Slide 1 / 39 Slide 2 / 39 New Jersey Center for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and teachers. These materials may not be used for any commercial purpose without the written permission of the owners. NJCTL maintains its website for the convenience of teachers who wish to make their work available to other teachers, participate in a virtual professional learning community, and/or provide access to course materials to parents, students and others. Solutions: Mixtures, Solubility and Concentration Click to go to website: www.njctl.org www.njctl.org Slide 3 / 39 Slide 4 / 39 Mixtures vs. Pure Substances Solutions Mixtures contain two or more pure substances. Mixtures do not obey the law of definite composition therefore the relative amounts of each substance can vary depending on the sample. Pure water H2O 89% O, 11% H chemical The infamous saltwater crocodile cannot survive in freshwater. It needs a mixture of water and many solutes. Salt water contains H2O, Ca2+, Cl-, Na+..... composition by mass varies separation method physical All mixtures can be separated using physical means while most pure substances cannot with the exception of thermal decomposition of certain pure substances such as metal carbonates and metal chlorates. What are some methods for physically separating mixtures? Slide 5 / 39 Slide 6 / 39 Mixtures Suspensions Mixtures are classified as suspensions, colloids, or solutions based on particle size. Due to their large particle size, suspensions can often be separated by filtration. Suspension Particle Size Colloid > 1000 nm 1000 nm <-->1 nm Solution < 1 nm Settling Yes No No Homogenous No Yes Yes Tyndall Effect (particles scatter light) Yes Yes No Given the similarity between colloids and solutions, the Tyndall effect is often key to distinguishing them apart. Click here to see a short animation of the Tyndall Effect When precipitates form a mixture of aqueous solutions, a suspension is created with the solid precipitate settling out in an aqueous medium. The solid precipitate can be easily separated by proper filtration. filtration precipitate + Other examples of suspensions include sand in water and snow in air. Slide 7 / 39 Slide 8 / 39 Colloids Solutions Due to their smaller particle size, colloids cannot be separated by filtration. In addition, the particles neither settle nor dissolve in the greater medium. Solutions contain the smallest solute particles that dissolve in a medium called the solvent. Solutions are homogeneous mixtures because regardless of sample size, the ratio of solute particles to solvent remains the same. Fog is a classic example of a colloid, as the water droplets neither dissolve in the surrounding gaseous medium nor do they settle out. The Tyndall Effect is easy to see when driving through fog as the light from the headlights gets scattered by the particles as visualized below by sunshine on a foggy morning. Uniform mixture of solute (purple) and solvent (green) If you took a 5mL sample or a 200mL sample of a solution you would find the exact same ratio of solute to solvent. Slide 9 / 39 Solutions Solutions contain the smallest solute particles that dissolve in a medium called the solvent. Solutions are homologous mixtures because regardless of sample size, the ratio of solute particles to solven remains the same. Salt water is a classic example of a solution. The Na+ and Clions are dissolved in the solvent, creating a uniform material. + - ++ + + Cl- + + Na+ + + + + Cl- - Na+ - + + + + + Na+ - + + Cl+ + Due to their small size and interactions with the solvent, the solute particles cannot be filtered out. Slide 10 / 39 1 Which of the following would be TRUE regarding mixtures? A A sample of a mixture will never be uniform in composition B They can be typically separated using only chemical methods C They vary in composition from sample to sample. D Only solutions are considered true mixtures E None of these are true How could you physically separate solutes from solvents in a solution? Slide 10 (Answer) / 39 1 Which of the following would be TRUE regarding mixtures? A A sample of a mixture will never be uniform in composition Slide 11 / 39 2 A mixture cannot be separated