Carbon prices for the next thousand years

Carbon prices for the next thousand
years
Reyer Gerlagh
Tilburg
Matti Liski
Aalto Helsinki
SURED 2012
CESifo WP 3855
Instruments to curb global warming: recent developments
Paris, 4 Oct 2012
Gerlagh-Liski
!
#
The Problem
• Climate is a persistent asset, bar none:
◦ changes in stocks have effects over centuries or
possibly millennia
• Central feature in climate-economy models (“integrated
assessment models”, IAMs)
• But: IAM’s ignore the far-distant impacts when
discounting respects the shorter-term revealed
preferences
"
1
$
Gerlagh-Liski
!
#
This paper
Premise 1: shorter-term revealed preferences should be respected
• discounting as revealed by the market
◦ Nordhaus (1994,2007), Schelling (1999)
• shorter-term decisions consistent with historical data
"
4
$
Gerlagh-Liski
!
#
Premise 2: the evidence that far-distant future is treated
differently should also be respected
• Weitzman (2001) surveyed 2,160 economists for their
“best estimate of the appropriate real discount rate to be
used for evaluating environmental projects over a long time
horizon”
"
5
$
Gerlagh-Liski
!
#
years
discount rate
immediate future
1−5
4
near future
6 − 25
3
medium future
26 − 75
2
distant future
76 − 300
1
far-distant future
301−
≈0
Table 1: Weitzman’s results
"
6
$
Gerlagh-Liski
!
#
• Some studies invoke “similarity” (Rubinstein 2003, Karp
2005)
◦ a utility gain after 400 years looks the same as after 450
years
◦ no additional discounting from the added 50 years
◦ but in the near term: 50 years delay commands large
discounting
"
7
$
Gerlagh-Liski
!
#
This paper
• We reconcile distinct short- and long-term time
preferences in a climate-economy model
⇒ hyperbolic time discounting
• The general equilibrium (IAM) implications unexplored
"
8
$
Gerlagh-Liski
!
#
• The objective: to assess this mechanism in a detailed
climate-economy model
◦ Nordhaus tradition, following Golosov, Hassler, Krusell,
Tsyvinsky, 2011
◦ climate delays explicit (1000 years will play a role...)
"
19
$
Gerlagh-Liski
!
#
1. Result: equilibrium carbon prices exceed
the Pigouvian level by multiple factors!
"
20
$
Gerlagh-Liski
!
#
2. Result: Stern can be reconciled with realistic
macroeconomic outcomes!
"
21
$
Gerlagh-Liski
!
#
discount rate
short-term
long-term savings
carbon price
“Nordhaus”
.02
.02
.25
8.4
Markov
.027
.001
.25
116.9
“Stern”
.001
.001
.30
152.4
Table 1: Equilibrium carbon prices in EUR/tCO2 year 2010.
"
22
$
Gerlagh-Liski
!
#
3. Result: enforcing Pigou decreases welfare for all
generations!
"
23
$
Gerlagh-Liski
!
#
The model
Fossil-fuel use history:
st = (z0 , z1 , ..., zt−2 , zt−1 )
budgets:
ct + kt+1 = ft (kt , lt , zt , st ) + (1 − δ)kt .
welfare of generation t
wt = ut + ρ
"
24
!∞
τ =t+1
θτ −t−1 uτ
$
Gerlagh-Liski
!
"
#
27
$
Gerlagh-Liski
!
#
%-1
%,1
%+1
%*1
%)1
%(1
%'1
%&1
%%1
%
&%% '%% (%% )%% *%% +%% ,%% -%% .%% &%%%
'%%,!"
'%&&
"
29
$
Gerlagh-Liski
!
#
Solution
• we consider the following equilibria
◦ Markov: symmetric savings and climate policy rules
for all generations
◦ Pigouvian: externality pricing imposed on Markov
◦ Advanced (non-stationary) equilibria
"
30
$
Gerlagh-Liski
!
#
• Markov strategies characterized by a pair of constants
(g, h):
kt+1 = gyt ,
M CPt = h(1 − g)yt
• ct = (1 − g)yt ⇒ M CP t/ct = h, carbon price per
consumption is a constant!
