The Scandinavian Ice Sheet through the last interglacial/ glacial cYcle

Reprint from:
der letzten 130 000 Jahre'
B. Frenzel (ed.) l99l: Klimageschichtliche Probleme
(PaleoklimaforschungVolume l)'
451 pp. G. Fischer, Stuttg"tt] New York.
The ScandinavianIce Sheetthrough the last
interglacial/glacialcYcle
J,c,NMlNcE,nuo
Abstract
later
After the Last Interglacial(theEemian)the ScandinavianIce Sheetstartedto grow slightly
during
than the ice sheetsin Antarctica and/or North America. A major ice sheetdeveloped
stage5c (the
isotopestage5d (around I l0 000 before present)but meltedaway during isotope
(around90 000 B'P')
Brorup interstadial).Another ice sheetformed during isotopestage5b
the last ice sheet
Apparently
and disappearedduring stage 5a (the Odderadeinterstadial).
the
centralareasof
startedto grow aroundthe isotopestage5/4 transition(75 000 B.P.) and
were iceScandinaviawere not deglaciateduntil around9000 B.P. However, the coastalareas
Late
free severaltimesbetween75 000 and 30 000 8.P., and the final expansiontowardsthe
B'P'
000
28
Weichselianmaximumdid not takeplaceuntil after
Kurzfassungr
Das skandinavischeInlandeisbegannetwas spdternach dem Ende des Letzten Interglazials
als dasEis in der Antarktisund/odervon Nordamerika'Eine groBere
(Eemian)anzuwachsen
r8O-Isotopenstadiums
5d [gegen 110 000 vor heute
Inlandeisdeckeentstand wdhrend des
5c (Brorup-Interstadial)wieder ab. Ein
(v.h.)1, schmolzaber wdhrenddes Isotopenstadiums
5b (gegen90 000 v'h') und verlsotopenstadiums
des
wihrend
weiteresInlandeisbildete sich
Das letzteInlandeisbegannof(Odderade-Interstadial).
5a
schwanderneutim Isotopenstadium
5 und 4 zu entwickeln(vor 75Ofi)
fenbar,sich an der Grenzezwischendem Isotopenstadium
Jahren).und das Zentrum Skandinaviensblieb bis etwa 9000 v. h. eisbedeckt.Demgegeniiber
000und30 000v.h.eisfrei,unddasletzte
warenaberdieKiistengebietemehrfachzwischenT5
Anwachsendes Eiseszum maximalenStandwdhrendder JiingerenWeichselzeiterfolgte erst
nach28 000 v.h.
Introduction
The most dramaticexpressionof climatic changescausedby the small perturbationso[ the
Earth'sorbit (oftencalledMrr-eNKovtrcHforcing)are the mid-latitudeice sheets(Bancenet
al., 1984).Global ice volumes,as monitoredby the oceanoxygenisotopecomposition,have
also been one of the most important parameters in the palaeoclimatic modelling on
MrL,r,NxovrrcHwave lengths.However, to unravelthe history of eachindividualice sheet.
even for the last interglacial/glacialcycle, is an extremelydifficult task becausethe ice during
I Ubersetzung:B. FneNzPI-
308 . le,nMexcenuo
llrcllrstttlaxitttuttt
t'ctttttvctl
ttttlstol'llrcscdinrcntary
rcc.rd f'rr)rrr
oldcrcvcnts.l.htrsa rrr^j'r pr.blemis simplyto find sediments
within theglaciatedareasthatsurvivedthesubsequent
erosion.
still' to reconstructthe history of eachice sheet
must be attempted,at leastfor the last interglacial/glacial
cycle,if we try to understand
how theEarth'sclimaticsystemrespondsto or_
bital forcing' The glacialhistoryprovidesa fascinating
challengefor scientists
who arewilling
to searchfor an answerwhere no resultsare guaranteed.
To constructthehistoryof an ice sheetis like nraking
a threeor four dinrensional
puzzle.Most
pieces(sedimentarysequences)
will fill in only a short segmentof the time dimension
in the
I
I
*'---/-
I
t)
j
24.
,
'
1
60"
\
/",
^r.,,",1",r",.
"'it---t
\
\
_
Fig. l: The Late weichselianand YoungerDryas
ice marginsof the Scandinavian
Ice Sheet.Localities
and geographicalnamesusedin the text are marked.
srightrymodifiedafter sveNosnN& MeNcnnuo
( r9 8 7 ) .
The ScandinavianIce Sheetthrough the last interglacial/glacialcycle . 309
puzzle,just a point in the areal dimensions,and normally provide no information on the ice
thicknessdimension(volume).In the puzzleI am constructingin this paper,most piecesare
floating in this three/fourdimensionalspacewithout touchingeachother, leaving large uncertaintiesboth in time correlationsand in areal/volumeextentof the ice at differenttimes.Still
the model representsa major improvementcomparedto what we knew some few years ago.
