Properties of Silicon Baran Lab Hafensteiner Siliconium Ion Si vs. C - Si is less electronegative than C - Not believed to exist in any reaction in solution - More facile nucleophilic addition at Si center J. Y. Corey, J. Am. Chem. Soc. 1975, 97, 3237 - Pentacoordinate Si compounds have been observed Average BDE (kcal/mol) C–C 83 C–Si 76 C–O 86 Si–Si 53 Si–O 108 MeSiF4 NEt4 C–F 116 C–H 83 Si–F 135 Si–H 76 Ph3SiF2 NR4 - Lack of cation justified by high rate of bimolecular reactivity at Si Mechanism of TMS Deprotection OTMS O Average Bond Lengths (Å) C–C C–Si C–O Si–O 1.54 1.87 1.43 1.66 Silicon forms weak p-Bonds Workup O Si F NBu4 O Si F p - C–C = 65 kcal/mol p - C–Si = 36 kcal/mol Pentavalent Silicon Properties of Silicon Baran Lab Nucleophilic addition to Si F RO–SiMe3 b-Silicon effect and Solvolysis RO F–SiMe3 SiMe3 H Me3C OSiMe3 O Li H Me3C OCOCF3 H B H b-Silicon Effect H kA / kB = 2.4 x 1012 Duhamel et al. J. Org. Chem. 1996, 61, 2232 - Silicon stabalizes b-carbocations - Stabalization is a result of hyperconjugation H H Me3C H SiMe3 vs. H Me3C OCOCF3 H Me OCOCF3 kA / kB = 4 x 104 CR3 Evidence for Stepwise mechanism vs. Me3Si B *A is more stable than B by 38 kcal/mol * Jorgensen, JACS, 1986,107, 1496 vs. A Me-SiMe3 A H Me OCOCF3 H MeLi SiR3 Hafensteiner SiMe2Ph Me3Si Me3Si SiMe2Ph SiMe2Ph SiMe2Ph Me3Si Product ratios are equal from either starting material suggesting common intermediate cation Properties of Silicon Baran Lab Evidence for Rapid Nucleophilic Attack SiMe3 Extraordinary Metallation Me SiMe3 SnCl4 Me3Si Cl Cl MeO OMe OMe Si Me Li t-BuLi Me2Si Cl OMe Me2Si Cl vs. SiMe3 Gornowicz et al., J. Am. Chem. Soc. 1968, 90, 4478 SnCl4 Cl MeO OMe Hafensteiner OMe Cation-Anion Harmony - Stabalization of a-anion and b-cation exemplified in regioselectivity of the hydroboration of alkynlsilanes OMe Fleming et al., JCS Chem. Com. 1976, 182 Organosilanes Stabilize C–M Bonds - Metallation occurs a to silicon - Hyperconjugation gives stability R SiMe3 R2BH R d+ SiMe3 d- BR H d+ 2 d- Zweifel et al., J. Am. Chem. Soc. 1977, 99, 3184 Me Me Me M Si R R SiR3 R BR2 H Allylic and Vinylsilanes Baran Lab Hafensteiner Silicon Migration Vinylsilane Reactivity - Conjugate addition can be followed by Si migration - Migration aptitude enhanced when Si has bulky R groups - React with electrophiles - Regioselectivity governed by creation of b-carbocation - Elimination of SiR3 occurs with retention of initial double bond geometry due to principle of least motion - Limited rotation also prevents eclipsing interactions between silyl group and olefin substituents O Me TiCl4 Me (i-Pr)3Si CH2Cl2 O Vinylsilane Examples (i-Pr)3Si Et OTiCl4 Et OTiCl4 Me SiMe3 ClCH(OMe)2 