Recreate the Unit Circle: Question: Where do the values of the trigonometric functions for the angles on the unit circle come from? They come from two “special” right triangles: the isosceles right triangle and the 30‐60‐90 right triangle. Answer: 2 2 1 30o 1 3 3 1 45o 2 60o 1 1 1 The isosceles right triangle gives the values for 45 degrees. The 30‐60‐90 right triangle gives the values for 30 degrees and for 60 degrees. Take a square of side 1 and draw a diagonal. Take an equilateral triangle of side 2 and draw a perpendicular bisector. The hypotenuse has length 2. So The bisector has length 3. So sin 45° tan 45° 2 cos 45° 2 1 2 2 1 cos 30° 2 and sin 30° 3 cos 60° 2 sin 60° 1 2, 3 30o 1 tan 60° 2 3 Now we can label the points (cos , sin for the first quadrant 2 2, 2 3 45o 3 3 2 2 60o 3 tan 30° 2 2, 1 2 1 2 2 2, 3 2, 2 2 120o 135o 3 To get the values for the 2nd quadrant, imagine flipping the triangles about the Y‐ axis 2, 1 150o 2 We should get almost the same values as before, but the x values should be negative 210o 3 2, 2 1 225o 2 240o 2 2, 2 1 3 2, 3 330o 2 2, 1 2 315o 300o 2 For the third quadrant, flip about the Y‐axis 1 Now both x and y values will be negative 2, 3 2, 2 2 2 Finally, for the fourth quadrant, flip again about the Y‐axis Now only the y values will be negative 1 2 3 2, 2 2, 1 3 2, 2 2 1 3 2 2 120o 135o 60o 150o 2 2, 2 2, 3 45o 2 2, 1 Putting it all together gives us 2 30o The Unit Circle 210o 3 2, 2 1 2, 2 315o 240o 2 2 300o 2 1 2, 3 330o 225o 3 2 1 2, 2, 3 2 2, 2 1 2 2
© Copyright 2025 Paperzz