by filtration and does not demonstrate the Tyndall Effect. Which of the following could this mixture be? A NaCl(s) B NaCl(aq) C They vary in composition from sample to sample. C Sand dissolved in water D Only solutions are considered true Cmixtures D Fog in the air E None of these are true E Pure water Answer B They can be typically separated using only chemical methods [This object is a pull tab] Slide 11 (Answer) / 39 2 A mixture cannot be separated by filtration and does not demonstrate the Tyndall Effect. Which of the following could this mixture be? Slide 12 / 39 3 Which of the following physical methods is often employed to separate a suspension? A Distillation A NaCl(s) B Filtration B NaCl(aq) C Evaporation D Fog in the air E Pure water Answer C Sand dissolved in water D Chromatography B E Lithography [This object is a pull tab] Slide 12 (Answer) / 39 3 Which of the following physical methods is often employed to separate a suspension? Slide 13 / 39 4 Which of the following would NOT be TRUE of a solution? A There are no interactions between the solute and the solvent B Filtration B Solutions cannot be separated by filtration C Evaporation C A sample of a solution will be uniform in composition Answer A Distillation D Chromatography E Lithography B D Solutions have smaller particles than do colloids and suspensions E Solutions do not demonstrate the Tyndall Effect [This object is a pull tab] Slide 13 (Answer) / 39 4 Which of the following would NOT be TRUE of a solution? A There are no interactions between the solute and the solvent B Solutions cannot be separated by filtration Answer C A sample of a solution will be uniform in composition D Solutions have smaller particles than A do colloids and suspensions E Solutions do not demonstrate the Tyndall Effect [This object is a pull tab] Slide 14 / 39 Solubility The solubility of a solute is defined as the amount of solute that can dissolve in a certain quantity of solvent. The solubility of a solute depends on its state and its affinity for the solvent. Solubility is commonly expressed as g solute/100 g of solvent. Substance Solubility in water @23 C CH3OH infinite CH3Cl 0.47 g/100 g water CCl4 0.081 g/100 g water Note: The more polar the molecule, the more affinity for water as it is also polar. CCl4 is non-polar and therefore has an extremely small solubility in water. The phrase "like dissolves like" is applicable here. Slide 15 / 39 Slide 16 / 39 Solubility The solubility of a solute in a solvent is highly temperature dependent. In general, solids and liquids dissolve better at higher temperatures while gases are more soluble at lower temperatures. Solubility of NaCl (g/100g water) at different temperatures. 0C 10 C 50 C 80 C 100 C 35.65 35.72 36.69 37.93 38.99 Solubility of NH3 gas (mL/100 mL water) at different temperatures. 0C 10 C 50 C 80 C 100 C 11.7 9.0 3.33 1.38 0.88 5 Which of the following would likely be the LEAST soluble in water? A CO2 B HCl C PH3 D CHCl3 E CH3OH Note: The decrease in gas solubility with temperature can be explained by remembering that if the gas molecules have a high kinetic energy, they are likely to weaken any solute -solvent attraction and escape the solution. Slide 16 (Answer) / 39 5 Which of the following would likely be the LEAST soluble in water? Slide 17 / 39 6 Which of the following would be most likely to dissolve in hexane (C6H14)? A CH3OH B HCl B H2O C PH3 C Br2 D CHCl3 D CH2Cl2 E CH3OH Answer A CO2 A E NaCl [This object is a pull tab] Slide 17 (Answer) / 39 6 Which of the following would be most likely to dissolve in hexane (C6H14)? B Polar substances are most miscible in non-polar solvents B H2O C Br2 C In general, as the temperature increases, the solubility of most solids decrease Answer E NaCl 7 Which of the following is TRUE regarding solubility? A O2 gas would be more soluble at 10 C than 20 C A CH3OH D CH2Cl2 Slide 18 / 39 C D Solubility is not temperature dependent E Solubility is not dependent on the polarity of the solute or solvent [This object is a pull tab] Slide 18 (Answer) / 39 7 Which of the following is TRUE regarding solubility? A O2 gas would be more soluble at 10 C than 20 C B Polar substances are most miscible