Name: ______________________ Class: _________________ Date: _________ ID: A Algebra 1 - Chapter 11 Practice Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Simplify the radical expression. ____ ____ 1. −4 160 a. −4 80 2. −2 2p ⋅ 2 b. −4 16 c. −16 10 b. −8 11p c. −4 44p d. 10 22 factor 1: 1 factpr 2: 11 common factor: 2 a. ____ 44p d. −8 11p 2 10 81 3. a. 10 9 b. 10 41 c. 9 10 d. 10 9 Simplify the radical expression by rationalizing the denominator. ____ 4 21 4. a. 4 21 21 b. 4 21 c. 21 4 d. 441 21 Find the length of the missing side. If necessary, round to the nearest tenth. ____ 5. a. 361 b. 19 c. 38 1 d. 14.9 Name: ______________________ ____ ____ ID: A 6. a. 15 b. 22.4 c. 17.3 d. 30 7. A scuba diver has a taut rope connecting the dive boat to an anchor on the ocean floor. The rope is 140 feet long and the water is 40 feet deep. To the nearest tenth of a foot, how far is the anchor from a point directly below the boat? a. 145.6 ft b. 9,000 ft c. 18,000 ft d. 134.2 ft Determine whether the given lengths can be sides of a right triangle. ____ ____ 8. 7 cm, 40 cm, 41 cm a. no b. yes 9. Find the distance from H(2, 3) to K(4, –3). If necessary, round to the nearest tenth. a. 6.3 b. 7.1 c. 5.1 d. 40 Find the midpoint of each segment with the given endpoints. ____ 10. C(1, –5) and D(–5, 1) a. (−2, −3) b. (–2, –2) c. (3, –2) 2 d. (−2, −2) Name: ______________________ ____ ID: A 11. The King and Taylor families are hiking in a national park. The Kings leave the visitor center and hike 2 km east and 2 km south. The Taylors leave the visitor center and hike 3 km west and 3 km north. How far apart are the families? a. 7.1 km b. 7.2 km c. 1.4 km d. 50 km Simplify the expression. ____ ____ ____ 12. 6 +2 6 a. 3 6 13. 4 7 + 8 63 a. 76 7 8 14. 6− 3 a. b. ____ b. − 8 Ê 8 ÁÁÁ Ë 6 −8 3 6+ 6 b. 12 63 3 12 d. − c. 28 7 d. 28 c. ˆ 3 ˜˜˜ ¯ d. 9 15. Determine whether a. never c. 3 a+ 8 6 +8 27 3 8 6 +8 3 3 12 63 a = 2a is sometimes, always, or never true. b. sometimes c. always Solve the equation. Check your solution. ____ ____ 16. 4 = m − 8 a. 6 17. a. ____ 18. 2x + 7 = a. ____ r + 5 = 11 126 –3 b. 144 c. 2 3 d. 12 b. 6 c. 17 d. 116 b. 5 c. –5 d. 5x − 8 1 5 19. The velocity of sound in air is given by the equation v = 20 273 + t where v is the velocity in meters per second and t is the temperature in degrees Celsius. Find the temperature when the velocity of sound in air is 369 meters per second. Round to the nearest degree. a. 507º b. 6,535º c. 7,081º d. 67º 3 Name: ______________________ ID: A Solve the equation. Identify any extraneous solutions. ____ 20. x = −3x + 40 a. 8 is a solution to the original equation. The value –5 is an extraneous solution. b. 5 and 8 are both extraneous solutions. c. 5 is a solution to the original equation. The value –8 is an extraneous solution. d. 5 and –8 are solutions. ____ 21. Find the domain of y = 4 a. x ≥ −2 4x + 2 . 