Paradoxically
mostof theimportantpiecesarenot glacialsediments,
but non-glacialsediments
indicating when a site was ice-free.
In this paperI reconstructthe ScandinavianIce Sheetthroughthe lastinterglacial/glacialcycle,
basedon availablegeologicalobservations.The information is still so sparsethat I only construct a simplified model with time as the one dimension, and linear ice-extent(insteadof
arealvolume)astheother (Fig. 5). I will emphasizewhen the proximal areaswere ice-free,and
notdiscussthetimingof theLateWeichselianin theperipheralareas.I will alsodiscusstheEarly Weichselian(isotopestage5) more thoroughlythanthe youngerpart of the cycle, and I have
omittedthe deglaciationafter 20 000 beforepresent(B.P.). Unavoidably,discussionwill in
particular be concentratedupon siteswhich I know from my own field experience.
The stratigraphicframework
My opinionon the stratigraphyof NorthernEuropeoutsidethe Weichselianglaciationlimits
will first be presented,becausethis stratigraphyprovides the framework to which the more
fragmentaryrecordwithin theglaciatedareashasto be correlated.I will alsocorrelatethe European stratigraphywith the deep sea oxygen isotopestratigraphy,partly becausethc latter
representsa global framework, andpartly becausetheagesofthe stageboundariesare relatively well established
(MnnrtNsoNet al., 1987).In fact, sitesin WesternNorway whereamino
acid age estimatesare available, can be more securelycorrelatedwith the deep sea isotope
stratigraphythan to the Europeanstratigraphy,becauseno independentdatingsexist fbr the
Early Weichselianunits in Europe.
The Eemian, with its stratotypealong the Eem River in the Netherlands(Zrcwl:N, l96l has
),
for a centurybeenconsideredthe Last Interglacialin the senseusedin Northern Europe; an interglacialis definedby the occurrenceof mixed oak forestsin north-westernEurope, and normally a transgression
alongtheNorth Seacoasts,i.e. climatesandenvironments
similarto pres e n td a y c o n d i t i o n sH
. o w e v e r ,K u r u ( 1 9 7 1 - )B, o w er u( 1 9 7 g ) ,a n d w o n _ r . n n o( 1 9 7 g )q u c s tioned that the stratotypeEemian representsthe Last Interglacial. I considerthis problem as
solvedby the aminoacid correlationof Mrlr-pn & MnNcenuo (1986):The Eemianis indeed
the Last Interglacialin Europe,anddifferent sitescan in mostcasesbe correlatedunambiguously by the characteristic
pollenstratigraphyof the Eemian.The correlationoI thc Ecmianwith
the deepseaoxygenisotopestage5e, first proposedby SH.lcxleroN ( 1969),is now well estab_
lished(MnNcERUDet al., 1979;TunoN, l9g4).
worrlnno's (1975, 1978,worr-r-,,',nn
& Moox, l9g2) studyof the Grandepile in Northern
France was a benchmark in European Quaternary stratigraphy, as this was the first site
discoveredwith a continuouslacustrinesequencefrom the Eemianup to the present.Above the
310
. JnNMlNcr,Rup
a
(o
3
ChronostratigraPtrY
a
-
6 1 8o ( r t o r r t t a l i z e ( l )
dl
a
O)
Holocene
2
f
a.\
Denekamp
o
3
'=
(n
a
(o
G)
o
-
tl
o l0O
-v
g
2- -3 - ---
a
se
0--- {
r
o
I
24
o)
o
-
d Eed 3 =
t2
-
o
-
S "U': E I
I
U'
I
Y
l
u r a n q. e l r u w E u r o p e g , g E s E
|
E 3* i a o
F,ile
0
a
V
J
?
=
Hengelo
G l i n d e fo o ,
Oerel I
4
=
-
-
7
8
-/
z4
s
93
----{
4--.
=___.___
o,)
5 a S t . G e r n r a i nl l
sb
M e l i s e yl l
5c
S t . G e r m a i nI
_ =__-
J''
5d
M e l i s e yI
5e
Odderade
Rederstall
3
o
B r o ru p
J
10s
(_
B
H e rn i n g
Eemian
130
o <--6
"orbitally tun"normalized"
oxygen isotopecurve from MenrtNsoN et al. (1987)with their
Fig.2: The
ed" timescale.To the left on the curve are indicatedsomeof the eventsgiven by them. The traditional
letteringof the isotopestages,which I usein this paper,is givenwith approximate
EurlrnNr-SHAcKLEToN
of theGrandePile core is from
agesof theboundariesasidentifiedfrom thecurve.The chronostratigraphy
Wollr-eRn (1978, only older units included). For north-westernEurope, the subdivision of the
Weichselianinto Lower, Middle and Upper follows Mencenun etal. (1974),exceptthat the middle/upper boundaryis movedto around25 000 yr. (MnNcERUD& BnncluNo, 1978,CHnuNe et al., 1980).