in non-polar solvents Answer C In general, as the temperature increases, the solubility of most solids decrease D Solubility is not temperature dependent A Slide 19 / 39 8 Which of the following would NOT be a miscible pair of solute and solvent? A KOH and H2O B CCl4 and C6H6 C CH3OH and H2O D CH3OH and CH3CH2OH E CH3OH and CCl4 E Solubility is not dependent on the polarity of the solute or solvent [This object is a pull tab] Slide 19 (Answer) / 39 8 Which of the following would NOT be a miscible pair of solute and solvent? A KOH and H2O Slide 20 / 39 Solubility Saturated solutions contain the maximum dissolved solute at that temperature. Unsaturated solutions contain less and supersaturated solutions contain more. B CCl4 and C6H6 C CH3OH and H2O D CH3OH and CH3CH2OH Answer Unsaturated E E CH3OH and CCl4 [This object is a pull tab] In an unsaturated solution any new solute will dissolve whereas in a supersaturated solution, the amount of undissolved solute is growing. Slide 22 / 39 Solubility Curves The line represents the amount of solute necessary for the dissolved and undissolved amounts to be in equilibrium - a saturated solution. Below the line the solution is unsaturated and above the line the solution is supersaturated. Solubility Curves The solubility curve for a given salt is difficult to predict. Solubility, grams per 100mL H20 Temperature in Celsius Supersaturated In a saturated solution, undissolved solute and dissolved solute are in equilibrium. Slide 21 / 39 A solubility curve shows how much solute can dissolve in a certain amount of solvent at a given temperature. Saturated Slide 23 / 39 Slide 24 / 39 Solubility Curves Solubility Curves The solubility curves for gases clearly show the inverse relationship of gas solubility and temperature. The solubility of a gas also depends on the pressure. The higher the partial pressure of that gas above the liquid, the greater the solubility. This is known as Henry's Law. We can view the dissolved gas and undissolved gas above a solution as an equilibrium situation. Gas(dissolved) <--> Gas (undissolved) If the partial pressure of the undissolved gas is increased above a liquid, the equilibrium will shift left and more gas will dissolve. Gas(dissolved) <--> Gas (undissolved) Note: Cooler streams have higher dissolved oxygen (DO) levels than warmer streams therefore supporting a different variety of life. Note: This is how soft drink manufacturers carbonate your soda. They simply crank up the partial pressure of CO2 above the liquid and that causes more CO2 to dissolve. They then smack a lid on top so the pressure is maintained. Slide 25 / 39 Slide 25 (Answer) / 39 9 The curve to the right best represents the solubility curve for B C6H12O6 A KI Solubility (g/ 100g H2O) Solubility (g/ 100g H2O) B C6H12O6 C CO2 C CO2 Temperature D NaCl E None of these Temperature D NaCl E None of these Answer A KI 9 The curve to the right best represents the solubility curve for C [This object is a pull tab] 10 How many moles of NaCl would dissolve in a saturated solution containing 450 g of water @10 C. Assume the solubility of NaCl is 35.72 g/100 g water @10 C. Temperature in Celsius Slide 26 (Answer) / 39 10 How many moles of NaCl would dissolve in a saturated solution containing 450 g of water @10 C. Assume the solubility of NaCl is 35.72 g/100 g water @10 C. Answer Slide 26 / 39 Temperature in Celsius 2.77 moles [This object is a pull tab] 11 Using the solubility curve below, how many grams of solute could be recrystallized if the temperature is dropped from 50 C to 20 C? Slide 27 (Answer) / 39 11 Using the solubility curve below, how many grams of solute could be recrystallized if the temperature is dropped from 50 C to 20 C? Answer Slide 27 / 39 Temperature in Celsius 10 grams Temperature in Celsius [This object is a pull tab] Slide 28 / 39 12 Under which set of conditions will a gas dissolve best? Slide 28 (Answer) / 39 12 Under which set of conditions will a gas dissolve best? A High Temp, High Pressure B Low Temp, High Pressure B Low Temp, High Pressure C Low Temp, Low Pressure C Low Temp, Low Pressure D High Temp, Low Pressure D High Temp, Low Pressure Answer A High Temp, High Pressure B [This