TiCl4 Et Et OMe Me Si(i-Pr)3 Si(i-Pr)3 A. I. Meyers, J. Org. Chem. 1998, 63, 5517 N H NH SiMe3 (CH2O)n TsOH N N H Me MeO2C CO2Me R(i-Pr)2Si MeO2C ZrCl4 MeO C 2 CH2Cl2 Ar OMe R = i-Pr, Ph diasteromeric ratio 96:4, ~ 70% yeild Ar SiR3 Grieco et al. J. Chem. Soc. Chem. Comm., 1987, 185 Reactions with Silicon Sakurai Reaction - Lewis acid catalzed addition of allysilanes to aldehydes and acetals OMe Me3Si n-C4H9 MeO OMe Me3Si O OMe R TMS H TMS H OTMS BF3•Et2O cat. R H n-C4H9 83% Intramolecular Sakurai Reaction O H Me3Si Me TMS R R O LA RCHO R R O Me3Si O Markó et al. Tett. Lett.,1992, 33, 1799 R R Me Me ~65 : 35 O Me3Si 75 % OTiCl4 Me Me O Me3Si Me3Si OTMS 17 % Fleming, Org. Reactions 1989, 37, 127-133 Me H OH Me TMS H OH CH2Cl2 Me Me H TiCl4 O SiMe3 Me EtAlCl2 OH O R Me Conjugate Addition H R >95:5 syn:anti R Hyashi, Tett. Lett. 1983, 2865. OTMS H H OTMS OH CH2Cl2 ene reaction H TiCl4 n-C4H9 80% TiCl4 n-C4H9 MeO O R OMe TiCl4 Examples of Addition to Carbonyls O CH2Cl2 78% Majetich, Tetrahedron 1987, 43, 5621 O Brook Rearrangement Baran Lab Pioneering Work By A. G. Brook - Rearrangement of organosilyl alcohols under base catalysis - Retention at silicon and inversion at carbon R3Si OH Ph Ph Ph SiR3 Ph O H Et2NH DMSO - Brook rearrangement can be used to access homoallylic enolate anions O R Li SiR3 Et2NH Ph Ph PhS H N LiO PhS Examples of Brook Rearrangement R SiR3 Li R1 R3Si R O SiR3 O OLi OSiR3 [1,2] PhS E O R R OSiR3 OLi SiR3 R R Takeda, J. Am. Chem. Soc. 1993, 115, 9351 Takeda, Synlett. 1994, 178 Takeda, Synlett. 1997, 255 OLi Moser, Tet. 2001, 57, 2065-2084 PhS R O R3Si R R H Brook, Accts. Chem. Res. 1974, 7, 77-84 El OLi O H N O R OSiR3 SiR3 R3Si O Ph Ph H O (CH2)4 I Reich, J. Am. Chem. Soc. 1980, 102, 1423 O R3Si Hafensteiner PhS PhS R Moser, Tett. 2001, 57, 2065-2084 OLi R Peterson Olefination Baran Lab Pioneering Work By Peterson - Investigation aimed at finding a silicon analog to phosphorous ylides - Same cyclic four-membered transition state can be envisioned O R3Si M R3Si OM R3Si O H O H H R O R1 Li TMS O H H O OMe H H 2. SiO2, benzene R1 OM R3Si TMS 1. R R1 R H OMe OMe Hafensteiner TMS O H H O R R1 H O H 1. H2·Rh-Al2O3 H 2. BF3·Et2O H O OMe H H Peterson, J. Org. Chem. 1968, 33, 780-784 LA - Mg alkoxides are stable and do not breakdown to give olefin product - Li, Na, and K alkoxides are reactive and breakdown to give olefin product - b-silyl-alcohols can be converted to olefins with dilute acid OH R3Si R R 10% H2SO4 RT R R R3Si OH OH O TMS BF3•Et2O, MeOH OH OMe OH O TMS MeOH OH OH SiMe3 OMe Whitmore et al., J. Am. Chem. Soc. 1947, 69, 1551 Ager, Org. Reactions 1990, 38, 1. Tamao Oxidation Tamao Oxidation Representative Silanes - Conversion of organosilanes to corresponding alcohols - Pioneered by Tamao in 1984 (Tett. Lett. 1984, 25, 4249) CH2MgBr Me2Si O O O RMe2Si N RMe2Si O RMe2Si S RMe2Si SPh Si Me2 CuI cat. KHF2 TFA O RMe2Si RMe2Si MeO SPh O 30% H2O2 OH NaHCO3 F Si Me2 RSiMe2Tol-p RSiPh3 Yoshida et al. J. Org. Chem. 1999, 64, 8709 68% overall - Other substrates used and in all cases no Bayer-Villager seen O O O Synthetic Example 1. BF3·AcOH Me2Si O Ph N Ph O 2. 35% H2O2 NaHCO3 95% Weinreb et al. J. Org. Chem. 2002, 67, 4339 HO N Ph O Silicon in Synthesis Baran Lab Brook Rearrangement Hafensteiner Cyanthin Tricyclic Core PhMe2SiO O SiMe2Ph Me MeO OLi 0 °C to rt 47% dysidiolide i-Pr O Me OMe i-Pr HO HO O O OTBS O O TMS OH 13 Steps PhMe2Si O Me i-Pr O PhMe2SiO OLi O Me OMe i-Pr OMe H TBDPSO OH O 1. BF3, –78°C 2. PPTS, EtOH OLi TMS Me Me 6 steps Product i-Pr –80 °C to 0 °C 60% H TBDPSO Corey, Roberts, J. Am. Chem. Soc. 1997, 119, 12425 - 12431 O TBS Takeda et al. Org Lett. 2000, 2, 1907 OTBS SiMe3 i-Pr Silicon in Synthesis Baran Lab Brook Rearrangement H OH Hafensteiner O (+)-onocerin O TMS TfO TMSCH2ZnBr OTf HO Pd(PPh3)4 O H TMS O Li O Li TBS OTBS -78 °C O H OH 1. MeAlCl2 15 min 2. TBAF O 0.5 equiv I2 O CsF TfO OTf O O TBSO PhNTf2 HO H Mi, Schreiber, Corey, J. Am. Chem. Soc. 2002, 124, 11290-11291 OTBS O - Properties of silicon exploited - b-carbocation stabalization - a-anion stability Silicon in Synthesis Baran Lab (+)-Tetronomycin - Stabalization of b-cation –MeO OH H Hafensteiner MeO H O HOH H OH OTBDPS OH +MeO OTBDPS OMe OH H O R O O H O H 1 OH R TMS R H O H SiMe3 OMe - Key coupling step in convergent synthesis uses allysilane coupling reaction H H O H PivO MeO TMS H PivO H H H OH OTBDPS OH H OH H OTBDPS BF3•Et2O, 92% O O PivO OH H O H HOH OH OTBDPS O H R1 H O O O Yoshi et al. J. Org. Chem. 1992, 57, 2888 OMe Silicon in Synthesis Baran Lab O H (±)-Hirsutene H D CO2Et O H H 1. H2 / Pt / C 2. CO2Et HH 1. LiAlH4 2. PDC 72%, 2 steps TMS TMS H Me3SI, NaH H H DMSO 60% H H (±)-Sarain A Core Scaffold O O N OH N H PdCl2, CuCl O O2 76% H Sarkar et al. Tett. Lett., 1990, 31, 3461 1. TiCl4 2. PCC 53% H H H 97% O O H H 5% KOH 40% TMS TMS Hafensteiner HO O H H O Sarain A Silicon in Synthesis (±)-Sarain A Core Scaffold O (+)-Pumiliotoxin A O O BnN OTHP NBn O 65% O BnN H Bn N H H Bn N 1. Swern [O] 2. MgBr C4H9 BnN O BnN 3. Ac2O, TEA, DMAP 4. (TMS)2CNLi2Cu 27%, 4 steps H C H 4 9 TMS Li OH NCO2Bn Li H NBn N TMS N H 38% Al(i-Bu)2Me KOH, MeOH H2O 80% C4H9 (CH2O)n TMS NH HO TMS Weinreb et al., J. Org. Chem., 1991, 56, 3210 O TMS C4H9 CSA HO H Al(i-Bu)2Me O H C H 4 9 O TsN Dibal-H; MeLi H OH H Bn N TsN H C4H9 H Bn N H H TMS 3. ClCO2Me 4. MeMgBr; CuI 35%, 4 steps 1. o-DCB, 320 °C 