1 b. x ≥ − 2 c. x > Match the function with its graph. ____ 22. y = x −4 a. c. b. d. 4 1 2 d. x ≥ 1 2 Name: ______________________ ____ ____ 23. y = ID: A x−1 a. c. b. d. 24. Find the value of sin 66°. Round to the nearest ten-thousandth. a. 0.4067 b. 2.246 c. 0.9135 d. –0.0266 Find the value of x to the nearest tenth. ____ 25. a. 2.9 b. 3.3 c. 9.2 5 d. 5 Name: ______________________ ____ ID: A 26. A ranger spots a forest fire while on a 45-meter observation tower. The angle of depression from the tower to the fire is 12°. To the nearest meter, how far is the fire from the base of the tower? a. 212 meters b. 10 meters c. 216 meters d. 71 meters Short Answer 27. Simplify 4 6 by rationalizing the denominator. Show your work. 30 28. The sales of a certain product after an initial release can be found by the equation s = 16 3t + 25, where s represents the total sales (in thousands) and t represents the time in weeks after release. a. Make a table of values. b. Graph the function. c. Use the graph to estimate the sales 7 weeks after release. 29. Make a table of values and graph the function. f(x) = x + 4 − 4 6 ID: A Algebra 1 - Chapter 11 Practice Test Answer Section MULTIPLE CHOICE 1. ANS: C DIF: L1 REF: 11-1 Simplifying Radicals OBJ: 11-1.1 Simplifying Radical Expressions Involving Products STO: CA 1.0, CA 1.1, CA 2.0 TOP: 11-1 Example 1 KEY: radical expressions,Multiplication Property of Square Roots,square root MSC: NAEP N3a, NAEP N5b, NAEP A3b, NAEP A3c, CAT5.LV19.50, CAT5.LV19.51, IT.LV15.AM, S9.TSK1.NS, S10.TSK1.NS, TV.LV19.52, TV.LVALG.53 2. ANS: B DIF: L1 REF: 11-1 Simplifying Radicals OBJ: 11-1.1 Simplifying Radical Expressions Involving Products STO: CA 1.0, CA 1.1, CA 2.0 TOP: 11-1 Example 3 KEY: multiplying two radicals,Multiplication Property of Square Roots,radical expressions MSC: NAEP N3a, NAEP N5b, NAEP A3b, NAEP A3c, CAT5.LV19.50, CAT5.LV19.51, IT.LV15.AM, S9.TSK1.NS, S10.TSK1.NS, TV.LV19.52, TV.LVALG.53 3. ANS: D DIF: L1 REF: 11-1 Simplifying Radicals OBJ: 11-1.2 Simplifying Radical Expressions Involving Quotients STO: CA 1.0, CA 1.1, CA 2.0 TOP: 11-1 Example 5 KEY: Division Property of Square Roots,radical expressions,fractions within a radical MSC: NAEP N3a, NAEP N5b, NAEP A3b, NAEP A3c, CAT5.LV19.50, CAT5.LV19.51, IT.LV15.AM, S9.TSK1.NS, S10.TSK1.NS, TV.LV19.52, TV.LVALG.53 4. ANS: A DIF: L1 REF: 11-1 Simplifying Radicals OBJ: 11-1.2 Simplifying Radical Expressions Involving Quotients STO: CA 1.0, CA 1.1, CA 2.0 TOP: 11-1 Example 7 KEY: radical expressions,rationalize,radicand