Energy Costs of Locomotion in Wapiti

A CTA TH ER IO LO G IC A
Vol. 23, 22: 365—370, 1978
Energy Costs of Locomotion in Wapiti
C. GA TES & R. J. HUDSON
G ates C. & H udson R. J., 1978: E nergy costs of locom otion in w apiti. A cta
theriol., 23, 22: 365—370 [W ith 3 Tables]
Two ten m onth old w ap iti, C ervus canadensis (E r x 1 e b e n, 1777),
h eifers w ere train ed to w alk on a tread m ill w earing a resp ira to ry m ask.
O xygen consum ption w as m easured d uring lying, stan d in g an d exercise.
T he m ean cost of w alking for all belt speeds (2, 3 and 4 k m .h - 1) w as
0.43 kcal.kg—^km —1 for one w apiti and 0.55 kcal.kg—^k m —1 for th e
o th er w ith an o v era ll m ean of 0.49 kcal.kg—1.km —1. The in crem en t in
energy ex p e n d itu re due to w alking on a p er u n it tim e basis increased
lin e arly w ith velocity, w h ereas th e re w as no consistent tre n d w hen
energy expended w as exp ressed on the basis of d istance trav elled .
[Dept. A nim . Sci., U niv. A lberta, Edm onton, C anada T6G 2E3].
1. INTRODUCTION
A m ajor com ponent of the daily energy budget of free-ran g in g anim als
arises from such activities as standing, travelling, social in teractio n and
feeding. D eterm ination of th e energy cost of an activ ity and of the
am ount of tim e an anim al engages in it perm its an estim ation of th e
total energy req u ired for th a t activity. O ptim istically, sim ple sum m ation
of estim ated energy costs of recognizable activities and of th e basal r e ­
q u irem en t w ould give a reasonable estim ate of the overall energy needs
of the anim al.
Such tim e-activity analyses have been used in a num ber of studies on
w ild ru m in a n ts w hich have sought to disclose the significance of social
behavioral p a tte rn s (M o e n, 1973) or the potential im pact of harassm en t
by m an (G e i s t, 1971). H ow ever, only recen tly has inform ation on the
energy costs of locom otion becom e available (M a 11 f e 1 d, 1974; B r o c k ­
w a y & G e s s a m a n , 1977). This paper deals w ith the energy re q u ire ­
m ents of low speed locom otion in w apiti (Cervus canadensis) and touches
on energy exp en d itu res associated w ith d ifferen t postures.
2. M A TER IA LS AND METHODS
Two ten m onth old h an d -re a re d w ap iti h eifers w ere train ed to w alk on a custom designed tread m ill w hile w earin g a re sp ira to ry m ask. A nim al 1 w eighed 153 kg
an d A nim al 2 w eighed 161 kg. T he ex p e rim en tal period, ex ten d in g fro m F e b ru a ry
to A pril, com m enced a fte r ap p ro x im ate ly two m onths of train in g . O xygen con1365]
C. Gates & R. J. Hudson
366
sum ption w as m easured in a th e rm o n eu tral en v iro n m en t (4-10°C) w ith an open
circu it resp ira to ry p a tte rn analy ser ( Y o u n g e t al., 1975). R ates of energy ex p e n ­
d itu re w ere calculated using a caloric eq u iv a le n t fo r oxygen of 4.89 kcal.l—*
( M c L e a n , 1970). The ra te of flow of a ir th ro u g h th e m ask w as 120 Limn—1.
S tanding oxygen consum ption w as m easured before an d a fte r periods of e n ­
forced exercise on th e treadm ill. T he exercise p erio d s w ere u p to 3 hours in length.
A t the low velocities used in this study, oxygen consum ption rap id ly dro p p ed a t
th e end of each trial, suggesting th a t oxygen d eb t w as not an im p o rta n t consi­
deration. In cid en tal m easurem ents of oxygen consum ption w h ile lying w ere m ade
w hen an anim al assum ed this posture.
A lthough b elt speeds of 2 to 5 km .h—1 w ere used in itially , 5 km .h—1 w as ev i­
den tly too rap id as the an im als w ere obviously d istressed a t this speed. Conse­
q u en tly d a ta w ere collected for speeds of 2, 3 and 4 km .h—1.
3. RESULTS
The increm ent in energy ex p en d itu re due to w alking increased lin early
w ith velocity. For A nim al 1 this relationship w as found to be:
E w alk = 0.4165 V + 0.0148 (r* = 0.73, n = 40)
(1)
T able 1
E nergy ex p e n d itu re (M ean ± SD in kcal.kg—1.h—J) d u rin g lying,
standing an d w alking.