object is a pull tab] Slide 29 / 39 13 Which of the following explain why a soda will become flat over time at a given temperature if left open? Slide 29 (Answer) / 39 13 Which of the following explain why a soda will become flat over time at a given temperature if left open? A Once opened, the partial pressure has diminished above the liquid thereby lowering the solubility B The polarity of the gas changes as the pressure changes B The polarity of the gas changes as the pressure changes C The CO2 gas is replaced by other less bubbly gases C The CO2 gas is replaced by other less bubbly gases D CO2 is polar D CO2 is polar Answer A Once opened, the partial pressure has diminished above the liquid thereby lowering the solubility A [This object is a pull tab] Slide 30 / 39 14 As the temperature increases, what must be true of the partial pressure of a gas above a liquid in order to maintain the same solubility of that gas in the liquid? Slide 30 (Answer) / 39 14 As the temperature increases, what must be true of the partial pressure of a gas above a liquid in order to maintain the same solubility of that gas in the liquid? A It must be increased B It must be decreased B It must be decreased C It has no influence, temperature plays the dominant role C It has no influence, temperature plays the dominant role Answer A It must be increased A [This object is a pull tab] Slide 31 / 39 Solution Concentration There are many ways to express the amount of solute dissolved in a solvent. Slide 32 / 39 15 What is the molarity of an aqueous NaCl solution @10 C assuming a solubility of 45.72 g NaCl/100 g water?Assume a density of 1g/mL of water. Common Concentration Units Molarity (M) = mol solute/L solution Molality (m) = mol solute/kg solvent Mole Fraction (X) = nsolute/ntotal % by volume = Vsolute/Vsolution % by mass = gsolute/gtotal Molarity is temperature dependent unlike the others. How would increasing the temperature of a solution affect its Molarity (M)? Slide 32 (Answer) / 39 Answer 15 What is the molarity of an aqueous NaCl solution @10 C assuming a solubility of 45.72 g NaCl/100 g water?Assume a density of 1g/mL of water. 7.88 M [This object is a pull tab] Slide 33 / 39 16 How many moles of OH- ion are present in a 100 mL aqueous solution of 0.5 M Mg(OH)2? Slide 33 (Answer) / 39 Answer 16 How many moles of OH- ion are present in a 100 mL aqueous solution of 0.5 M Mg(OH)2? Slide 34 / 39 17 How many mL of water must have evaporated from a 200 mL 0.3 M HCl solution to produce a 0.5 M solution of HCl? 0.1 moles [This object is a pull tab] Slide 34 (Answer) / 39 Answer 17 How many mL of water must have evaporated from a 200 mL 0.3 M HCl solution to produce a 0.5 M solution of HCl? Slide 35 / 39 18 A solution consisting of ethanol (CH3CH2OH) and water is 25% ethanol by mass. What is the molality of this solution? 80 mL [This object is a pull tab] Slide 35 (Answer) / 39 18 A solution consisting of ethanol (CH3CH2OH) and water is 25% ethanol by mass. What is the molality of this solution? Slide 36 / 39 19 An aqueous NaCl solution is heated. Assuming no evaporation of the solvent, which of the following will be TRUE? A The molarity will increase B The molarity will decrease Answer C The molality will decrease 7.24 m D The molality will increase E The mole fraction of solute will decrease [This object is a pull tab] Slide 36 (Answer) / 39 19 An aqueous NaCl solution is heated. Assuming no evaporation of the solvent, which of the following will be TRUE? Slide 37 / 39 20 What is the mole fraction of an aqueous 200 mL solution that is 0.45 M CH3OH. Assume the density of the solution is 1.03 g/mL. A The molarity will increase B The molarity will decrease Answer C The molality will decrease D The molality will increase B E The mole fraction of solute will decrease [This object is a pull tab] Slide 37 (Answer) / 39 Answer 20 What is the mole fraction of an aqueous 200 mL solution that is 0.45 M CH3OH. Assume the density of the solution is 1.03 g/mL. 0.00804 [This object is a pull tab] Slide 39 / 39 Slide 38 / 39 In the next section, we will examine the dissolving process and how this influences the many properties of a solution....
© Copyright 2026 Paperzz