AM1 Mathematical Analysis 1 Oct. 2011 – Feb. 2012 Exercises Lecture 13 Date: January 13 Example 13.1. 1. 1 lim 4 x 2. x→0+ 1 log 4 x = +∞ 1 log 4 x =0 1. limx→0+ 4 x = limx→0+ e 2. limx→0− 4 x = limx→0− e 1 lim 4 x x→0− Example 13.2. 1 lim (sin x) log2 x x→1+ 1 lim (sin x) log2 x = lim e log sin x log2 x x→1+ x→1+ =0 Since log sin x < 0 for any x such that sin x > 0. Example 13.3. lim |x − 1|x−1 x→1 lim |x − 1|x−1 = lim e(x−1) log |x−1| = lim e y log |y| = 1 x→1 x→1 y→0 Since limy→0 y log y = 0. Example 13.4. √ sin x − x √ lim x→0 1 − cos 4 x We have that sin x − √ √ sin x x( √ − 1) x √ = − x(1 + o(1)) x= 13-1 for x → 0 13-2 and 1 − cos Thus √ 4 x= 1√ x(1 + o(1)) 2 for x → 0 √ sin x − x √ = −2 lim x→0 1 − cos 4 x Example 13.5. lim x [log(x + 1) − log x] x→+∞ We have that x+1 lim x [log(x + 1) − log x] = lim x log x→+∞ x→+∞ x 1 = lim x log 1 + x→+∞ x 1 = lim log(1 + y) y→0 y y(1 + o(1)) = lim y→0 y =1 Example 13.6. r lim (x + 5) x→+∞ x+1 −x x−1 We have that r lim (x + 5) x→+∞ Where x+1 x−1 =1+ 2 x−1 # r x+1 x+1 −1 +5 x−1 x−1 "r # 2 = 5 + lim x 1+ −1 x→+∞ x−1 1 2 1 = 5 + lim x 1 + +o −1 x→+∞ 2 x−1 x x = 5 + lim x→+∞ x − 1 =6 x+1 − x = lim x x→+∞ x−1 "r is obtained by polynomial division. 13-3 Example 13.7. lim x→+∞ x3 − 2x + 1 x2 + x3 2 +1 2xx−3 First of all we rewrite the limit in the following equivalent form lim e 2x2 +1 x−3 log x3 −2x+1 x2 +x3 x→+∞ Next we perform the division of x3 − 2x + 1 by x3 + x2 and find −x2 − 2x + 1 x3 − 2x + 1 = 1 + x2 + x3 x3 + x2 Therefore 2x2 + 1 log x−3 x3 − 2x + 1 x2 + x3 2x2 + 1 −x2 − 2x + 1 log 1 + x−3 x3 + x2 2 2 −x − 2x + 1 2x + 1 (1 + o(1)) = x−3 x3 + x2 −2x4 (1 + o(1)) = (1 + o(1)) x4 (1 + o(1)) = 2 (1 + o(1)) for x → +∞ = Thus lim x→+∞ x3 − 2x + 1 x2 + x3 2 +1 2xx−3 = e−2 Example 13.8. log cos x x→0 sin 2x2 lim We have that sin 2x2 = 2x2 + o(x4 ) x2 for x → 0 + o(x3 ) for x → 0 cos x = 1 − 2 x2 x2 3 log 1 − + o(x ) = − + o(x2 ) for x → 0 2 2 Thus lim x→0 log cos x 1 =− 2 sin 2x 4 13-4 Example 13.9. lim (sin x)x 2 +3x log x x→0+ First of all we do the classic trick 2 +3x log x lim (sin x)x x→0+ = lim e(x 2 +3x log x) log(sin x) x→0+ Then we note that sin x = x + o(x2 ) for x → 0+ log sin x = log(x + o(x2 )) = log(x(1 + o(x))) = log x + log(1 + o(x)) for x → 0+ = log x + o(x) Thus lim (sin x)x 2 +3x log x x→0+ 2 = lim ex log x+3x log2 x+o(1) x→0+ since limx→0+ xα logβ x = 0 for any α > 0 and any real β. Example 13.10. lim x→0+ log(1 + sin