Study Guide for Chapter 6 1. Given that tan( ) 6 and csc( ) 0 , then is in Quadrant ______. Determine the value of the other five trigonometric functions. 2. Write cos( ) in terms of sin( ) given that is in quadrant II. 3. Verify the identities: (a) sin( x) tan( x) sin( x) cos( x) tan( x) tan 2 ( x) (b) (c) cos( x) sec( x) sin 2 ( x) sec( x) (d) cos2 ( x) tan 2 ( x) 1 cos 2 ( x) 4. Given ( ) sec( x) csc( x) tan( x) sin( x) sec( x) ( ) which of the following are valid inputs? Circle your answers. , , , 5. Suppose ( . Find the exact value of ). 6. Determine the exact value of each of the following: ( (a) ) (b) (c) cos2 (22.5 ) sin 2 (22.5 ) ( (e) 7. Given that ( (a) 8. Given that ( (a) ) ( ) and ( ) (b) and ( ) (b) ( ) ( ) ( and ) are obtuse angles with ) ) (d) are acute angles with ) ( ( determine: (c) and ) ( ) determine: (c) ( ) 9. Using the given right triangle, find the exact values of the following. Show work. 1 5 θ sin θ = ____________ sin 2θ = ____________ cos θ = ____________ cos 2θ = ____________ 10. Use the diagram below to evaluate cos( ) where 45 5° 𝜃 7 4 11. State the domain and range of the inverse tangent function f t arctant . 12. Evaluate each of the following exactly. Give angles in radians. 1 = 3 (b) arcsin (a) arctan 4 = 3 6 5 (i) cot arctan 11 = 6 (h) csc arcsin = (f) arccos cos = 3 (e) arccos cos (g) arccos sin (c) arctan 3 6 7 (d) cos arccos 1 = 2 13. Draw a triangle for each of the following expressions. Write each expression. Assume 5 = 13 x (c) cot arccos = 9 15 = 12 . 9 2 1 (d) sin arcsec = 2x (b) sec arctan = (a) tan arcsin 14. Solve each equation. State (a) the principal root, (b) all solutions in the interval ( ) ( ) (a) (b) √ √ ), and (c) all real roots. 15. Find all solutions in the interval [0, 2 ) . (a) (c) 3 cos( x) tan(2 x) cos( x) 0 ( ) ( ) √ (b) 4sin( x)cos( x) 2 3 sin( x) 2cos( x) 3 0 (d) ( ) 16. Find all solutions. (a) csc( x) 2 (c) 6sin 2 ( x) cot 2 ( x) 3 1 x 4 3 2 (d) cot( x)csc( x) 2cot( x) csc( x) 2 0 (b) 8sin
© Copyright 2026 Paperzz