(chronozones)
follows MeNxe & TvNNt (1984)
The identificationandnamingof the interstadials/stadials
(1982),
(1986).
MpNxE
and
& TvNNI (1984)includingthe
MENru
I
also
follow
and/orBEHne& Lnnr
Amersfoort as the lower part of the bipartiteBrorup. The curve of environmentalchangesin Germany.
The Netherlandsreflectsmainly the summertemperature,and is basedon ZlcwllN ( 1975),MeNre &
TyNNr (1984) and Besnn & LnoE (1986). Generallythe warmer interstadialscan be more precisely
characterizedthan the cold tree-lessperiods,and I have thereforemainly markedthe warm peaks.Note
that the time scale for the older half of the curve is basedon the correlation to the isotope curve, argued
for in the text.
Eemian in Grande Pile are two warm periods that Wotr.l.ARD identified as true interglacials
(St. Germain I and II) and she concluded that they stratigraphically should be placed between
the Eemian and the Early Weichselian interstadials Brsrup and Odderade of Northern Europe
( A N o e n s r N , 1 9 6 1 ; Z A G W T J Nl,9 6 l ; A v r n o t e c r , 1 9 6 7 : s e er e v i e w i n M p N r c & T v N t t t , 1 9 8 4 ) .
The main reason why WoTILARD maintained St. Germain I and II not to correlate with the interstadials of Northern Europe, is that St. Germain I and II palynologically show a development
to a full interglacial type of mixed oak (climax) forest suggesting that this vegetation could not
The ScandinavianIce Sheetthroughthe last interglacial/glacialcycle . 3l I
exist contemporaneously
with the coniferous(taigatype) forestsof the Brorup and OdiJerade
in Northern Europe.
WollleRo's correlationshave beenchallengedby severalauthors(e.g. Gnucnn; 1979a, b;
MeNcsnuo et al. ,1979; wrLreN, l98l; MrNru, 1982 MeNrB & TvNNr, 1984;Brsnr &
LlDe , 1986),whoallacceptedheridentificationoftheEemian,
butsuggestedthatSt.
Germain
I and II shouldindeedbe correlatedwith the Brorup and Odderadeinterstadials,respectively
(Fig. 2). The main argumentfor this correlationis the similar stratigraphicalposition:In a large
number of lacustrinebasinsin Northern Germany the first "warm-climate units" abovethe
Eemianare the Brorup and the Odderade(MrnrE & TyNNl, 1984; Brsnn & Leoe, 1986).It
is completelyimprobablethat any warm interstadialor interglacialshouldbe missingbetween
the Eemian and the Brsrup in so many closedbasins. Similarily St. Germain I and II were the
first warm periodsafter the Eemianin GrandePile (WoTLLARD,1978),and this is confirmed
in anotherbasinin France(on BnluI-tru & RuLrr, 1984).The correlationof the Brorup and
Odderadewith St. GermainI andII, respectively,is supportedby the amplitudeof environmental/climaticchange:In both areasthesewere the two warmestperiodsafter the Eemian,and indeedthe only interstadialsthat were really forested.GrandePile is situatedmuch further to the
souththan the interstadiallocalities mentionedin the Netherlandsand Germany, and therefore
the GrandePile areaduring warm interstadialshad a forest similar to the interglacial forestsfarther north in Europe.The correlationof St. GermainI andII with Brsrup and Odderadeimplies
somesteeperecological/climaticalnorth-southgradientsin middle Europethan today, which
I do not find difficult to accept.
Wott-lnno (1978)andWoIILARD& Moox (1982)suggested
that St. GermainI and II should
be correlatedwith the deep seaoxygen isotopestages5c and 5a, respectively,acceptingthat
5e correlatesto the Eemian. The correlationof St. Germain I with stage5c is also supported
by pollen analysisof a marine core with an isotopecurve (TuRoN, 1984).I find thesecorrelationsprobable,and thusthat the Brorup and Odderadeshouldcorrelateto isotopestages5c and
5a, respectively.To some extent this correlation is a matchingof curves (Fig. 2): Both, in
Europeand the deepsea,theseare the first warm peaksabovethe Eemian/Se,and in both cases
they are the highestpeaksbetweenthe Eemianand the Holocene.The causativeargumentsare
the following: On the wavelengthand amplitudeof changewe considerhere, the environmental/climatical curve for Northern Europe (Fig. 2) has to be roughly parallel to the volume
changeof the Scandinavianlce Sheet.A similar argumentcan be usedfor the major ice sheets
on either side of the North Atlantic. The discussedparallelismsare both demonstratedfor the
last glacial maximum and deglaciation.Thus on this wavelengthand amplitudethe climatic
curve for Northern Europe should approximatea Northern Hemisphereglaciationcurve, as
doesthe isotopecurve. The only argumentI can seeagainstthe proposedcorrelation, is that
it predicts marine transgressionsin the North Sea area during the Brsrup and Odderade,
becausethe eustaticsealevels during stages5a and 5c were not much lower than during 5e
(Cuenrell & SHecKLEToN,
1986;SnecxlrroN, 1987),but suchtransgressions
are not identified.
