8-7
Composition of Functions
1
1
Composition of Functions
Composite - formed by combining functions.
The output from one function becomes the
input for another function.
Written as g(f(x)) or [g f ](x).
Evaluate the inside function, f(x), first.
Then use the output for g(x).
2
f ( x) 3x 2
Find: 1. g(f(-2))
g ( x) x 2
2
2. [ f g ](-2)
f(-2) = 3(-2) - 2 [ f g ](-2) = f(g(-2))
g(-2) = (-2)2 - 2
f(-2) = -8
g(-2) = 2
g(f(-2)) = g(-8)
g(f(-2)) = (-8)2 - 2
g(f(-2)) = 62
f(g(-2)) = 3(2) - 2
[ f g ](-2) = 4
3
f ( x) 3x 2
Find: 1. g(f(x))
g ( x) x 2
2
2. [ f g ](x)
[ f g ](x) = f(g(x))
f(x) = 3x - 2
g(f(x)) = g(3x - 2)
g(3x - 2) = (3x - 2)2 - 2
g(x) = x2 - 2
f(x2 – 2) = 3(x2 – 2) – 2
f(x2 – 2) = 3x2 – 6 – 2
g(3x - 2) = (9x2 – 12x + 4) - 2
g(f(x)) = 9x2 – 12x + 2
[ f g ](x) = 3x2 – 8
4
h( x) 2 | x 5 | 8
Find: 1. h(k(2))
k(2) = 3(2) – 2(2)2
k(2) = 6 – 8
k(2) = -2
h(-2) = 2 |(-2) – 5| - 8
h(-2) = 2 |-7| - 8
h(-2) = 14 - 8
h(k(2)) = 6
k ( x) 3x 2 x 2
2. [h k](3)
[h k](3) = h(k(3))
k(3) = 3(3) – 2(3)2
k(3) = -9
h(-9) = 2 |(-9) – 5| - 8
[h k](3) = 20
5
p( x) 3x 8
Find: 1. 2p(x) + q(x)
2(3x + 8) + (2x – 12)
6x + 16 + 2x – 12
8x + 4
q ( x ) 2 x 12
2. 3p(q(x))
3[3(2x – 12) + 8)]
3[6x – 36 + 8]
3[6x – 28)]
18x – 84
6
f ( x) 2 x 4 x
2
g ( x) 1 3x
Find the following:
1. f ( g ( x))
f ( x)
2.
3 g ( g ( x))
2
2(1 3 x) 4(1 3 x)
2
2
x
4
x
2
3[1 3(1 3 x)]
2(1 6 x 9 x ) 4 12 x
2
2
2 12 x 18 x 2 4 12 x
x 2 x 3 9(1 3 x)
18 x 2 2
2
x 2 x 3 9 27 x
2
x 29 x 6
2
7
f ( x) 2 x 4 x
2
g ( x) 1 3x
Solve for x:
1. f ( x) g ( x)
2 x 2 4 x 1 3x
2
2x x 1 0
2 x 1 x 1 0
1
x ,1
2
2. 2( g ( x)) f ( 1)
2 1 3 x 2(1) 4(1)
2
2 6x 2 4
2 6x 6
6 x 4
2
x
3
8
Finite Sets
Finite Sets: Given 2 functions: f and g,
[f g](x) and [g f](x) only exist if the
range of each function is a subset of the
domain of the other function.
If the output from the first function is not
an input for the second function, the
composition does not exist (DNE).
9
Find [g f](x) if it exists.
f = {(-3, 1), (-1, 2), (1, 3), (3, 4)}
and
g = {(4, -3), (3, 1), (2, 3), (1, 5)}
(g f ) = {(-3,5), (-1,3), (1,1), (3,-3) }
10
Find [f o g] if it exists.
f = {(-3, 1), (-1, 2), (1, 3), (3, 4)}
and
g = {(4, -3), (3, 1), (2, 3), (1, 5)}
(f g ) = {(4,1), (3,3), (2,4), (1,?) }
There is no 5 in the domain of f
(f g ) DNE
11
Use f and g to find the following:
f(x)
1.
f ( g ( f (7)))
Start inside
f (7) = 2
g (2) = 4
f (4) = 3
g 2, 4 , 1,5 , 3,0 6,1
2.
f
g g 6
Start at right
g (6) = 1
g (1) = 5
f (5) = 4
12
f 1, 3 , 2, 4 , 3, 1 , 4, 2
g 3, 2 , 2, 0 , 4,3 , 1,1
h(x)
Find (f g) and (g f ) if they exist.
(f g) = {(-5,4), (2,? DNE
(g f ) = {(1,2), (2,3), (3,1), (4,0)}
Find (g h f )(2)
Find (f(g(h(6)))
f(2) = 4
h(6) = -1
h(4) = 2
g(-1) = 1
f (1) = -3
g(2) = 0
13
© Copyright 2025 Paperzz