"
31
$
Gerlagh-Liski
!
#
Savings:
αρ
g=
1 + α(ρ − θ)
Carbon pricing:
∆
h=
"
! !
i
j
y
( 1−αθ
+ ∆u )ρπai bj εj
[1 − θ(1 − δi )][1 − θ(1 − εj )]
32
$
Gerlagh-Liski
!
#
Pigouvian tax equilibrium
• Euler equation:
u#t = γu#t+1 Rt,t+1 =⇒
u#t
ct+1
ct+1 kt+1
g
γ= #
=
=
= .
ut+1 Rt,t+1
ct Rt,t+1
ct αyt+1
α
• with this, we can calculate the Pigouvian tax:
∆
hγ =
"
! !
i
j
y
( 1−αθ
+ ∆u )γπai bj εj
[1 − γ(1 − δi )][1 − γ(1 − εj )]
33
$
Gerlagh-Liski
!
#
Proposition 1 For θ > ρ, the equilibrium carbon price strictly
exceeds (falls short of) the Pigouvian carbon price if climate change
delays are sufficiently long (short).
"
34
$
Gerlagh-Liski
!
#
First look at numbers:
ID
PF
DF
Carbon price
Pigou
7.61
2.44
.45
8.4
Markov
8.05
5.76
.63
29.4
Table 2: Decomposition of Carbon price, MCP [Euro/tCO2].
ID=immediate costs, P F =persistence factor, DF =delay factor, M CP = ID × P F × DF . Parameter values in the text.
"
35
$
Gerlagh-Liski
!
#
Immediate damages
∆y
ID = (
+ ∆u )π(1 − g)yt
1 − αθ
persistence factor (P F )
PF =
!
i
ai
[1 − θ(1 − δi )]
Temperature adjustment, the delay factor (DF )
DF =
"
!
j
36
bj ρεj
1 − θ(1 − εj )
$
Gerlagh-Liski
!
#
Welfare
• welfare concept: multi-agent Pareto optimality
• welfare analysis elementary, but powerful!
Planner-equivalence ⇔ Pigouvian pricing ! efficiency
• self-enforcing welfare improvements implying even
further deviation from Pigou!
"
37
$
Gerlagh-Liski
!
#
Quantitative assessment in detail
• for the economy-climate adjustment path we need to
specify the energy sector
yt = ω(st )ktα [At (ly,t , et )]1−α
At (ly,t , et ) = min{Ay,t ly,t , Ae,t et }
• energy and labor: CES with extremely low elasticity of
substitution; otherwise immediate cuts in emissions
become unrealistically deep. See also Hassler, Krusell,
Olovsson, 2011
"
38
$
Gerlagh-Liski
!
Carbon prices: Pigou, Markov, and ”Advanced” policies
#
&%%
.%
-%
,%
+%
*%
)%
(%
'%
&%
%
'%%%
'%'%
'%)%
'%+%
'%-%
'&%%
Figure 1. Carbon prices in 3 scenarios
"
40
$
Gerlagh-Liski
!
Carbon emissions: BAU, Pigou, Markov, and ”Advanced”
#
&%%
.%
-%
,%
+%
*%
)%
(%
'%
&%
%
'%%%
"
'%*%
'&%%
41
'&*%
''%%
$
Gerlagh-Liski
!
#
Temperature increase:
&'
&%
-
+
)
'
%
'%%%
"
''%%
')%%
42
'+%%
'-%%
(%%%
$
Gerlagh-Liski
!
Relative income changes: Markov-Pigou, Markov-Advanced
#
+%%1
*%%1
)%%1
(%%1
'%%1
&%%1
%%%1
&%%1
'%%1
(%%1
'%%%
"
''%%
')%%
'+%%
'-%%
43
(%%%
$
Gerlagh-Liski
!
#
Concluding remarks
• the market for intergeneration welfare transfers is
missing, once we deviate from consistent preferences
• stand-alone cost-benefit ideas no longer apply:
Pigouvian taxation principle bad for climate and welfare
◦ Gerlagh&Liski, 2011
• holds more generally for public decisions involving
persistent assets
"
44
$