in the denominator MSC: NAEP N3a, NAEP N5b, NAEP A3b, NAEP A3c, CAT5.LV19.50, CAT5.LV19.51, IT.LV15.AM, S9.TSK1.NS, S10.TSK1.NS, TV.LV19.52, TV.LVALG.53 5. ANS: D DIF: L1 REF: 11-2 The Pythagorean Theorem OBJ: 11-2.1 Solving Problems Using the Pythagorean Theorem STO: CA 24.2 TOP: 11-2 Example 1 KEY: Pythagorean Theorem,right triangle MSC: NAEP N3g, NAEP G3d, NAEP G3f, CAT5.LV19.55, IT.LV15.CP, S9.TSK1.NS, S9.TSK1.GM, S10.TSK1.NS, S10.TSK1.GM, TV.LV19.11, TV.LV19.14, TV.LVALG.53, TV.LVALG.58 6. ANS: C DIF: L1 REF: 11-2 The Pythagorean Theorem OBJ: 11-2.1 Solving Problems Using the Pythagorean Theorem STO: CA 24.2 TOP: 11-2 Example 2 KEY: Pythagorean Theorem,right triangle MSC: NAEP N3g, NAEP G3d, NAEP G3f, CAT5.LV19.55, IT.LV15.CP, S9.TSK1.NS, S9.TSK1.GM, S10.TSK1.NS, S10.TSK1.GM, TV.LV19.11, TV.LV19.14, TV.LVALG.53, TV.LVALG.58 1 ID: A 7. ANS: D DIF: L2 REF: 11-2 The Pythagorean Theorem OBJ: 11-2.1 Solving Problems Using the Pythagorean Theorem STO: CA 24.2 TOP: 11-2 Example 2 KEY: Pythagorean Theorem,right triangle,problem solving,word problem MSC: NAEP N3g, NAEP G3d, NAEP G3f, CAT5.LV19.55, IT.LV15.CP, S9.TSK1.NS, S9.TSK1.GM, S10.TSK1.NS, S10.TSK1.GM, TV.LV19.11, TV.LV19.14, TV.LVALG.53, TV.LVALG.58 8. ANS: A DIF: L1 REF: 11-2 The Pythagorean Theorem OBJ: 11-2.2 Identifying Right Triangles STO: CA 24.2 TOP: 11-2 Example 3 KEY: right triangle,converse of the Pythagorean Theorem,converse,Pythagorean Theorem MSC: NAEP N3g, NAEP G3d, NAEP G3f, CAT5.LV19.55, IT.LV15.CP, S9.TSK1.NS, S9.TSK1.GM, S10.TSK1.NS, S10.TSK1.GM, TV.LV19.11, TV.LV19.14, TV.LVALG.53, TV.LVALG.58 9. ANS: A DIF: L1 REF: 11-3 The Distance and Midpoint Formulas OBJ: 11-3.1 Finding the Distance Between Two Points TOP: 11-3 Example 1 KEY: distance formula,graphing MSC: NAEP M1e, CAT5.LV19.55, IT.LV15.CP, S9.TSK1.NS, S9.TSK1.GM, S10.TSK1.NS, S10.TSK1.GM, TV.LV19.11, TV.LV19.14, TV.LVALG.53, TV.LVALG.58 10. ANS: B DIF: L1 REF: 11-3 The Distance and Midpoint Formulas OBJ: 11-3.2 Finding the Midpoint of a Line Segment TOP: 11-3 Example 3 KEY: midpoint,midpoint formula MSC: NAEP M1e, CAT5.LV19.55, IT.LV15.CP, S9.TSK1.NS, S9.TSK1.GM, S10.TSK1.NS, S10.TSK1.GM, TV.LV19.11, TV.LV19.14, TV.LVALG.53, TV.LVALG.58 11. ANS: A DIF: L2 REF: 11-3 The Distance and Midpoint Formulas OBJ: 11-3.1 Finding the Distance Between Two Points TOP: 11-3 Example 1 KEY: distance formula,word problem,problem solving MSC: NAEP M1e, CAT5.LV19.55, IT.LV15.CP, S9.TSK1.NS, S9.TSK1.GM, S10.TSK1.NS, S10.TSK1.GM, TV.LV19.11, TV.LV19.14, TV.LVALG.53, TV.LVALG.58 12. ANS: A DIF: L1 REF: 11-4 Operations With Radical Expressions OBJ: 11-4.1 Simplifying Sums and Differences STO: CA 1.0, CA 1.1 TOP: 11-4 Example 1 KEY: like radicals,combining