27[Sanple Final Exam. Score N Solve the following homogeneous differential equation. 1) 5y" - 3Y'+ 3Y = fl A) y = "nEnoX[ql (@"'l:1 ['i'* ,io*, . *:- o "" #1] c2 .o, 1) *;l C) y = g1s(3[01x * gre^,E7r0x D) y = e(-3l1ox[c1 r.#,.. ., "", #.] Find the solution to the following differential equation satisfying the given endpoint conditions. e-1!L--\ We-xsin3x (a 2)D2y*2Dy+10y=0wift Y(0)=0andy(n/5) A)y=exsin3x C) y = g-x cos 3x D) y = e-x (C1 sin3x Use the method of undetermined coefficients to solve the 3) y" * 4y' + 4y = 6e-X A) y = (C1 + C2x)e-2x * 6vs-x 2) + C2 cos 3x) differential equation. 3) CQgl+c2ge-2x+6e-x ' D)y=(C1 +C2x)e-2x- 6e-x C)y=C1e-2x +C2&x+6e-x Solve the given differential equation. q Y"r+ 49Y =cos 7x 4) A) y= c1 sin 7x + c2 cos z* *fi^cos B) y = c1 sin 7x + c2 cos 7x - 7x fix *rrzx r*.I*"^r: CC"r*l.+c2cos D) y = c1 sin 7x + c2 cos 7x + fixsin 7x + 1, fix Use the method of undeterurined coefficients to solve the 5) y" - 25y = 35;r, x with Y(0) = 0 and y'(0) = Q. olr=*-d*C) y = - _ cos 7x differential equation. 5) x osx "-5,,-fr "or* fr"s, * fr."-s, - fi "o, * D) y= --3 "-sx -a sin x -*u**7r1-"-s* -S 'm,, ,/14 Use the method of variation of parameters to solve the differential equation. 6)Y"*Y=sedx 6) - 1 + cos x lnlsec x + tan xl + B) y= Ct cos x C2 sinx - secx sinx + sinx Inlcsc x + cotxl C)y = Ct cos x + C2 sin x - sec x sin x + cos x ln I sec x + tan x D\i =C1 cos x + C2sinx - L + sin x lnlsec x + tan xl A) y = C1 cos x + C2sin x I Solve the problem. 7) A spring with a spring constant k of.175 newtons per meter is loaded with a 7-kilogram mass and allowed to reach equilibrium. It is then stretched an additional0.S meter and released. the equation of motion. Neglect friction. B) y = o.g cos 15.5531 = 0.8 cos 5t D) y = 0.8 sin 5t C) Y = O.g sin 25t 8)FindthechargeQasafunctionoftimeinanRCLcircuitifR=105C),L=0,C=5,10-5F, n 8) and E = 5 V. Aszume that Q = 0 and I = 0 at t = 0 (when the switch is closed). A)Q=5,10-6(1-"-0.2t) C)Q=r.5,19-51t-e-t) ,--@= 2.5 x 1o-s (1 - "-o'29 D)e=u,1s-61t-e-g ( 9)FindthecurrentlasafunctionoftimeinanRLCcircuitifR=10O,L=0.025H,C=0.00014 AY{=7.27e-2001 s6 )) 6991 I = 1.50e-240t sin 5961 e) B) | = 1.27 e-2401 gss 6991 D) I = 1.20e-200t s6 5,691 initially contains 100 gal of brine in which 20 lb of salt are dissolved. A brine containing Slblgal of salt runs into the tank at the rate of 5 gafmin. The mixture is kept uniform by stirring 10) A tank 10) and flows out of the tank at the rate of 4 gafmin. Find the solution to the differential equation modeling the mixing process if the variable y is the concentration of salt in the tank at time t. - 1.8 x 1010 A)v=3-'J (100+t)a c)v=3* B)v=3- 2'8x108(100 + 05 1'8x1019 (100 + $5 and which are unstable. y' = (y - 3Xy - 5)3(y - 6,) A) y = 3 is a stable equilibrium value and y = 5 and y = 6 areunstable equilibria. = 5 is a stable equilibrium value and y = 3 and y = 5 are unstable equilibria. ,-3D Cl I= 6 is a stableequilibriumvalue andy=5 andy =3 areunstableequilibria. ( \ D) y= 5 is a semi-stableequilibriumandy =3 and y =6areunstable equilibria. 11) 11) Solve the Bernoulli differential equation. 12)3x2y' -2xy =y-3 N y2 =+1*+ Cx1U3 qt'=**311/3 12) Identifythe signs rg)* =f of/ and y". -7 13) A) ' y'<0 y'>o y'>o y'< y" <0 y" >o y" <o y" y'>o y'<o y'< y'ro y" <o y'lro y" <o y" >o y'.o y' .o y'<o y'>o y" ao y" <o y" <o y" y'>o y'<o y'< y',o yt'>o y" <o y" >o o o o ro to y" >o 0L -1 Solve the following problem. 14)The system of equations 'S = OO* - 3x2 -axy ana S = 42y - 3yZ '2xy is a competition model for certain species x & y of lemurs. Find and classify the nontrivial equilibrium point. Al (12,6); it's a cmter. C) (12,4); it's an unstable spiral. j,) it's a stable 2-tangent node. a saddle point. D) (72,4); it's l4')
© Copyright 2025 Paperzz