x) sin 2x + x2 log x Now we have that sin 2x = 2x + o(x2 ) for x → 0+ log(1 + sin x) = log(1 + x + o(x2 )) = x + o(x) for x → 0+ sin 2x + x2 log x = 2x + o(x2 ) + x2 log x = 2x(1 + x log x + o(x)) = 2x(1 + o(1)) for x → 0+ Thus lim x→0+ log(1 + sin x) 1 = 2 sin 2x + x log x 2 Example 13.11. e2x−3 − e−3 x→0 sin x lim =1 13-5 We have that e2x−3 − e−3 e2x − 1 = e−3 lim x→0 x→0 x(1 + o(x2 )) sin x 1 + 2x + o(x) − 1 = e−3 lim x→0 x(1 + o(x2 )) = 2e−3 lim Example 13.12. sin √ lim 1 + x2 − 1 x x→0 We have that sin lim x→0 √ 1 + x2 − 1 x 1 + 12 x2 + o(x2 ) − 1 x→0 x 1 2 2) x + o(x = lim 2 x→0 x =0 = lim Example 13.13. lim x→0 log(1 + x) + sin x + x x + x2 2 We have that x + x2 = x + o(x) for x → 0 log(1 + x) = x + o(x) for x → 0 2 sin x = x + o(x ) for x → 0 Thus lim x→0 Example 13.14. log(1 + x) + sin x + x x + x2 2 = lim x→0 3x + o(x) x + o(x) 1 √ 1 e− x2 + log 1 + x 5 − sin 3 x √ √ lim 3 x→0 x−25x 2 =9 13-6 We have that 1 e− x2 = o(xα ) ∀α > 0, for x → 0 √ √ √ 1 1 1 log 1 + x 5 − sin 3 x = x 5 − sin 3 x + o(x 5 − sin 3 x) √ √ √ = 5 x − 3 x + o( 5 x) √ = 5 x(1 + o(1)) for x → 0 √ √ √ 3 x − 2 5 x = −2 5 x(1 + o(1)) for x → 0 Thus 1 √ 1 √ e− x2 + log 1 + x 5 − sin 3 x 5 x(1 + o(1)) 1 √ √ √ lim = lim =− 3 5 5 x→0 x→0 −2 x(1 + o(1)) 2 x−2 x Example 13.15. sin x5 3−x lim x→+∞ x4 2−x We have that lim x5 3−x = 0 x→+∞ ⇒ sin x5 3−x = x5 3−x (1 + o(1)) for x → +∞ Thus sin x5 3−x x5 3−x (1 + o(1)) = lim lim x→+∞ x→+∞ x4 2−x x4 2−x x 2 (1 + o(1)) = lim x x→+∞ 3 =0 since 2 x 3 = o(xα ) for any real α for x → +∞. Example 13.16. lim x→+∞ cos x1 cos x2 ! x2 +1 x First of all we do the usual transformation lim x→+∞ cos x1 cos x2 ! x2 +1 x = lim e x→+∞ x2 +1 x log 1 cos x 2 cos x 13-7 then we study the exponent. ! cos x1 1 1 1 1 log = log 1 − 2 + o − log 1 − 2 + o 2 3 2x x x x3 cos x 1 1 1 = 2 − 2 +o x 2x x3 Thus lim x→+∞ cos cos 1 x 2 x ! x2 +1 x = lim e x2 +1 x 1 +o x2 1 x3 x→+∞ = lim e x2 +1 +o 12 2x3 x x→+∞ =1 Example 13.17. √1 (2xx − 1) x − 1 √ lim x log x x→0+ Bearing in mind that limx→0+ x log x = 0, let us study the numerator for x → 0+ : 2xx − 1 = 2ex log x − 1 = 2(1 + x log x + o(x log x)) − 1 = 1 + 2x log x + o(x log x) then (1 + 2x log x + o(x log x)) √1 x −1=e =e √1 x log(1+2x log x+o(x log x)) 2x log x+o(x log x) √ x −1 −1 √ √ 2 x log x+o( x log x) −1 √ = 1 + 2 x log x + o( x log x) − 1 √ √ = 2 x log x + o( x log x) =e Thus √1 √ (2xx − 1) x − 1 √ lim =2 x log x x→0+
© Copyright 2026 Paperzz