Differential Calculus 201-103-RE Vincent Carrier Exercise Sheet 12 3.7 Tangent Line Find the equation of the tangent line to the curve at the given value of x. 1. y = x3 + 5x2 − 9 x = −4 2. y = 2 (1 − x)3 9 3. y = √ 2x − 1 x=5 √ 4. y = 4 3 2 − 3x √ 5. y = x x2 + 3 x=1 x+5 6. y = √ x2 + 7 x=2 x = −2 x=3 Find the value(s) of x at which the tangent line is horizontal. 7. y = x3 − 3x2 − 9x 10. y = x4 x3 − 6 8. y = x3 3 − 6x2 + 8 x2 11. y = √ x2 − 2 9. y = x3 (4 − 3x)6 12. y = x2 (x2 + 3)4 3.8 Implicit Differentiation Find dy/dx. 13. x2 + y 2 = xy 14. x3 + 3xy + y 3 = 1 16. x2 y 3 + x3 y 2 = 5 17. √ √ 19. x y + y x = 7 20. √ xy = x + y 15. x + y = x2 y 2 + 3 18. x = 1 + xy y √ 21. y x + y = x y + x2 y 2 = 4 x Find the equation of the tangent line to the curve at the given values of x and y. 22. xy + x2 y 2 = 6 (x, y) = (1, 2) 23. √ x+y =x−y (x, y) = (3, 1) Answers: 1. dy = 3x2 + 10x; y = 8x + 39 dx 2. dy 6 ; y = 6x − 14 = dx (1 − x)4 3. dy 1 9 14 ; y =− x+ =− dx 3 3 (2x − 1)3/2 4. dy 4 ; y = −x + 6 =− dx (2 − 3x)2/3 5. dy 5 2x2 + 3 1 =√ ; y = x− dx 2 2 x2 + 3 6. 1 dy 7 − 5x 19 ; y =− x+ = 2 dx 8 8 (x + 7)3/2 dy 9x(4 − x) ; x = 0, 4 = 3 dx (x − 6x + 8)2 7. dy = 3(x + 1)(x − 3); x = −1, 3 dx 8. 9. dy 4 4 = 3x2 (4 − 9x)(4 − 3x)5 ; x = 0, , dx 9 3 10. √ dy x3 (x3 − 24) 3 ; x = 0, 2 3 = 3 2 dx (x − 6) 12. 6x(x − 1)(x + 1) dy =− ; x = −1, 0, 1 dx (x2 + 3)5 11. x(x − 2)(x + 2) dy = ; x = −2, 2 dx (x2 − 2)3/2 13. dy 2x − y = dx x − 2y 14. dy x2 + y =− dx x + y2 15. dy 2xy 2 − 1 = dx 1 − 2x2 y 16. y(3x + 2y) dy =− dx x(2x + 3y) 17. √ y − 2 xy dy = √ dx 2 xy − x 18. dy y(1 − y 2 ) = dx x(1 + y 2 ) 19. √ √ y(2 x + y) dy =− √ √ dx x( x + 2 y) 20. dy y(1 − 2x3 y) = dx x(1 + 2x3 y) 21. √ dy 2 x+y−y = dx 2x + 3y dy y 22. = − ; y = −2x + 4 dx x √ dy 2 x+y−1 3 4 23. = √ ; y = x− dx 2 x+y+1 5 5
© Copyright 2026 Paperzz