F19-Exercise Ling 331 / 731 Spring 2016 Key 1. Distinguish a variable from a constant. A variable’s denotation changes with respect to the assigment, while the denotation of a constant is the same for all assignments (i.e., no matter which assignment we use.) 2. Explain why we need to split the TN rule into LT and PR. The TN rule says that an interpretable node’s meaning is specified in the lexicon. So for mayor, the meaning of the word is fully supplied by its lexical entry. This cannot be the case for her, because the context must supply what’s missing. So we need to split TN into a rule for the words like mayor (LT), and one for words like her (PR). 3. Given the following assignment, fill in the chart. → Gene → Barry → Ellen → Roberto 2 3 r= 163 75 denotation value extension J x2 Kr r(2) Gene J x163 Kr r(163) Ellen J y75 Kr r(75) Robert J y3 Kr r(3) Barry 4. Compose the following phrase structures. Assume assignment z. 1. S DP VP D◦ she3 V◦ slept FA : t slept(z(3)) [λx ∈ De . slept(x)](z(3)) NN : e z(3) NN : he, ti λx ∈ De . slept(x) PR : e z(3) LT : he, ti λx ∈ De . slept(x) 1 2. S FA : t pondered(z(2)) [λx ∈ De . pondered(x)](z(2)) DP VP D◦ he2 V◦ pondered 3. S VP D◦ he5 V◦ persevered S DP D◦ she1 NN : he, ti λx ∈ De . pondered(x) PR : e z(2) LT : he, ti λx ∈ De . pondered(x) FA : t persevered(z(5)) [λx ∈ De . persevered(x)](z(5)) DP 4. NN : e z(2) NN : e z(5) NN : he, ti λx ∈ De . persevered(x) PR : e z(5) LT : he, ti λx ∈ De . persevered(x) FA : t in(ιx ∈ Ce [ house(x) ])(z(3)) VP V◦ is PP P◦ in DP the house NN : e z(3) PR : e z(3) FA : he, ti λy ∈ De . in(ιx ∈ Ce [ house(x) ])(y) LT : hhe, ti, he, tii FA : he, ti λf ∈ Dhe, ti . f λy ∈ De . in(ιx ∈ Ce [ house(x) ])(y) LT : he, he, tii λx ∈ De .λy ∈ De . in(x)(y) 5. S DP D◦ he2 FA : e ιx ∈ Ce [ house(x) ] FA : t near(ιx ∈ Ce [ shed(x) ])(z(3)) VP V◦ is PP ◦ P near DP the shed NN : e z(3) FA : he, ti λy ∈ De . near(ιx ∈ Ce [ shed(x) ])(y) PR : e z(3) LT : hhe, ti, he, tii λf ∈ Dhe, ti . f FA : he, ti λy ∈ De . near(ιx ∈ Ce [ shed(x) ])(y) LT : he, he, tii λx ∈ De .λy ∈ De . near(x)(y) 2 FA : e ιx ∈ Ce [ shed(x) ] 6. S FA : t called(z(1))(ιx ∈ Ce [ Tom(x)]) DP D◦ ∅ VP V◦ called NP Tom DP D◦ her1 FA : he, ti λy ∈ De . called(z(1))(y) FA : e ιx ∈ Ce [ Tom(x)] LT : hhe, ti, ei λf ∈ Dhe, ti .ιx ∈ Ce [ f(x) ] NN : he, ti λx ∈ De . Tom(x) LT : he, he, tii λx ∈ De .λy ∈ De . called(x)(y) NN : e z(1) PR : e z(1) 7. S FA : t called(z(3))(ιx ∈ Ce [ mayor(x)]) DP D◦ the VP V◦ called NP mayor DP D◦ him3 FA : he, ti λy ∈ De . called(z(3))(y) FA : e ιx ∈ Ce [ mayor(x)] LT : hhe, ti, ei λf ∈ Dhe, ti .ιx ∈ Ce [ f(x) ] NN : he, ti λx ∈ De . mayor(x) LT : he, he, tii λx ∈ De .λy ∈ De . called(x)(y) NN : e z(3) PR : e z(3) 8. S DP D◦ she2 FA : t sought(z(7))(z(3)) VP V◦ sought DP D◦ it7 FA : he, ti λy ∈ De . sought(z(7))(y) NN : e z(3) PR : e z(3) LT : he, he, tii λx ∈ De .λy ∈ De . sought(x)(y) NN : e z(7) PR : e z(7) 3
© Copyright 2026 Paperzz