A nim al 2
A nim al 1
E nergy Cost
S tanding
L ying
W alking *
2 km .h—1
3 km .h—1
4 km .h—1
N
N
—
1.30±.ll
—
17
7
1.27±.06
1.03±.10
11
20
9
0.88±.08
1.23±21
1.71±. 19
15
17
12
1.29±.21
1.53±.25
1.98±.14
18
* D ifference from stan d in g energy expen d itu re.
and for A nim al 2:
E w alk = 0.3426 V + 0.5697 (r* = 0.62, n = 44)
(2)
w here E w alk is th e in crem en t in energy exp en d itu re due to w alking
(kcal.kg-1.h—1) a t velocity V (km .h-1). By com bining data from both in­
dividuals th e relatio n sh ip was found to be:
E w alk = 0.3714 V + 0.3248 (r* = 0.53, n = 84).
(3)
A t each ra te of speed, from 0 to 4 km .h-1 , th e m ean values of energy
ex p enditure for the tw o anim als (Table 1) differed significantly ( P < .05).
M ean w alking values for A nim al 2 consistently exceeded those for A ni­
m al 1 w hereas the rev erse was tru e for standing values.
A nim al 2 freq u en tly assum ed a lying position a t th e end of exercise
Energy costs of locomotion in wapiti
367
periods. This p erm itted a com parison of the energy cost of standing vs
lying (Table 1). The m ean difference betw een these tw o postures was
0.24 kcal.kg_1.h r 1.
For A nim al 1 the energy cost of w alking per unit distance rem ained
rela tiv e ly constant w ith increasing velocity w hile values for th e other
individual decreased w ith speed (Table 2). The overall m ean energy cost
of w alking was calculated to be 0.49 kcal.kg-1.km— individual m ean va­
lues w ere 0.43 and 0.56 for A nim als 1 and 2, respectively.
S trid e frequencies w ere sim ilar ( P > .05) for both individuals at each
w alking speed (Table 3). M ean strid e frequencies w ere 62, 77 and 92
T able 2
E nergy ex p e n d itu re (kcal^cg—1.km —1) per kilo m eter a t d iffe re n t
velocities.
E nergy cost of w alk in g 1 km
(Increm en t above standing)
A nim al 1
M ean ± SD
V elocity of W alking
(km .h—1)
2
3
4
M ean
O verall M ean
A nim al 2
M ean ± SD
N
N
11
20
9
.44±.05
15
.41±.07
17
.43+.05
12
.43±.02
.49+.09 kcal.kg—*.km- -l
.65+.11
.51+.08
.50±.04
.56±.08
T able 3
E nergy ex p e n d itu re (kcalJcg—».km—‘) in th e both w ap iti h eifers a t d iffe re n t
w alking speed.
Velocity,
km .h—1
2
3
4
Paces, m in—1
62
77
92
E nergy E x p en d itu re
Paces.km —1 (A ssum ing 3X10—4 kcal.kg—:l.pace—:l)
1860
1540
1380
.558
.462
.414
paces per m in u te for b e lt speeds of 2, 3 and 4 km .h-1 respectively. The
relationship betw een w alking velocity and strid e frequency was described
by the regression equation:
V = 0.064 F — 1.901 (r* = 0.95, n - 59)
(4)
w here V is w alking velocity in km .h-1 and F is strid e frequency in
paces • m in—*.
4. DISCUSSION
In the p resen t stu d y lin e a r increases in energy e x p en d itu re p er unit
tim e w ere observed as speed of w alking increased over th e lim ited range
368
C. Gates & R. J. Hudson
of 2— 4 km .h-1. R esults w ere in general agreem ent w ith studies on m ost
o th er species. C l a p p e r t o n (1961, 1964) found th a t the energy cost of
w alking in sheep increased w ith speed. T a y l o r et al. (1974) found
a sim ilar linear p a tte rn in a series of divergent species including cheetahs,
gazelles and goats. The relationship appeared to hold over a w ide ran g e
of velocities and w as expressed:
M = 8.46
W -M O
w h ere M is the slope of th e relationship (Oz consum ption (ml).g—1.km—1)
and W is body w eight (g). Based upon this equation (w ith a p p ro p riate
corrections for units) th e slope of th e relationship betw een energy e x ­
p en d itu res and velocity for an anim al approxim ately the size of th e
w apiti used in th is stu d y w as predicted to be 0.339 kcal.kg- \k m —\ The
observed value for th e slope tak en from Eqn. 3 (0.370 kcal.kg- ‘.km“ :‘)
was only slightly g rea ter. A recen t stu d y by B r o c k w a y & G e s s a m a n (1977) indicates th a t the red deer also conform s to this re la tio n ­
ship.
