (0) + f 0 (0)x +(n+1) ··· + x ; Rn (x) = x . |x| 1)!0]. , J = [0, x](nor+[x, |Rn (x)| ≤ max |f (t)| n! t∈J (n + 1)! Taylor Polynomials of the Sine f (x) = sin x x3 x5 x7 f (x) = sin x, P7 (x) = P8 (x) = x − + − , and so on. 3! 5! 7! Remainder Term For each real x, Rn (x) → 0 as n → ∞. ∀k, f (k) (t) = ± cos t or ± sin t, then max |f (n+1) (t)| ≤ 1. t∈J |x|n+1 → 0 as n → ∞. |Rn (x)| ≤ (n + 1)! 2 2.1 Taylor Series Taylor Series Taylor Series Taylor Polynomial and the Remainder If f (x) is infinitely differentiable on interval I containing 0, then f (x) = Pn (x) + Rn (x), ∀x ∈ I; n (k) X f (0) k f (n) (0) n Pn (x) = x = f (0) + f 0 (0)x + · · · + x , k! n! k=0 Z f (n+1) (c) n+1 1 x (n+1) Rn (x) = f (t)(x − t)n dt. x or Rn (x) = (n + 1)! n! 0 Taylor Series n X f (k) (0) xk → f (x). [1ex] In this case, k! k=0 f (x) can be expanded as a Taylor series in x and write ∞ X f (k) (0) k f (x) = x . k! If Rn (x) → 0 as n → ∞, then Pn (x) = k=0 4 Taylor Series of the Exponential f (x) = ex f (x) = Pn (x) + Rn (x), Pn (x) = n X f (k) (0) k! k=0 If lim Rn (x) → 0, then f (x) = n→∞ ∞ X f (k) (0) k! k=0 xk xk = lim Pn (x). n→∞ Taylor Series of the Exponential f (x) = ex ∞ X xk x2 x3 ex = =1+x+ + + ··· k! 2! 3! for all real x k=0 Number e e= ∞ X 1 1 1 = 1 + 1 + + + ··· k! 2! 3! k=0 Taylor Series of the Sine f (x) = sin x f (x) = Pn (x) + Rn (x), Pn (x) = n X f (k) (0) k=0 If lim Rn (x) → 0, then f (x) = n→∞ ∞ X k=0 k! xk f (k) (0) k x = lim Pn (x). n→∞ k! Taylor Series of the Sine f (x) = sin x ∞ X x3 x5 x7 (−1)k 2k+1 x =x− + − + ··· sin x = (2k + 1)! 3! 5! 7! for all real x k=0 Number sin 1 sin 1 = ∞ X 1 1 1 (−1)k = 1 − + − + ··· (2k + 1)! 3! 5! 7! k=0 Taylor Series of the Cosine f (x) = cos x f (x) = Pn (x) + Rn (x), Pn (x) = n X f (k) (0) k=0 If lim Rn (x) → 0, then f (x) = n→∞ ∞ X k=0 k! xk f (k) (0) k x = lim Pn (x). n→∞ k! Taylor Series of the Cosine f (x) = cos x ∞ X (−1)k 2k x2 x4 x6 cos x = x =1− + − + ··· (2k)! 2! 4! 6! for all real x k=0 Number cos 1 cos 1 = ∞ X (−1)k k=0 (2k)! =1− 5 1 1 1 + − + ··· 2! 4! 6! Taylor Series of the Logarithm f (x) = ln(1 + x) n X f (k) (0) k f (x) = Pn (x) + Rn (x), Pn (x) = x k! k=0 If lim Rn (x) → 0, then f (x) = n→∞ ∞ X f (k) (0) k! k=0 xk = lim Pn (x). n→∞ Taylor Series of the Logarithm f (x) = ln(1 + x) ∞ X (−1)k+1 k x2 x3 x4 x =x− + − + · · · for −1 < x ≤ 1 ln(1 + x) = k 2 3 4 k=1 Number ln 2 ln 2 = ∞ X (−1)k+1 k=1 2.2 k =1− 1 1 1 + − + ··· 2 3 4 Numerical Calculations Outline Contents 1 Taylor Polynomials 1.1 Taylor Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Remainder Term . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 3 2 Taylor Series 2.1 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Numerical Calculations . . . . . . . . . . . . . . . . . . . . . . . 4 4 6 6
© Copyright 2026 Paperzz