Seminar 3 Seemingly Unrelated Regression (SUR) II Petr Gapko ([email protected]) Printed by Mathematica for Students 2 seminar3_SUR2.nb Problem #5 from Baltagi, Chapter 10 (a) Show that var1,OLS 11 mx1 x1 and var2,OLS 22 mx2 x2 , where mxi x j Tt1 Xit Xi X jt X j for i, j 1, 2. Solution: 1 i iT 1,OLS X1T A X1 X1T A Y1 , A IT T , X1T A X1 Tt1 X1 t X1 X1 t X1 mx1 x1 1 var1,OLS 11 X1T A X1 m 11 . Similarly we proof that var2,OLS m 22 x1 x1 Printed by Mathematica for Students x2 x2 seminar3_SUR2.nb 1,GLS 22 mx1 x1 12 mx1 x2 var 11 22 212 11 mx2 x2 12 mx1 x2 2,GLS (b) 1 . Deduce that var1,GLS 11 22 212 11 mx2 x2 11 22 mx2 x2 mx1 x1 212 m2x1 x2 var2,GLS 11 22 212 22 mx1 x1 11 22 mx1 x1 mx2 x2 212 m2x1 x2 Solution: 1,GLS 2,GLS X1T A 0 X1T A 0 X2T 11 I 12 I 21 A 11 12 0 X2T 0 A 21 I 11 X1T A X1 12 X1T A X2 1 21 X2T A X1 22 X2T A X2 11 22 221 var1,GLS I A X1 0 0 A X2 22 1,GLS 11 X1T A X1 var 21 X2T A X1 2,GLS 22 0 1 22 X2T A X2 m2x1 x2 X1T A 0 X2T 0 11 12 0 X2T 21 A 22 11 I 12 I 21 A I 22 I Y1 Y2 21 X2T A Y1 22 X2T A Y2 22 mx1 x1 12 mx1 x2 21 mx2 x1 11 mx2 x2 11 22 mx1 x1 mx2 x2 221 1 X1T A 11 X1T A Y1 12 X1T A Y2 12 X1T A X2 11 22 221 11 mx2 x2 1 A X1 0 0 A X2 and 11 mx1 x1 12 mx1 x2 1 21 mx2 x1 22 mx2 x2 1 11 22 221 11 22 mx1 x1 mx2 x2 221 and similarly var2,GLS m2x1 x2 11 mx2 x2 12 mx1 x2 21 mx2 x1 22 mx1 x1 11 22 212 22 mx1 x1 11 22 mx1 x1 mx2 x2 212 m2x1 x2 Printed by Mathematica for Students Y1 Y2 3 4 seminar3_SUR2.nb (c) Using 12 11 22 12 and r mx1 x2 mx1 x1 mx2 x2 12 and the results in part (a) and (b), show that var1,GLS var1,OLS 1 2 1 2 r2 . Solution: var1,GLS var1,OLS 11 22 221 11 mx2 x2 11 22 mx1 x1 mx2 x2 221 m2x1 x2 11 mx1 x1 11 22 221 mx1 x1 mx2 x2 11 22 mx1 x1 mx2 x2 221 m2x1 x2 212 212 1 2 1 1 m2x x 1 2 2 r2 Printed by Mathematica for Students m2x 1 1 x2 r2 212 m2x1 x2 2 r 2 1 2 r 2 1 r2 1 12 12 r2 seminar3_SUR2.nb 5 (d) Differentiate var12,GLS var12,OLS 1 2 1 2 r2 with respect to 2 and show that this expression is a non-increasing function of . Similarly, differenetiate the expression with respect to r2 and show that it is a non-decreasing function of . Finally, compute this efficiency measure for various values of 2 and r2 between 0 and 1 at 0,1 intervals. Solution: 1 2 1 2 r 2 2 1 2 r2 1 2 r2 1 r 2 2 2 r2 1 12 r2 2 . Both 2 and r2 are from interval 0, 1 and thus the expression is non-positive for all values 2 and r2 . Moreover the sign at 2 is negative and this with the power of two causes that the expression is a non-increasing function in 2 . 1 2 2 2 1 r r2 2 12 12 r2 2 . As both 2 and r2 are from interval 0, 1 this function will be non- negative for all values of 2 and r2 and thus the bigger r2 the bigger value of the function. Problem #8 from Baltagi, Chapter 10 a) Derive the GLS estimator for SUR with unequal number of observations given by: GLS 1 12 X1 ' X2 11 X1 ' X1 22 X2 ' X2 X20 ' X20 22 12 X2 ' X1 11 X1 ' y1 12 X1 ' y2 12 X2 ' y1 22 X2 ' y2 X20 ' y02 22 , where * denotes T observations common for both datasets and 0 denotes extra N observations for the second dataset. Solution: First we need to define the omega matrix. From Baltagi this is block diagonal: 0 X1 0 y1 11 IT 12 IT 0 1 12 22 IT IT . Moreover we have: X 0 X2 and y y2 . 1 0 X20 y02 IN 0 0 22 We can write: X1 ' 0 0 0 X2 ' X20 ' 12 IT 22 IT 0 0 1 Therefore GLS X ' 1 X X ' 1 y 11 X1 ' X1 12 X2 ' X1 0 0 11 IT 12 IT 1 22 12 X1 ' X2 IN 11 X1 ' 12 12 X1 ' X2 ' 22 0 1 22 X2 ' . X20 ' . 22 X2 ' X2 X20 ' X20 22 1 11 X1 ' y1 12 X1 ' y2 12 X2 ' y1 22 X2 ' y2 X20 ' y02 22 (b) Show that if 12 0, SUR with unequal number of observations reduces to OLS on each equation separately. Solution: 11 IT 0 0 0 22 IT 0 If 12 0 we have: 1 0 0 22 IN and ii 1 ii 1 11 and thus 1 IT 0 1 22 0 0 IT 0 0 0 1 22 so that 12 0 IN for i = 1,2. 1 From previous example we have GLS X ' 1 X X ' 1 y 1 and GLS X ' 1 X X ' 1 y X1 ' X1 11 0 1 0 X2 ' X2 22 X20 ' X20 22 1,OLS X1 ' X1 1 X1 ' y1 1 X2 ' X2 X20 ' X20 X2 ' y2 X20 ' y02 2,OLS Printed by Mathematica for Students X1 ' y1 11 X2 ' y2 X20 ' y02 22
© Copyright 2026 Paperzz