In contrast to en ergy ex p en d itu re expressed as a function of tim e,
to tal energy expended per u n it distance usually declines w ith increasing
velocity to a m inim um cost w hich has been w idely used in cross-species
com parisons ( T u c k e r , 1975). This is due largely to the changing p ro ­
portional contributions of stan d ard m etabolism and th e activity in cre­
m en t as velocity increases. At higher velocities both total and increm ental
costs per u nit distance are relativ ely constant. Is this ex p erim ent th e
m ean value for th e in crem en t of energy cost per u n it distance was
0.49 kcal.kg- ‘.kmThis value com pares w ith 0.54 kcal.kg- Vkm- 1 for
m an ( S m i t h , 1922), 0.58 for the dog ( L u s k , 1931), 0.39 for th e horse
( B r o d y , 1945), 0.59 for sheep ( C l a p p e r t o n , 1961, 1964).
Estim ates of the en erg y cost of standing over lying for sheep and cattle
have ranged from 6% ( B l a x t e r & W a i n m a n , 1962; O s u j i, 1973)
to over 30%> ( G r a h a m , 1964). A gen erally accepted value for dom estic
anim als is 9%> ( B l a x t e r , 1969). A lthough th ere w as considerable
v ariance and a re la tiv e ly sm all sam ple, data from th e present study
suggested a difference in energy e x p en d itu re of 18.6% betw een these
two postures. The lim ited n u m b er of studies on other w ild ru m in an ts
suggest sim ilar high values. Increm ents of over 20°/o have been m easured
in pronghorn antelope ( W e s l e y et al. 1973) and roe deer ( W e i n e r ,
1977).
Estim ates of w alking velocity can be obtained from observations of
strid e frequency (Eqn. 4). G o l d (1973) hypothesized th a t all anim als
req u ire the sam e q u a n tity of energy to c arry a u n it of th eir body mass
one step (3 X 10“ 4kcal.kg~x). Using th is principle, th e calculated energy
Energy costs of locomotion in wapiti
369
ex p en d itu res for speeds of 2, 3 an d 4 km .h- 1 w ere .558, .462 and .414
kcal.kg- Vkm-1, respectively (Table 3). This com pares closely w ith em pi­
rical observations of .54, .46 and .47 kcal.kg- \k m —\
The data obtained in th is experim ent indicated th a t th e energy costs
of locom otion in w apiti, at least at low velocities, conform s to in te r­
species relationships described by o th er w orkers. H ow ever, it is im por­
ta n t to consider the possibility of im p o rtan t physiological distinctions in
oth er species, since several such as the A frican lion (C h a s s i n et al.,
1976) have unexpectedly high costs of locom otion.
The u tility of the type of data g e n erated in this stu d y can be de­
m onstrated by considering the contribution of locom otion to th e e n e r­
getic req u irem en ts of a free ranging w apiti w eighing 200 kg. A ssum ing
th a t about 7°/o of a 24 hour period (1.7 hours) is sp en t trav ellin g ( C r a i g ­
h e a d et al., 1973) at an average ra te of tra v e l of 3 km .h-1 (a com fortable
w alking rate), the calculated total energy cost is 415 kcal.d- \ This r e ­
p resen ts an 8.7% increase in daily energy exp en d itu re. If m ovem ent
during feeding periods w ere included this estim ate w ould increase su b ­
stantially. Sim ilar values have been calculated for various dom estic
ru m in a n ts (O s u j i, 1974).
REFERENCES
1. B l a x t e r K .L . 1969: T he energy m etabolism of ru m in a n ts. H utchinson: L o n ­
don.
2. B l a x t e r K .L . & W a i n m a n F. W. 1962: U n pu b lish ed w o rk cited by A g ri­
c u ltu ra l Res. Council. 1965. N u trien t R equ irem en ts of F a rm L ivestock No. 2.
R um inants. H er M ajesty’s S tatio n ary Office. L ondon, p. 221.
3. B r o c k w a y J. M. & G e s s a m a n J. A. 1977: T he en erg y cost of locom otion
on the level and on g rad ie n ts for th e red deer. Q u art. J. E xp. Physiol., 62:
333—339.
4. C h a s s i n P. S., T a y l o r C. R., H e g l u n d N. C., & S e e h e r m a n H. J. 1976:
Locom otion in lions: energetic cost and m ax im u m aero b ic cap actity . Zoology,
49: 1—10.
'
5. C l a p p e r t o n J. L. 1954: T he energy m etabolism of sheep w alk in g on the
level and on gradients. Br. J. N utr., 18: 47—64.
6. C l a p p e r t o n J. L. 1961: T he energy e x p e n d itu re of sheep in w alk in g on the
level and on gradients. Proc. N utr. Soc., 20: 31.
