Exam 1: Things to Know Indefinite Integrals Z xn dx = 1 xn+1 + C n+1 Z 1 dx = ln |x| + C x Z ex dx = ex + C (n 6= −1) Z sin x dx = − cos x + C Z cos x dx = sin x + C Z sec2 x dx = tan x + C Z sec x tan x dx = sec x + C Z 1 √ = sin−1 x + C 2 1 − x Z 1 = tan−1 x + C 1 + x2 Indefinite Integrals to Know How to Derive 1. Z Z tan x dx = sin x dx = − cos x Z 1 du = − ln |u| + C = − ln | cos x| + C u where we use u = cos x =⇒ du = − sin x dx 2. Z Z sec x dx = sec x(sec x + tan x) dx = sec x + tan x Z sec2 x + sec x tan x dx = sec x + tan x Z = ln | sec x + tan x| + C where u = sec x + tan x =⇒ du = (sec x tan x + sec2 x) dx 3. Z Z ln x dx = x ln x − dx = x ln x − x + C u = ln x =⇒ du = v = x ⇐ dv = dx Note: Use similar method for inverse trig functions dx x 1 du = ln |u| + C u Trig Identities Pythagorean Identities: 1. (sin and cos) sin2 x + cos2 x = 1 2. (tan and sec) sin2 x cos2 x 1 + = =⇒ tan2 x + 1 = sec2 x 2 2 cos x cos x cos2 x Half-Angle Formulas: 1. sin2 x = 1−cos 2x 2 2. cos2 x = 1+cos 2x 2 Integration Techniques 1. u-substitution 2. Integration by parts: R u dv = uv − R v du 3. Trig Substitution: evaluate integrals in the form Z Z m n sin x cos x dx and tanm x secn x dx 4. Partial Fractions: denominators contain linear factors (including repeated) and irreducible quadratic factors of the form x2 − a (no repeats), polynomial division 5. Approximate Integration: approximate definite integrals using midpoint rectangles and trapezoids, use formula (will be given) to find bound on error 6. Improper Integrals: If f (x) is continuous on (−∞, ∞) and g(x) is continuous on [a, c) and (c, b], then Z ∞ Z t f (x) dx = lim f (x) dx Z a t→∞ a b Z f (x) dx = lim t→−∞ t −∞ Z ∞ Z f (x) dx = lim t→−∞ t −∞ Z t→∞ a g(x) dx t→c− b a Z g(x) dx = lim t→c+ Z b Z g(x) dx = lim a t→c− b g(x) dx t t Z g(x) dx + lim a f (x) dx t Z c t Z f (x) dx + lim g(x) dx = lim Z f (x) dx a c a b t→c+ b g(x) dx t if the limits on the right exist as finite numbers. Otherwise, we say that the improper integrals diverge. Arc Length and Surface Area Let s ds = 1+ s ds = dy dx 2 dx dy 2 1+ dx if y = f (x), a ≤ x ≤ b dy if x = g(y), a ≤ y ≤ b 1. Arc Length: Z b ds s= a 2. Surface Area: Z b S= 2πy ds (rotation about x-axis) 2πx ds (rotation about y-axis) a Z S= a b
© Copyright 2025 Paperzz