Name: _____________________________________ Period: __________ Date: ______________ID: A Algebra II Chapter 8 Practice Test 1. Write an exponential function y = ab x for a graph that includes (0, 3.5) and (1, 17.5). 11. State the property or properties of logarithms used to rewrite the expression. 1 20 log 625x 4 = log 5x 5 ÊÁ 1 ˆ˜ x 2. Graph y = − 2ÁÁÁÁ ˜˜˜˜ . Ë 7¯ 12. Write the expression as a single logarithm. log 3 4 − log 3 2 Determine whether the function represents exponential decay or exponential growth. Identify the horizontal asymptote. 13. Expand the logarithmic expression. x 3. Graph f(x) = e + 3 . Identify the horizontal asymptote. log b 4. State the property or properties of logarithms used to rewrite the expression. 1 2 log 6 + log = log 12 3 57 74 14. Use the properties of logarithms to evaluate log 3 9 + log3 36 − log 3 4 . 15. Solve 15 2x = 36. Round to the nearest ten-thousandth. 5. Evaluate the logarithm. log 3 243 16. Use the Change of Base Formula to evaluate log 4 20 . Then convert log 4 20 to a logarithm in base 3. Round to the nearest thousandth. 6. Suppose you invest $1500 at an annual interest rate of 3.7% compounded continuously. How much will you have in the account after 10 years? 17. Solve 125 9x − 2 = 150. 7. Evalute log 8 256 + log 8 16 as a single logarithm. 18. Solve 3 log 2x = 4. Round to the nearest ten-thousandth. 8. Write the expression as a single logarithm. 5 log b q + 2 logb y 19. Solve log(x + 9) − log x = 3 . Round to the nearest ten-thousandth. 9. Write the equation in logarithmic 4 form.125 3 = 625 10. Write the equation log 32 8 = 20. Solve 2 log 4 − log 3 + 2 log x − 4 = 0. Round to the nearest ten-thousandth. 3 in exponential form. 5 21. Write the expression as a single natural logarithm. 3 ln 3 + 3 lnc 1 ID: A 22. Write the expression as a single natural logarithm. 1 3 ln a − (ln b + ln c 2 ) 2 30. Graph y = 7 (6) x+2 + 1. 31. Write an exponential function y = ab x for a graph that includes (1, 15) and (0, 6). 23. Simplify ln e 3 . 32. Graph the function. Identify the horizontal asymptote. ÊÁ 1 ˆ˜ x − 1 + 1. Graph y = 2ÁÁÁÁ ˜˜˜˜ Ë 5¯ 24. Solve ln 2 + ln x = 5 . Round to the nearest thousandth, if necessary. 25. Solve ln x − ln 6 = 0 . 33. Use a graphing calculator. Use the graph of y = e x to evaluate e 1.7 to four decimal places. 26. Use natural logarithms to solve the equation. Round to the nearest thousandth. 6e 4x − 2 = 3 34. Write the equation in logarithmic form. 6 4 = 1, 296 27. Use natural logarithms to solve the equation. Round to the nearest thousandth. e 2x = 1.4 35. Solve 1 = 644x − 3 . 16 28. Write an exponential function for the graph. 36. Use the Change of Base Formula to solve 2 2x = 90. Round to the nearest ten-thousandth. 37. Solve ln(2x − 1) = 8 . Round to the nearest thousandth. 29. The amount of money in an account with continuously compounded interest is given by the formula A = Pe rt , where P is the principal, r is the annual interest rate, and t is the time in years. Calculate to the nearest hundredth of a year how long it takes for an amount of money to double if interest is compounded continuously at 6.2%. Round to the nearest tenth. 2 ID: A Algebra II Chapter 8 Practice Test Answer Section 1. ANS: y = 3.5(5) x TOP: 8-1 Example 3 2. ANS: TOP: 8-2 Example 1 3. ANS: TOP: 7-6 The Natural Base e 4. ANS: Power Property and Product Property TOP: 8-4 Example 1 5. ANS: 5 TOP: 8-3 Example 3 1 ID: A 6. ANS: $2,171.60 TOP: 8-2 Example 5 7. ANS: 4 TOP: 7-4 Properties of Logarithms 8. ANS: log b (q 5 y 2 ) TOP: 8-4 Example 2 9. ANS: 4 log 125 625 = 3 TOP: 8-3 Example 2 10. ANS: 3 32 5 = 8 TOP: 8-3 Example 3 11. ANS: Power Property TOP: 8-4 Example 1 12. ANS: log 3 2 TOP: 8-4 Example 2 13. ANS: 1 1 logb 57 − log b 74 2 2 14. ANS: 4 TOP: 8-4 Example 5 15. ANS: 0.6616 TOP: 8-5 Example 1 16. ANS: 2.161; log 3 10.741 TOP: 8-5 Example 5 2 ID: A 17. ANS: 0.3375 TOP: 8-5 Example 5 18. ANS: 10.7722 TOP: 8-5 Example 6 19. ANS: 0.0090 TOP: 8-5 Example 7 20. ANS: 43.3013 TOP: 8-5 Example 7 21. ANS: ln 27c 3 TOP: 8-6 Example 1 22. ANS: a3 ln c b TOP: 8-6 Example 1 23. ANS: 3 TOP: 8-6 Example 1 24. ANS: 74.2 TOP: 8-6 Example 3 25. ANS: 6 26. ANS: –0.046 TOP: 8-6 Example 4 27. ANS: 0.168 TOP: 8-6 Example 4 28. ANS: y = 0.5(2) x TOP: 8-1 Example 3 3 ID: A 29. ANS: 11.2 yr TOP: 8-6 Example 5 30. ANS: TOP: 8-2 Example 2 31. ANS: y = 6(2.5) x TOP: 8-1 Example 3 32. ANS: TOP: 8-2 Example 2 33. ANS: 5.4739 TOP: 8-2 Example 4 4 ID: A 34. ANS: log 6 1, 296 = 4 TOP: 8-3 Example 2 35. ANS: 7 12 TOP: 8-5 Example 5 36. ANS: 3.2459 TOP: 8-5 Example 5 37. ANS: 1,490.979 TOP: 8-6 Example 3 5
© Copyright 2026 Paperzz