Derivative Practice 1 (Answers on back) For problems 1 through 20, find f 0 (x) for the given f (x). 1. f (x) = sin x cos x 2. f (x) = 11. f (x) = tan x x √ sin x + 12. f (x) = √ 4 √ 3 x 1 x2 + tan x 3x2 + 2 x−7 2 3. f (x) = sin(2x) 13. f (x) = 4. f (x) = 3 csc x + 7 cot x 14. f (x) = x6 + 7x4 + 2x−3 − π 5. f (x) = (x2 + 7)10 15. f (x) = 6. f (x) = 2x cos x 16. f (x) = (x sin x)3 2 tan2 x (x + 1)5 3 x+1 x−1 7. f (x) = cot(x ) 17. f (x) = sin 8. f (x) = sin(cos x) 18. f (x) = csc((x + 1)5 ) 9. f (x) = (x3 − 6x)11 19. f (x) = sec(cot(x3 )) 10. f (x) = sin(x2 ) + sec(x2 ) 20. f (x) = 7(x3 + 4x)5 sin3 x For problems 21 through 24, find the indicated derivative of f (x) 21. Find the 3rd derivative of f (x) = 7x4 + 2x3 + x−1 . 22. Find the 4th derivative of f (x) = cos(2x). 23. Find the 3rd derivative of f (x) = x sin x. 24. Find the 2nd derivative of f (x) = tan(x2 ). For problems 25 through 28, find y 0 for the given y, using implicit differentiation. 25. sin(y 2 ) = 2x. 26. y + x x+7 = cos y 27. xy + tan y = csc x 28. 3(y + 2)3 = x3 − 4 sin x − y 29. Find the equation of the tangent line to y = −3(x + 1)3 when x = 1. 30. If an object has position s(t) = 3 sin(2t) at time t, what are its velocity and acceleration when t = 5π/6? 1 1. − sin2 x + cos2 x 2. x sec2 x−tan x x2 3. 2 cos(2x) 4. −3 csc x cot x − 7 csc2 x 5. 10(x2 + 7)9 (2x) 6. 2 cos x − 2x sin x 7. − csc2 (x2 )(2x) 8. cos(cos x) · (− sin x) 9. 11(x3 − 6x)10 (3x2 − 6) 10. 2x cos(x2 ) + 2x sec(x2 ) tan(x2 ) 11. 1 −1/2 cos x 2 (sin x) + 13 x−2/3 12. − 41 (x2 + tan x)−5/4 (2x + sec2 x) 2 2 +2) +2 · (x−7)(6x)−(3x 13. 2 3xx−7 (x−7)2 14. 6x5 + 28x3 − 6x−4 15. (x+1)5 ·2 tan x sec2 x−tan2 x·5(x+1)4 (x+1)10 16. 3(x sin x)2 (sin x + x cos x) x−1−(x+1) x+1 17. 3 sin2 x+1 cos x−1 x−1 · (x−1)2 18. − csc((x + 1)5 ) cot((x + 1)5 ) · 5(x + 1)4 19. sec(cot(x3 )) tan(cot(x3 )) · (− csc2 (x3 )) · (3x2 ) 20. 21(x3 + 4x)5 sin2 x cos x + 35(x3 + 4x)4 (3x2 + 4) sin3 x 21. f 000 (x) = 168x + 12 − 6x−4 22. f (4) (x) = 16 cos(2x) 23. f 000 (x) = −x cos x − 3 sin x 24. f 00 (x) = 2 sec2 (x2 ) + 8x2 sec2 (x2 ) tan(x2 ) 25. y 0 = 1 y cos(y 2 ) 26. y 0 = −7 (x+7)2 (1+sin y) 27. y 0 = − csc x cot x−y x+sec2 y 28. y 0 = 3x2 −4 cos x 1+9(y+2)2 29. y + 24 = −36(x − 1) √ 5π 30. v( 5π ) = 3, a( ) = 6 3 6 6 2
© Copyright 2026 Paperzz