Lesson 3 – Polynomial Functions in Factored Form

Lesson 3 – Polynomial Functions in Factored Form
Recall:
Graph the function 𝑓(π‘₯) = 2(π‘₯ βˆ’ 3)(π‘₯ + 1) using the zeros and y-intercept.
Factored Form
The factored form of a Polynomial Function is:
𝑓(π‘₯) = π‘Ž(π‘₯ βˆ’ π‘₯1 )(π‘₯ βˆ’ π‘₯2 )(π‘₯ βˆ’ π‘₯3 ) β‹― (π‘₯ βˆ’ π‘₯𝑛 )
where, π‘₯1 , π‘₯2 , π‘₯3 , … , π‘₯𝑛 are the zeros of f(x) and a is the leading coefficient.
Single Root
𝑓(π‘₯) = π‘Ž(π‘₯ βˆ’ π‘₯1 )(π‘₯ βˆ’ π‘₯2 )(π‘₯ βˆ’ π‘₯3 )
Example 1:
Double Root
𝑓(π‘₯) = π‘Ž(π‘₯ βˆ’ π‘₯1
)2 (π‘₯
Triple Root
βˆ’ π‘₯2 )
𝑓(π‘₯) = π‘Ž(π‘₯ βˆ’ π‘₯1 )πŸ‘ (π‘₯ βˆ’ π‘₯2 )
State the degree, leading coefficient and end behavior of the function:
𝑓(π‘₯) = βˆ’2(π‘₯ βˆ’ 2)3 (π‘₯ + 3)(π‘₯ βˆ’ 1)
Example 2:
Sketch the graph of 𝑓(π‘₯) = βˆ’(π‘₯ + 1)(π‘₯ βˆ’ 1)(π‘₯ βˆ’ 2)2 using the zeros, the y
intercepts and surrounding points.
Example 3:
Determine the equation of the polynomial function in factored form.
Summary
The zeros of a polynomial function 𝑦 = 𝑓(π‘₯) are the same as the roots of the related
polynomial equation 𝑓(π‘₯) = 0
To determine the equation of the polynomial function in factored form, follow these
steps
οƒ— Substitute the zeros π‘₯1 , π‘₯2 , π‘₯3 , … , π‘₯𝑛 into the general equations of the appropriate
family (same degree) of polynomial functions of the form
𝑓(π‘₯) = π‘Ž(π‘₯ βˆ’ π‘₯1 )(π‘₯ βˆ’ π‘₯2 )(π‘₯ βˆ’ π‘₯3 ) β‹― (π‘₯ βˆ’ π‘₯𝑛 )
οƒ— Substitute the coordinates of an additional point for x and y, and solve for a to
determine the equation