like radicals MSC: NAEP A3b, CAT5.LV19.54, IT.LV15.AM, S9.TSK1.NS, S10.TSK1.NS, TV.LV19.11, TV.LV19.14, TV.LV19.52, TV.LVALG.53 13. ANS: C DIF: L1 REF: 11-4 Operations With Radical Expressions OBJ: 11-4.1 Simplifying Sums and Differences STO: CA 1.0, CA 1.1 TOP: 11-4 Example 2 KEY: like radicals,combining like radicals,radical expressions MSC: NAEP A3b, CAT5.LV19.54, IT.LV15.AM, S9.TSK1.NS, S10.TSK1.NS, TV.LV19.11, TV.LV19.14, TV.LV19.52, TV.LVALG.53 14. ANS: D DIF: L2 REF: 11-4 Operations With Radical Expressions OBJ: 11-4.2 Simplifying Products and Quotients STO: CA 1.0, CA 1.1 TOP: 11-4 Example 5 KEY: radical expressions,rationalize,conjugates MSC: NAEP A3b, CAT5.LV19.54, IT.LV15.AM, S9.TSK1.NS, S10.TSK1.NS, TV.LV19.11, TV.LV19.14, TV.LV19.52, TV.LVALG.53 2 ID: A 15. ANS: B DIF: L2 REF: 11-4 Operations With Radical Expressions OBJ: 11-4.1 Simplifying Sums and Differences STO: CA 1.0, CA 1.1 KEY: like radicals,reasoning,always sometimes never,reasoning MSC: NAEP A3b, CAT5.LV19.54, IT.LV15.AM, S9.TSK1.NS, S10.TSK1.NS, TV.LV19.11, TV.LV19.14, TV.LV19.52, TV.LVALG.53 16. ANS: B DIF: L1 REF: 11-5 Solving Radical Equations OBJ: 11-5.1 Solving Radical Equations TOP: 11-5 Example 1 KEY: radical,radical equation,solving equations MSC: CAT5.LV19.50, IT.LV15.CP, S9.TSK1.PRA, S10.TSK1.PRA, TV.LV19.16, TV.LV19.17, TV.LV19.52, TV.LVALG.56 17. ANS: D DIF: L1 REF: 11-5 Solving Radical Equations OBJ: 11-5.1 Solving Radical Equations TOP: 11-5 Example 1 KEY: radical,radical equation,solving equations MSC: CAT5.LV19.50, IT.LV15.CP, S9.TSK1.PRA, S10.TSK1.PRA, TV.LV19.16, TV.LV19.17, TV.LV19.52, TV.LVALG.56 18. ANS: B DIF: L1 REF: 11-5 Solving Radical Equations OBJ: 11-5.1 Solving Radical Equations TOP: 11-5 Example 3 KEY: radical,radical equation,solving equations,equations with radical expressions on both sides MSC: CAT5.LV19.50, IT.LV15.CP, S9.TSK1.PRA, S10.TSK1.PRA, TV.LV19.16, TV.LV19.17, TV.LV19.52, TV.LVALG.56 19. ANS: D DIF: L1 REF: 11-5 Solving Radical Equations OBJ: 11-5.1 Solving Radical Equations TOP: 11-5 Example 2 KEY: radical,radical equation,solving equations,word problem,problem solving MSC: CAT5.LV19.50, IT.LV15.CP, S9.TSK1.PRA, S10.TSK1.PRA, TV.LV19.16, TV.LV19.17, TV.LV19.52, TV.LVALG.56 20. ANS: C DIF: L1 REF: 11-5 Solving Radical Equations OBJ: 11-5.2 Solving Equations With Extraneous Solutions TOP: 11-5 Example 4 KEY: solving equations,radical equation,extraneous solutions MSC: CAT5.LV19.50, IT.LV15.CP, S9.TSK1.PRA, S10.TSK1.PRA, TV.LV19.16, TV.LV19.17, TV.LV19.52, TV.LVALG.56 21. ANS: B DIF: L1 REF: 11-6 Graphing Square Root Functions OBJ: 11-6.1 Graphing Square Root Functions STO: CA 17.0 TOP: 11-6 Example 1 KEY: radical expressions,graphing,function,square