312 ' JrN MnNcenuo
When did ice start to accumulatein Scandinaviaafter the peak of isotope
stage5e?
For the Fjosanger site in Western Norway the amino acid analysesgiven by Mlr-lrn &
Me,Ncnnuo (1986)haveneitherprovidedunambiguousresultsas to whetherit representsthe
Eemian, nor an older interglacial.However, further analysesof the amino acids and other
ar g u me n ts (Se rn u 1
r,9 8 7 ),i n c l u di ngunpubl i shedTLdates(MnronH I-& MnN ceR uo),strongly suggeststhat the Fjosangerianindeedis the Eemian,as originally suggestedby MeNcnRun
et al. (1979, 1981), and this is acceptedhere without further discussion.
At Fjosangersealeveldroppedeustaticallysomel0 to 25 m when mixedoak forests,succeeded
by spruce forests, surroundedthe site, both forest types indicating a climate that excluded
(MINGERUDet al. ,1979,1981). This impliesthat the
growth of any ice sheetin Scandinavia
first part of the sea-leveldrop after the peak of 5e was due to ice accumulationoutsideScandinavia, probably in North America and/or Antarctica.
For the NetherlandsZncwuN (1983)hasconstructeda much more accuratecurve, showinga
drop of sea-levelof at least 32m at the Eemian/Weichselianboundary. ZncwllN's curve
(Fig.3) showsthat around20 m of the drop occurredwithin the Eemian.However, during the
latest part of the Eemian there were pine (Pinus) forests in the Netherlands, and this may be
mountains.I concludethat sealevel dropped
compatiblewith growth of ice in the Scandinavian
eustaticallybetweenl0 and 20 m before any significantice-growthoccurredin Scandinavia.
However, the total drop in eustaticsealevel from peak 5e to the trough 5d was nearly 70 m
0m
5m
-Amersloorl
l0m
//
a
,jSchornqanlum
15m
\-
-Amersloorl
2Om
'p
I
I
25m
i0m
Pett"n
_-lx-Comperdurn
\
35n
lAmslerdom
Norlh Seo
l0n
I
I
-lvorlh
tSm
0cPlh
Delov
,'escnl
Scol3|r0l
\
I
Lote
Soolion
I L SI
1
2
3o
3u
Seo
to
4u
E e m r o (nE l
5o
5u
6o
6u
EorlY
Weichselion
(EWIol
Fig. 3: A sealevel curve (high tide levels)forthe Eemianin The Netherlands,reproducedfrom ZecwtrN
( r983).
The ScandinavianIce Sheetthrough the last interglacial/glacialcycle . 313
(CHnneet,l& SnecKLEroN,1986),so the time-lagin inceptionof the Scandinavian
Ice Sheet
comparedto otherswas probablynot large. As discussedbelow, certainlya major ice sheet
developedduring 5d.
The Weichselian glaciation(s) west of the Scandinavian mountains
The mountainsin Scandinaviaare like a major asymmetricalbackbonerunning from southto
north. The westernsideis steep,with deepfiords, and receiveslargeamountsof precipitation
with the westerlywinds.The easternsideis gentle,andis in the rain shadow.Furtherto theeast
thereare largeplains (Finland, Estonia,etc.), and the broad depressionof the Baltic Sea.The
Scandinavianmountainsare actually not very high, the highestsummit today being 2469 m
a.s.l., but they are situatedat a high latitude,from 58o to more than7l oN. From the described
topographyone might expect that the glacial developmentwas different on each side of the
mountainchain, so I will first discussthe west side, and subsequentlythe eastside.