7. C r a i g h e a d J. J., C r a i g h e a d F. C., Jr., R u f f R. L., & O’G a r a B. W. 1973:
H om e ranges and activ ity p a tte rn s of n o n m ig rato ry elk of th e M adison d ra in ­
ag e herd as determ ined by biotelem etry. W ildlife M onographs No. 33: 1—000.
8. G e i s t V. 1971: H arassm en t of big gam e: Is it h a rm fu l? Oil W eek, 22: 12— 13.
9. G o l d A. 1973: Energy e x p e n d itu re in anim al locom otion. Science, 181: 275——276.
10. G r a h a m N. McC. 1964: E nergy cost of feeding ac tiv itie s an d en erg y ex p e n ­
d itu re of grazing sheep. A ust. J. Agr. Res., 15: 969—973.
C. Gates & R. J. Hudson
370
11. H a l l W .C . & B r o d y S. 1933: T he energy in crem en t of stan d in g o v er lying
a n d the energy cost of getting u p an d lying dow n. U niv. Mo. Agr. E xp. Sta.
Res. Bull., 180: 1—31.
12. L u s k G. 1931: T he science of n u tritio n . S aunders: 1—884. London.
13. M a t t f e l d G. F. 1974: E nergetics of w in te r foraging by w h ite -taile d d eer;
a perspective on w in te r concentration. Ph. D. D issertation, S yracuse S ta te U ni­
v ersity, Syracuse, N. Y.
14. M c L e a n J. A. 1970: S im ultaneous direct and in d ire ct calo rim etric m e asu re­
m ents on cattle. [In: A. Schurch an d C. W enk, eds. »Energy M etabolism of
F arm Anim als«, Proc. 5th Symp. E ur. Assoc. A nim . Prod. P ubl. No. 13]. T uris,
D ruck and Verlag, Zurich, S w itzerland.
15. M o e n A. N. 1973: W ildlife Ecology. W. H. F reem an ; 1—4 58+ X X pp. S an F ra n ­
cisco.
16. O s u j i P. O. 1973: R u m in an t energy m etabolism : an an aly sis of th e h e a t in ­
crem en t of feeding in sheep. Ph. D. Thesis, Univ. A berdeen.
17. O s u j i P. O. 1974: T he physiology of eating and th e energy ex p e n d itu re of th e
ru m in a n t a t pastu re. J. R ange M anage., 27: 437—443.
18. S m i t h H. M. 1922: G aseous exchange an d physiological req u irem en ts for level
a n d g rad e w alking. Pub. C arnegie Inst. No. 309: 1—310.
19. T a y l o r C. R., S h k o l n i k A., D m i e 1 R., B a h a r a v D. & B o r u t A., 1974:
R unning in cheetahs, gazelles an d goats: energy cost an d lim b configuration.
A m er. J. Physiol., 227: 848—850.
20. T u c k e r V .A , 1975: T he energetics of m oving about. A m er. Sci., 63: 413—419.
21. W e i n e r J. 1977: E nergy m etabolism of roe deer. A cta theriol., 22: 3—24.
22. W e s l e y D .E ., K n o x K .L . & N a g y J .G . 1973: E nergy m etabolism of p ro n g ­
h o rn antelope. J. W ildl. M anage., 37: 563—573.
23. Y o u n g B. A., K e r r i g a n B. & C h r i s t o p h e r s o n R. J. 1975: A v ersa tile
resp ira to ry p a tte rn an a ly se r for stu d ies of energy m etabolism of livestock. Can.
J. Anim. Sci., 55: 17—22.
A ccepted, A p ril 8, 1978.
C. GATES i R. J. HUDSON
ENERGETYCZNY K O SZT PORUSZA NIA S IĘ U W A P IT I
U dw u 10-miesięcznych, osw ojonych jałów ek w ap iti zbadano energetyczny koszt
p o ru szan ia się w kieracie, przy szybkościach 2, 3 i 4 k m .h-1 , poró w n u jąc go z m e­
tabolizm em spoczynkow ym podczas sta n ia i leżenia (T abela 1). Stw ierdzono, że
w y d a tk i energetyczne, zużyte na chodzenie w z rastają średnio o 0.49 kcal.kg—1.km —
niezależnie od dystansu. P rz y ra sta ją one liniow o w raz z szybkością (Tabela 2), kiedy
za podstaw ę odniesienia przyjęto jed n o stk ę czasu. N ie zauw ażono n ato m iast po­
d obnych trendów , gdy w y d atk i energetyczne zużyw ane na chodzenie odnoszono do
p rzeb y tej odległości (T abela 3).