root,domain MSC: CAT5.LV19.54, IT.LV15.DI, TV.LV19.14, TV.LV19.16, TV.LVALG.56 22. ANS: B DIF: L1 REF: 11-6 Graphing Square Root Functions OBJ: 11-6.2 Translating Graphs of Square Root Functions STO: CA 17.0 TOP: 11-6 Example 3 KEY: translation,square root,graphing MSC: CAT5.LV19.54, IT.LV15.DI, TV.LV19.14, TV.LV19.16, TV.LVALG.56 23. ANS: D DIF: L1 REF: 11-6 Graphing Square Root Functions OBJ: 11-6.2 Translating Graphs of Square Root Functions STO: CA 17.0 TOP: 11-6 Example 4 KEY: translation,square root,graphing MSC: CAT5.LV19.54, IT.LV15.DI, TV.LV19.14, TV.LV19.16, TV.LVALG.56 24. ANS: C DIF: L1 REF: 11-7 Trigonometric Ratios OBJ: 11-7.1 Finding Trigonometric Ratios TOP: 11-7 Example 2 KEY: sine,cosine,tangent,trigonometric ratios,calculator MSC: NAEP M1f, NAEP M1m, CAT5.LV19.46, CAT5.LV19.55, CAT5.LV19.56, IT.LV15.CP, TV.LV19.10, TV.LV19.13, TV.LV19.14, TV.LVALG.53, TV.LVALG.58 3 ID: A 25. ANS: C DIF: L1 REF: 11-7 Trigonometric Ratios OBJ: 11-7.1 Finding Trigonometric Ratios TOP: 11-7 Example 3 KEY: tangent,sine,cosine,trigonometric ratios,right triangle MSC: NAEP M1f, NAEP M1m, CAT5.LV19.46, CAT5.LV19.55, CAT5.LV19.56, IT.LV15.CP, TV.LV19.10, TV.LV19.13, TV.LV19.14, TV.LVALG.53, TV.LVALG.58 26. ANS: A DIF: L1 REF: 11-7 Trigonometric Ratios OBJ: 11-7.2 Solving Problems Using Trigonometric Ratios TOP: 11-7 Example 5 KEY: angle of elevation,trigonometric ratios,tangent,word problem,problem solving MSC: NAEP M1f, NAEP M1m, CAT5.LV19.46, CAT5.LV19.55, CAT5.LV19.56, IT.LV15.CP, TV.LV19.10, TV.LV19.13, TV.LV19.14, TV.LVALG.53, TV.LVALG.58 SHORT ANSWER 27. ANS: 4 6 30 = = = = = = = 4 6 ⋅ 30 4 180 900 30 30 4 180 30 4 36 ⋅ 5 30 4⋅6 5 30 24 5 30 4 5 5 DIF: L2 REF: 11-1 Simplifying Radicals OBJ: 11-1.2 Simplifying Radical Expressions Involving Quotients STO: CA 1.0, CA 1.1, CA 2.0 TOP: 11-1 Example 7 KEY: rationalize,radical expressions,radicand in the denominator,Division Property of Square Roots MSC: NAEP N3a, NAEP N5b, NAEP A3b, NAEP A3c, CAT5.LV19.50, CAT5.LV19.51, IT.LV15.AM, S9.TSK1.NS, S10.TSK1.NS, TV.LV19.52, TV.LVALG.53 4 ID: A 28. ANS: a. Week Sales 1 53 2 64 3 73 4 80 5 87 b. c. about $100,000 DIF: OBJ: TOP: KEY: MSC: L2 REF: 11-6 Graphing Square Root Functions 11-6.1 Graphing Square Root Functions STO: CA 17.0 11-6 Example 2 graphing,square root,multi-part question,word problem,problem solving CAT5.LV19.54, IT.LV15.DI, TV.LV19.14, TV.LV19.16, TV.LVALG.56 5 ID: A 29. ANS: x f(x) −4 −4 −3 −3 −2 −2.6 −1 −2.3 DIF: OBJ: KEY: MSC: L2 REF: 11-6 Graphing Square Root Functions 11-6.2 Translating Graphs of Square Root Functions STO: CA 17.0 square root,graphing,translation CAT5.LV19.54, IT.LV15.DI, TV.LV19.14, TV.LV19.16, TV.LVALG.56 6
© Copyright 2026 Paperzz