Earlierversionsof theglaciationcurvefor thewestsidearegivenin MnNcsnuo ( l98l , 1983),
where an extensivereview of earlierliteratureis alsoprovided.In the following I will concentrate on sitesthat give key informationsfor dating the glacial advances.
m
Fjosanger
Bo, Karmoy
Skjonghelleren,
Sunnmore
lo
Block B = Holocene
D i a m .G = A l e s u n d i n t e r s l
Haugesund
Diamiclon
E
G r a v e lF = F a n a
interst
-_Sillygravel
H
Fj o s a n g e r i a n
( =E e m i a n )
Paradis Till
"r""oYrXho,,
10
Block K
Bo
Sand
Karmoy
Diamicton
5
- Torvastad
Sand
Avaldsnes
Sand (Eemian)
. "r"yo3ha;
Block M
0
"o**r,
-t^
-a
Fig. 4: Simplified lithostratigraphyfor some sites in western Norway. Fjosanger modified from
MnNcenuo et al. (1981).Bo, Karmoy modifiedfrom ANoERSEN
et al. (1983);in this figure the names
for the lithostratigraphicalunits are usedalso for stadials(Haugesundand Karmoy), interstadials(Bo and
Torvastad),and the Avaldsnesinterglacial.Skjonghellerencave, modified from LnRsENet al. (1987);
note that block/diamicton beds in this casewere depositedduring ice free periods, the clay beds during
glaciations.
314 ' JnN M,rNcenuo
Fjosanger
Above the Eemian beds at Fjosanger is a thick glaciomarine silt (G on Fig. a) which
that glaciersat that time were calving somefew km from the site (MnrucrnuD et
demonstrates
(lithostratigraphy,
pollen,foraminifers,aminoacids)suggestthat
al., 1981).All observations
thereis no major unconformitybetweenthe Eemianbedsand the glaciomarinesilt: thusthis
q)
6
c)
a
o
I
6
Mounlain
Coast
east
;
U)
o
o
o
o
c
0)
I
o
E
F
D e n m ar k
Mounlains
Fi n l a n d
w e s l / n o rt h
Y o u n g e rD r y a s
! ,
i ' . . 4
^:--rl.U d r s l U V
o
6
N Swcdert
O. Dosebacka
r
Torvastad*
tto ;
f,
Fana
Fornes
o
P e re p o hi o l a
o
E
o
I
A v a t d s n e s@
@Fiosangerian
Hovden
t2
T e p s a n k u m p ua n d
o l h e r F i n n i s hs i l e s
Leveiniemi
climaleas today,ot warmer.
@ Faunasuggesting
* FaunawithAllanlicCurent'guidelossils.'
Fig 5: Schematicglaciationcurvesfor the last interglacial/glacialcycle in Fennoscandia.
The left curve
is for the west sideof the mountains,the right curve for the eastsidein the mountain-proximalareas(N.
Swedenand Finland) and towards south(Denmark) in the distal parts. The horizontal scalesare somewhat
arbitrary becausesitesscatteredover a hugeareaare "projected" into a theoreticallinear cross-section.
Ages for isotopestageboundariesfrom MnnrrNsoN et al. (1987), comparewith Fig. 2.
The ScandinavianIce Sheerthrough the last interglacial/glacialcycle
3I5
g l a c i a t i o ni s u n d o u b t c d loy f i s o t o p cs t a g e- 5 do r H c r n i n gs t a d i aal g e( F i g . 5 ) . I t ( l c m o n s t r a r c s
that in this areathe glacierswere nearlyas largeduring 5d as they were during the younger
Dryas. Ifthe correlationis correct,theremusthavebeena considerableglacio-isostaticdepression to keep the site below sealevel, as eustaticsea level dropped nearly 70 m from the peak
5e to the trough5d (Cuernrll & SHecrl-EroN, 1986).Thus the Scandinavian
Ice Sheetmust
have beencorrespondinglylarge.
Above the glaciomarinesilt is a gravel depositedduring a milder period, the Fana interstadial
(Fig. a). Amino acid analysisstrongly suggeststhat the Fanashouldbe correlated
with isotope
stage5c (Mrllrn et al., 1983; Selnup, 1987),and thus the Brorup (Fig. 5). originally
we
(Mance nun et al. , 1981)suggested
thatFanais olderthanBrorup,because
thefaunasuggested
colderclimatethanwe expectedfor the Brorup. If we now acceptthe age,the unexpected
cool
faunacan be explainedin two ways: l) The warmestpart of the interstadialis missing. 2)
The
difference in summertemperaturebetweenthe presentand the Brorup was larger in Western
Norway than further eastin Europe.This latter is supportedby temperaturegradients
deduced
from pollen sequencesin Europe, and I assumeit is at leasta part of the explanation.
Three observationshaveled us to concludethat there is no unconformity betweensilt E and
the
BsnesTill (Fig. a)' andthusthatthe BsnesTill is of isotopestage5b or Rederstall
stadialase
( F i g .5 ) :
l ) I n t h r e e o u t o f f o u r e x c a v a t i o n s t h e tci o
l l n f o r m a b l y o v e r l i e s t h e 0 . 5 m t h i c k s i l t IEt w
. ould
be most surprisingif glacial erosionhad stoppedat severaldifferent placesjust at this
s t r a t i g r a p h i c lael v e . .
