Z. Kristallogr. NCS 224 (2009) 563-564 / DOI 10.1524/ncrs.2009.0246 563 © by Oldenbourg Wissenschaftsverlag, München Crystal structure of diaqua-(2,4-dinitroimidazolato)strontium(II), Sr(H2O)2(C3HN4O4) Fa-You TangI, Mei-Yu CaiI and Ping Li*,I,II I II Shaanxi Normal University, School of Chemistry and Materials Science, Xi’an, 710062, P. R. China Jining Teachers College, Department of Chemistry, Wulanchabu, Inner Mongolia, 012000, P. R. China Received July 12, 2009, accepted and available on-line September 8, 2009; CCDC no. 1267/2713 Abstract C6H10N8O12Sr, monoclinic, C12/c1 (no. 15), a = 16.778(6) Å, b = 6.395(2) Å, c = 15.241(5) Å, * = 110.879(3)°, V = 1527.9 Å3, Z = 4, Rgt(F) = 0.024, wRref(F2) = 0.059, T = 296 K. Source of material 40 ml aqueous mixture containing 2,4-dinitroimidazolate (2,4DNI, 0.47.g) was stirred 10 minuates at 50 °C. Then 0.236.g strontium hydroxide (Sr(OH)2.·.8H2O) was added and reaction continue for 1 hour. The solution was refluxed for 3 hours at 120 °C. After filtration, the filtrate was evaporated to dryness, and recrystallized with ethanol. After one week yellow block-like crystals were collected and washed by distilled water (yield, 61.6.%, m.p. 290 °C). Elemental analysis — found: C, 15.41 %; H, 2.16 %; N, 23.81 %; calculated for C6H10N8O12Sr: C, 15.20 %; H, 2.11 %; N, 23.64 %. IR data are available in the CIF. Discussion In modern ordnance, there is a need to have an explosive molecule, which is highly stable to thermal heating, substantially insensitive to impact, and highly powerful upon explosion. Many kinds of sensitivities such as heat, friction, impact, shock and electrostatic charges have been identified in terms of nature of stimuli causing detonation. High-energy (HE) materials have been shown to have several well-established characteristics: strained rings and cages, high nitrogen content, and high density. The search of energetic materials is best carried out presently using thermodynamics and molecular engineering approaches. Polynitro compounds have long been the focal point for energetic potential. Stability of polynitro compounds is necessary to avoid undesirable decomposition. The presence of nitro groups tends to decrease heat of formation, but contributes markedly to the overall energetic performance. However, to the best of our knowledge, the literature contains a few report on nitroimi- dazole compounds. We have reported the nitropyridino group as a part of ligand coordinating the metal and organic cation [1,2]. This work presents a new polynitro compound expected be applied in explosives and propellants. The crystal structure of the title compound is composed of (2,4dinitroimidazolate anion, Sr2+ cations and water molecules. The metal cation is ten-coordinated with four oxygen atoms from nitro groups, two N ligands from imidazole and other four oxygen atoms from water. The Sr—N bond distance is 2.741(2) Å, and the Sr—O bond lengths vary from 2.629(2) Å to 3.249(2) Å. The four ligands around the metal cation in (010) nearly be coplanar, whereas the angles O5–Sr1–N1 and O6–Sr1–N1 are 76.87(6)° and 79.40(6)°, respectively. In the crystal structure, O–H bonds of the coordination water are connected by hydrogen bond, and the hydrogen bonds distances are in the reasonable range. Table 1. Data collection and handling. Crystal: Wavelength: .: Diffractometer, scan mode: 2,max: N(hkl)measured, N(hkl)unique: Criterion for Iobs, N(hkl)gt: N(param)refined: Programs: yellow block, size 0.25 × 0.32 × 0.37 mm Mo K+ radiation (0.71073 Å) 36.19 cm−1 Bruker SMART CCD, #/% 50.98° 5529, 1416 Iobs > 2 )(Iobs), 1326 123 SHELX-90 [4], SHELXS-97 [5], SHELXL-97 [6], SHELXTL [7] Table 2. Atomic coordinates and displacement parameters (in Å2). Atom Site x y H(1W) H(2W) H(3W) H(4W) H(2) 8f 8f 8f 8f 8f 0.3857 0.3981 0.5521 0.5006 0.2859 −0.0144 −0.0478 0.6482 0.7511 0.5512 z Uiso 0.1061 0.1986 0.1187 0.1568 0.2449 0.044 0.044 0.050 0.050 0.030 _____________ * Correspondence author (e-mail: [email protected]) Unauthenticated Download Date | 6/17/17 10:20 AM 564 Sr(H2O)2(C3HN4O4) Table 3. Atomic coordinates and displacement parameters (in Å2). Atom Site x Sr(1) O(1) O(2) O(3) O(4) O(5) O(6) N(1) N(2) N(3) N(4) C(1) C(2) C(3) 4e 8f 8f 8f 8f 8f 8f 8f 8f 8f 8f 8f 8f 8f ½ 0.4128(1) 0.2980(1) 0.1175(1) 0.0657(1) 0.4205(1) 0.5365(1) 0.3393(1) 0.2146(1) 0.3382(1) 0.1238(1) 0.2961(1) 0.2786(2) 0.2040(1) y 0.33374(4) 0.3654(3) 0.4447(3) 0.6631(3) 0.6662(3) −0.0124(3) 0.6572(3) 0.4746(3) 0.5294(3) 0.4252(3) 0.6340(3) 0.4766(3) 0.5341(4) 0.5647(4) z ¼ 0.0229(2) −0.0940(1) 0.1852(1) 0.0334(2) 0.1607(1) 0.1647(1) 0.1479(1) 0.0235(1) −0.0098(1) 0.1072(2) 0.0548(2) 0.1819(2) 0.1064(2) U11 U22 U33 U12 0.0121(2) 0.024(1) 0.049(1) 0.035(1) 0.023(1) 0.030(1) 0.033(1) 0.017(1) 0.016(1) 0.025(1) 0.020(1) 0.018(1) 0.021(1) 0.017(1) 0.0198(2) 0.043(1) 0.043(1) 0.046(1) 0.086(2) 0.036(1) 0.038(1) 0.034(1) 0.020(1) 0.020(1) 0.024(1) 0.018(1) 0.037(1) 0.020(1) 0.0226(2) 0.056(1) 0.022(1) 0.037(1) 0.038(1) 0.0202(9) 0.031(1) 0.017(1) 0.0182(9) 0.031(1) 0.030(1) 0.020(1) 0.016(1) 0.022(1) 0 0.0050(8) 0.0000(9) 0.0049(9) 0.023(1) −0.0009(8) 0.0074(8) 0.0048(8) 0.0017(8) −0.0011(8) 0.0015(8) 0.0003(9) 0.005(1) 0.0013(9) U13 0.0062(1) 0.023(1) 0.0191(9) 0.0241(9) 0.0041(9) 0.0046(7) 0.0133(8) 0.0029(8) 0.0060(8) 0.0165(9) 0.0114(9) 0.0083(9) 0.006(1) 0.0095(9) U23 0 −0.0053(9) −0.0012(8) −0.0051(9) 0.004(1) −0.0029(7) 0.0089(8) 0.0004(8) −0.0004(7) −0.0024(9) −0.0011(8) −0.0007(9) −0.000(1) −0.0010(9) Acknowledgment. The authors acknowledge the scientific research projects (NJ09204 and NJzy08217) of Higher Education of Inner Mongolia. References 1. Tang, F. Y.; She, J. B.; Li, J. Z.; Zhang, G. F.; Zahn, G.: Crystal structure of 4 -o x o -3 , 5 -d i n i t rop y r i d i n e - N - h y d r o x i d e m o nohydr a t e , C5NH2(NO2)2O(OH) · H2O. Z. Kristallogr. NCS 221 (2006) 539-540. 2. Bracuti, A. J.: Crystal structure of 2,4-dinitroimidazole (24DNI). J. Chem. Crystallogr. 25 (1995) 625-627. 3. Zhou, Q. P.; Zhang, G. F.; She, J. B.: Syntheses, crystal structures and thermoanalyses of alkaline earth metal complexes derived from dinitropyridone. J. Coord. Chem. 61 (2008) 2601-2614. 4. Sheldrick, G. M.: Phase Annealing in SHELX-90: Direct Methods for Larger Structures. Acta Crystallogr. A46 (1990) 467-473. 5. Sheldrick, G. M.: SHELXS-97. Program for the Solution of Crystal Structures. University of Göttingen, Germany 1997. 6. Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997. 7. Sheldrick, G. M.: SHELXTL. Structure Determination Software Suite. Version 6.14. Bruker AXS, Madison, Wisconsin, USA 2000. Unauthenticated Download Date | 6/17/17 10:20 AM
© Copyright 2026 Paperzz