2. TsOH, MeOH 70%, 2 steps TMS 1. Na, NH3, t-BuOH 2. LHMDS, TsCl, DMAP 3. Dibal-H 62%, 3 steps H 1. (–)-pinene, 9-BBN 2. MeLi; TMSCl; HCl O OTHP H Overman et al., J. Org. Chem., 1985, 50, 3670 C4H9 Silicon in Synthesis Baran Lab Hafensteiner Prostoglandins - Fleming contributed greatly to the field of organosilicon chemistry TMS TMS O Cl 70% Cl Cl MeOCH2Cl SnCl4 78% O MeO 1. O3 O 2. Me2S 47%, 2 steps MeO2C CO2Me Fleming, J. Chem. Soc. Chem. Comm., 1977, 79 - 80 Fleming, J. Chem. Soc. Chem. Comm., 1977, 81 2. Zn–AcOH–H2O 62%, 2 steps MeO Cl Cl (±)-Linaridial TMS H TiCl4 Loganin TMS TMS O OAc O 1. H2O2–AcOH O OAc O 0–5°C Cl OH ClCH2SMe 77% O O SMe 1. Raney Ni 2. CH2Br2, Zn, TiCl4 OAc Cl Cl ClSO2NCO H 1. NaNO2, Ac2O OAc MeO2C 2. NaOAc 3. CH2N2 61%, 4 steps OAc ClO2SN OH OTMS 1. KNH(CH2)3NH2 2. Hydroboration/ [O] H Silicon in Synthesis Baran Lab (±)-Linaridial CN OMe OH O O 1. Swern [O] H 2. Wittig 2. NaH CN OMe (OEt)2P O TMS 1. O3; Zn / HCl OMe H Hafensteiner TMS Ph3P OMe 1. Dibal-H 2. 1M HCl, THF EtAlCl2 53% 50% O O O CHO CHO H 2 : 1 Tokoroyama et al. Tett. Lett., 1987, 28, 6645 (±)-a-Acoradiene O Li O O P(OMe)2 61% O Yamamoto et al. J. Org. Chem., 1990, 55, 3971 : 2 Hydrosilation Baran Lab Hafensteiner Hydrosilation Reduction with Silanes - Metal and radical catalyzed addition to alkenes and alkynes - Metal catalysis is done at room temperature and best yields obtained with trichloro and methyldichlorosilanes - Addition of methyl grignard converts chlorosilanes to TMS H Cl3SiH SiCl3 R R H2PtCl6 H Cl3SiH Cl3Si R R H2PtCl6 - Catalysis needed for convenient rates - Catalysts include TBAF, protic and Lewis acids, Wilkinson's cat, silatrane Chalk; Harrod; J. Am. Chem. Soc. 1965, 87, 16 -Cr(CO)6 with light gives 1,4 reduction of dienes Germanes and Dehalogenation - Organohalides can also be reduced with various organogermanes - Can be used catalytically with PPh3 for reduction of C–X bond - Reactivity of halide I > Br > Cl > F - Solid support methods can be used - Similar reactivity to silanes - Furanylgermane reduces C–X bond under mild conditions O GeH 3 P (CH2)nEt2GeH O HO H Si N OO H Attar-Bashi et al. Organometallic Chem. 1976, 117, C87 Silanes and Dehalogenation - Organohalides can be reduced with various organosilanes - Radical mechanism of hydrodehalogenation - Reactivity of halide I > Br > Cl > F - Reactions are fast and clean often giving quantitative yields -Common Silanes S(i-Pr) H Si (i-Pr)S S(i-Pr) SMe H Si MeS SMe Et Si Et H Et - Common Radical Intiators AIBN -"Common" Germanes GeCl2•PPh3 O Dibenzoylperoxide - Phenylsilane is also used - Reactions with phenylsilane are refluxed neat with a radical initiator
© Copyright 2026 Paperzz