2) Upglacier, in the deeperpart of the fiord, the glacier erodedmarine sedimentsthat it overrode, and thereforethe till is full of transportedfossils.Thesefossilsmay all be correlated
with the Eemian and Early Weichselianbedsat Fjosanger;there are no hints of younger
fossils.
3) A large number of amino acid analysesof shell fragmentsin the till gave only ratios
correspondingto the bedsat Fjosanger,suggestingthat the glacier did not erodeany younger
beds.
Godoya
A t G o d o y a ,S u n n m s r e( F i g . l ) , L n N o v l x & M e n c e n u n ( 1 9 8 5 )d e s c r i b e ad s a n d u tr h a t
they,
andalsoLANnvtx & Hn Msonc ( 1987),interpretedto be of Middle Weichselianage.However,
severalthermoluminescencedatesnow suggestit is of isotopestage5d age (JuNcNen et al.,
1989).I will not discussthe reliabilityof thesedateshere,just statethat if they are correct
the
ice reachedmuch further west during stage5d than during the Younger Dryas in this area.
Karmoy
Excavationsin the Bo claypit at Karmoy (Fig. l) reachedbeds(the AvaldsnesSand,Fig.
4)
wherepollen-,mollusc-,foraminifera-,andaminoacid stratigraphy
all suggestan Eemianage
( A N o e n s t l N e t a l .1, 9 8 3 ; S c l n u pt,9 8 7 ) .D i r e c t l y o n t o p o ft h c i n t c r g l a c i a l
bcclslicsthcTgr-
316
. l e NM A N c E R U D
vastad(interstadial)
Sand,wherethemarinefossilssuggest
conditionscomparable
to thenorthernmosttip of Norwaytoday(SEJRUT,
1987).The pollenassemblage
indicatesan openvegetation with somebirch, but it is difficult to interpretit becauseof the large amountof redeposited
pollenin thesemarinesediments(ANoanseNet al., 1983).Amino acid racemizationsuggests
an ageof theTorvastadinterstadial
of 78 000 + 7000B. P. (Mlr-lrn et al., 1983),andthusa correlationwith theisotopestage5a andtheOdderadeinterstadial
in Europe(Fig. 5). This suggests
a major hiatusbetweenthe Avaldsnesand the TorvastadSands.
AbovetheTorvastadinterstadial
is a basaltill (theKarmoy Diamicton,Fig. a) showingthatrhe
was
site
overridden by a glacier reaching the open sea. Between this till and the Late
Weichseliantill (the HaugesundDiamicton) is the Bs Sand, demonstratinganotherice-free
(Bo) interstadial.Severalradiocarbon
datesgavefiniteagesaround40 000 B.P. (ANornsENet
al., 1983)for this interstadial,an agesupportedby aminoacid analysesof molluscs,whereas
amino acidson foraminiferasuggestedan agearound60 000 B. P. (Mrr-len et al., 1983).Even
thoughneitherthe age nor the durationcan be fixed exactly,the site demonstrates
a Middle
Weichselianinterstadial,
certainlypredatingc. 40 000 B.P., with seasurfacetemperatures
like
in northernmostNorway today (Sr-rnup,1987).
From the ages given above for the Torvastadand Bs interstadials,the glacial advance
demonstratedby the Karmoy Diamicton can most reasonablybe correlatedwith isotopestage
a (Fig. 5), eventhoughthis is a correlationwith week constraints.
Karst caves,Nordland
Speleothems
in karstcavescanonly be precipitated
whenthecaveis notcoveredby an icesheet,
because
beneaththeicethecavewouldbe filled with water,or alternativelyit wouldbe frozen.
LeuRlrzrN (1984, 1986,oral communications
1988)hasperformeduraniumseriesdatingof
morethan90 speleothems
from cavesalongthe valleysand in the mountainswestof thewatershedin Nordland(Fig. l). The distributionof thedatesshowsmajor peaksaroundtheagesof
isotopestagesI (the Holocene)and 5e (the Eemian),but also enoughdatesfrom the restof
isotopestage5 to demonstratethatthesemountainswere also ice-freeafter 5e, probablyduring
both 5a and 5c.
In factLeururznn hasdiscoveredthreespeleothems
whichheassumes
grewcontinuouslyfrom
around 130000to 95000 B.P.. If correct,this will contradictthe extensiveglaciationI have
concludedfor isotopestage5d (Fig. 5). Alternativelyone could postulatcdiffcrent glacial
historiesfor the different areas.To someextentthat is certainly right, but that can not explain
the referred contradiction.
