M. Ma pe lli SISSA Deca ying Cold a nd Wa rm Da rk Ma tter: re ioniza tion a nd the rma l history of the unive rse colla bora tors A. Ferra ra , E. Pierpa oli Cold a nd Wa rm Da rk Ma tter: MAIN DIFFERENCE: WDM pa rticles, less ma ssive, have higher DISPERSION VELOCITY tha n CDM particles. WDM particles can prevent the forma tion of the smallest halos, a lleviating the “substructure crisis” of CDM models; but they delay (maybe too much) the structure forma tion (Ostriker & Steinha rdt 2003) Current observa tions cannot rule out the CDM or the WDM scenario How to distinguish among DM models ? DM DECAYs/ ANNIHILATIONs e+ + e- dm (Hooper & Wa ng 2004) e+ + e- dm + dm* F+, Z' (Asca siba r et a l. 2005) And the obse rva tions? INTEGRAL map of the 511 kev emission from the Galactic center Bulge excess flux: ~ 10- 3 ph cm - 2 s- 1 Knodlseder et a l 2005 And the obse rva tions? The ore tic a l e xpla na tions: SN IA (Knolse de r e t a l. 2005) de c aying/ a nnihila ting da rk ma tte r (Boehm et al. 2004; Hooper & Wang 2004; Ascasibar et a l. 2005) --> LIGHT DARK MATTER (1-100 MeV) DM de c a ys in the e a rly unive rse : DM decays/ a nnihilations ca n be detected not only as a emission line in the local universe, but also as a background due to particles decaying at different z I derive the COMOVING DECAYING RATE a nd I use it to calculate the IONIZATION and the HEATING of the universe from the last sca ttering surfa ce due to DM deca ys Are the deca ying DM particles able to REIONIZE the Universe achieving the e = 0.17 (WMAP) ? DM de c a ys in the e a rly unive rse : comoving deca ying ra te energy injection rate per ba ryon DM de c a ys in the e a rly unive rse : of the energy goes into ionizations of the energy goes into heating (Chen & Ka mionkowski 2004; Shull & Va n Steenberg 1985) va riation of the ioniza tion fraction (H) va ria tion of the ioniza tion fraction (He) va ria tion of the matter temperature DM de c a ys in the e a rly unive rse : We implement these equations into the public code RECFAST (Sea ger, Sasselov & Scott 1999; 2000) which calcula tes ioniza tions, recombinations a nd matter tempera ture evolution of the relic fra ction of electrons: DM de c a ys in the e a rly unive rse : Wha t kind of particles do we consider? CDM: LIGHT DARK MATTER (LDM) ~1-100 Me V gra vitinos ~10-100 Me V WDM: STERILE NEUTRINOS ~ 2-8 ke V ne utra linos > 30 Ge V CDM: LIGHT DARK MATTER (LDM) Mass = 1-100 MeV, but probably << 30 MeV not to overproduce the breemsstralung radiation from the Galactic center (Casse' & Fayet 2005) Can decay Main candidate for the 511 keV emission from the Galactic center both via decay (Hooper & Wang 2004) and annihilation (Boehm et al. 2004; Ascasibar et al. 2005) (Hooper & Wang 2004) CDM: LIGHT DARK MATTER (LDM) T a factor 100 higher at z~10 !!! τ ~ 0.01 << 0.17 (WMAP) x increases already at z~100 Mapelli, Ferrara & Pierpaoli, in prep. CDM: GRAVITINOS Mass = 10-100 MeV They can decay; but, to remain good DM candidates, their lifetime must be very long: They cannot account for the 511 keV CDM: GRAVITINOS NEGLIGIBLE !!!!!! Mapelli, Ferrara & Pierpaoli, in prep. CDM: NEUTRALINOS Mass >~ 30 GeV (Lightest Supersymmetric Particle) They cannot decay remaining a good DM candidate, because they are too massive They can only ANNIHILATE annihilation cross-section: depends on z rough approximation: (Padmanabhan & Finkbeiner 2005) CDM: NEUTRALINOS NEGLIGIBLE, unless we a dopt a huge crosssection Mapelli, Ferrara & Pierpaoli, in prep. WDM: STERILE NEUTRINOS Most promising WDM candidate (Colombi et a l. 1996; SommerLa rsen & Dolgov 2001) What are sterile neutrinos? MASSIVE NON-INTERACTING neutrinos (=which do not partake the WEAK FORCE) Predicted by the standard oscillation theory. They are massive --> they can decay, following different channels (Dolgov 2002) Most important decay channel: RADIATIVE decay Mass >= 2 keV from the analysis of the matter power spectrum (Viel et al. 2005) WDM: STERILE NEUTRINOS UPPER LIMIT ON THE MASS of sterile neutrinos by imposing tha t the contribution of photons emitted by sterile neutrinos does not exceed the observed unresolved HARD X-RAY BACKGROUND: Tota l observed X-ra y ba ckground Unresolved X-ra y ba ckground (Bauer et a l. 2004) m<10 keV Mapelli & Ferrara 2005 WDM: STERILE NEUTRINOS UPPER LIMIT ON THE MASS of sterile neutrinos by the compa rison with the X-ray line emission from the VIRGO cluster: m < 8 keV Abazajian, submitted WDM: STERILE NEUTRINOS 2 keV<= Mass <= 8 keV Lifetime: WDM: STERILE NEUTRINOS T a factor 100 higher at z~10 !!! τ ~ 0.002 << 0.17 (WMAP) x increases already at z~100 SIMILAR TO LDM ! Mapelli, Ferrara & Pierpaoli, in prep. CDM/ WDM: EFFECTS on the CMB spe c tra : DM decays (especially LDM and sterile neutrinos) change the ionization history and the temperature of matter They can affect also the CMB spectra. Are these effects detectable??? We implemented our modified version of RECFAST into the public code CMBFAST (Seljak & Zaldarriaga 1996), which calculates the TT, TE and EE spectra of the CMB CDM/ WDM: EFFECTS on the CMB spe c tra : open circles: WMAP da ta thick lines: with sudden reioniza tion a t z~17 (WMAP) TT thin lines: without sudden reioniza tion a t z~17 EE bla ck lines: without deca ying pa rticles red lines: with deca ying pa rticles (LDM) TE NEGLIGIBLE EFFECTS on the CMB spectra Mapelli, Ferrara & Pierpaoli, in prep. CDM: MORE EXOTIC DM mode ls In the previous models we a ssume tha t the DM is composed by one single species of pa rticles. Different models suggest the existence of va rious species of DM. For exa mple, Ka wa sa ki & Ya na gida (2005) expla in the 511 keV emission from the Ga la ctic bulge postula ting a deca ying SCALAR BOSON (1-10 MeV) which contributes only to a sma ll fra ction of the DM: CDM: MORE EXOTIC DM mode ls deca ying SCALAR BOSON (1-10 MeV) SIMILAR TO LDM and sterile neutrinos SUMMARY: For LIGHT particles (LDM, sterile neutrinos) the contribution to reionization and heating is important; whereas for heavy particles (gravitinos, neutralinos) is negligible LIGHT particles are sources of partial early ionization (in agreement with models of complex reionization history: Cen 2002; Furlanetto & Loeb 2004) Thomson optical depth <= 0.01, lower than WMAP but nonnegligible Effect on the CMB spectra negligible FUTURE: The effect on the MATTER TEMPERATURE is relevant !!!! Do decaying particles leave an imprint on the 21 cm maps detectable with LOFAR, PAST, etc ? (Valdes, Mapelli & Ferrara, in prep.) Can an early reionization and an early heating modify the structure formation history? (Shchekinov & Vasiliev 2004)
© Copyright 2026 Paperzz