Skjonghelleren, Sunnmere
Skjonghellerenis a 100 m long wave-cutcave with a unique on-off signal of glaciations
(LnnsENet al., 1987):When it was overriddenby glaciersan ice-dammedlake was formed,
and laminatedclay deposited(bedsL, J-I, and F, Fig. 4); when it was ice-freestonesfell from
the roof, and animalslived in the cave.
The ScandinavianIce Sheetthrough rhe last interglacial/glacialcycle
3|7
The last ice-freeperiod (the Alesundinterstadial,letterG on Figs. 4 and 5) is well datedto
around 30000 B.P. by radiocarbondateson bones and U-seriesdateson speleothems.The
fossilsshow marine conditionsso warm that a branch of the North Atlantic current must have
entered the Norwegian Sea at that time. The clay F from the last glacial overriding has a
characteristicpalaeomagneticsignaturecorrelatedwith the Lake Mungo excursion,dated to
around28 000 B.P. (LensENet al., 1987;LsvrtE & SaNoNes,1987).
Below the Alesund interstadialis a sequenceshowing two more glaciationsand two ice-free
periods. Theseare not as well datedas the last cycle, but palaeomagneticcorrelationssuggest
thatthe lastof theseglaciations(lettersI andJ, Fig. 4) occurredbetween36 000 and42 000 B.P.
ago.
The extent of the Late Weichselian maximum
I shallnot discussthis topic here,just mentionsomerecentresults.On the basisof extensive
field studiesRvs et al. (1987)and Nrstr et al. (1987)concludedthat summitsin Sunnmsre
(Fig. l) and areassouthand eastof Sunnmsre,in WesternNorway remainedice-freenunataks
throughoutthe Late Weichselian,a topic discussedfor a century. This provides strong constraintson the thicknessof the ice. Srrnup et al. ( 1987)demonstratedthat the Scandinavianand
the British ice sheetsprobablydid not meetin the North Sea.VoRneNet al. (1988) showedthat
Andoya(Fig. l) was ice-freearound20 000 B.P., and aftera shortglacialoverrunduring the
Late Weichselianmaximum, finally deglaciated
around l8 500 B.P.
Discussionand conclusionsfor the westernflank of the ice sheet
A coupleof decades
ago,theview wasthatmostof Scandinavia
wascontinuouslyglaciatedduring the entirelastice age.This view is now completelychanged,but a logicalapproachis still
to assumethat it was ice-coveredduring all thoseperiodswherewe cannotdemonstrateice-free
conditions.One reasonfor this approachis that the ageand durationof ice-freeperiodscan be
shown by fossil-bearingsediments,whereasbasaltills cannotbe dated. An exceptionfor this
is the Skjonghellerencave discussedabove, and hopefully other similar caves, where glacial
periods are recordedby laminatedclays which in fortunatestratigraphicpositionsmight be
dated by palaeomagneticcorrelations.The approachdescribedhere leadsto a history with a
minimum numberof events.New localitiesprobablywill show a largernumberof glacialadvancesand ice-freeperiodsthanshownon Fig. 5. If duringsomeperiodstherewasa high frequencyforcing of climate,as e.g. suggested
by DlNscr,r.no (1987) for partsof the Middle
Weichselian,the YoungerDryas may providean exampleof theglacialresponse:In Western
Norway therewas during the Younger Dryas a major re-advanceof the ice sheetthat lastedfor
somefew hundredsof yearsonly (Mnncrnun, 1987).
The glaciationcurve (Fig. 5) is a conceptualcurve that ideallyshouldshow glacialadvances
and retreatsfrom the mountainsin the eastto thecoastin the west. However, the sitesare spread
out along the coastfrom north to south,and the configurationof the ice-front was certainlydif-
318 ' leN MeNcenuo
ferent at different times. Here I have followed the same approachas I have done earlier
(MlNcrnuo, l98l); the coastalsites(Fjosanger,Karmoy, Sunnmore)are plottedrelativeto
their distanceto the Younger Dryas end moraines. However, the main pattern of the curve
would not changewith a different way of plotting. I will point out that both the Karmoy and
Sunnmsresitesare closeto the opensea,so when the glacieroverrodethe sitesit locally ended
in the openocean.
The curve is drawn after different rules before and after 50 000 B. P. For the older part I have
simply placedthe advancesand retreatsat the time of the isotopestageboundaries, eventhough
thatcorrelationis strictly demonstratedonly for the5el5d boundary.For theyoungerpart I have
followed the datings.
I considerthe main patternthroughthe isotopestages5e-5d-5c as established,
becausewe
could demonstratethat the first glaciationat Fjosangerfollowed soon after the Eemian. The
nearlycompletedeglaciationof Scandinavia
during the Brorup (5c) is documentedby several
sitesdiscussedin the next chapter,and the Fsrnessite (VonntN & Ronloser, 1977)located
in thewesternmountains.Therefore,theglacial/deglacial
cycleof stages5d/5cis demonstrated
evenif the Fanainterstadialshouldbe older thanthe Brorup,as assumedin theearlierversion
o f t h e c u r v e ( M n N c e n u o1, 9 8l ) . H o w e v e r ,t h e c o n s e q u e n c e f o r t h e i s o t o p e s t a g e 5 b g l a c i a t i o n
might be more important;if the Fanais older thanstage5c, theBsnestilt shouldalsobe older,
and no recordof a 5b glaciationis known.
A basaltill betweenthe Torvastadand Bs interstadials
demonstrate
unambiguously
thatthere
was at leastone glaciationin that time interval.I haveplottedthat glaciationto isotopestage
4, basedon aminoacid ratios,but the precisionof theseageassignments
are too poor to really
demonstrate
thatthis was a stage4 glaciation.Also the correlationof clay L in Skjonghelleren
to the discussedglaciation(Fig. 5), is mainly by "counting from the top".
I have drawn a more extensivedeglaciationfor isotopestages5c and 5a than for the younger
interstadials,becausefor the two former a deglaciationof CentralScandinaviais demonstrated
(see below). Inland sites with reliable finite radiocarbondates are not demonstratedyet.
However,the faunain both Bs and Alesundinterstadials
suggests
warmerconditionsthanthe
faunain Fana, and as warm a climate as in Torvastad.In both Bs and Alesundthe faunascomp a r e t o t h e A l l e r o d f a u n a ( M A N G E R1U9D7,7 ) , f o r w h i c h w e a s s u m e t h a t a b r a n c h o f t h e A t l a n t i c
CurrententeredtheNorwegianSea.During Allersd therewasstill a considerable
icesheetover
Scandinavia,
eventhoughit certainlywould haveshrunkmuchmore in theeasterlyareasif the
mild climatehad lastedlonger.
ANnrnsrN et al. (1981)inferreda short-lived,largeglaciationcloseto 40000 B.P. at Jeren.
A glaciationof thatageis alsopostulated
from Skjonghelleren
(LansrN et al., 1987).However,
in neithercaseis the glaciationreliablydated.The timing of the lastadvanceis betterknown:
The glacier front passedSkjonghelleren
close to 29000 B.P. on its way towardsthe Late
Weichselianmaximumpositionat the edgeof the continentalshelf.
The Scandinavianlce Sheetthrough the last interglaciar/glaciar
cycre
3 l9
The Weichselian glaciations in the central areasand on the east
side of the
Scandinavian mountains
A glaciationcurve for the eastside is developedby LuNoqursr (1974,
l9gl, 19g3, 19g6),
LrrunNrn(1984),LtNotlsn et al. (1984),and Manr.ran
(1969,lggl). The main modifications
I havemadeto LuNnQutsr'scurve is to stretchthe time scalefor the
older part by correlating
the Brorup and odderade to isotopestages5c and 5a, respectively,
and to accepttwo Early
weichselianice-freeperiods.Similar interpretations
of the time scaleand correlationshave
earlier beenpresentedby Fonssrnou(1984), but he usedtheoxygen
isotopecurve more directly as a glaciationcurve for Scandinavia.
In Northern Germany the Brorup and Odderadeinterstadialswere
the last forestedperiods
before the Late weichselianglacial maximum (MrNxe & TvNNr,
l9g4; BEHnE& Lnoe,
1986),and thereforeI considertheseinterstadialsas also the last periods
that forestspossibly
could have existed in Fennoscandia.Accepting the correlation
to the deep sea-isotope
stratigraphy,this meansthat forestedsireshavea minimum ageof
75 000 B.p. (Fig. 2). Boih
finite and infinite radiocarbondateshavebeenobtainedfor such
sites.with the assumptionsI
have made here, apparentradiocarbonages(finite or infinite)
cannotbe usedfor correlations
of siteswhere the existenceof forestsis demonstrated.
The stratigraphy of Northern Finland
Northern Finland (Laplandand periipohjolaregions,Fig.
r) is for two reasonsa key area
( r e v i e w si n H r n v e se t a l . , l g g l a n d H r n v n s& N E N o N E N ,
l9g7);
l) More interglacialand interstadialsites(more than 100,
Hrnvns & NrNoNsN, l9g7) are
known from this area than from any other area within the
bordersofthe ScandinavianIce
Sheet.
2) The area is a lowland plain, so that till bedscan be mapped
over large areas.
Interglacialsaredefinedby a pollen-florasimilarto, or in fact
slightlymore warrn-clernanding
thanthe Holocene,e.g. with pin us,Betura,andsomepjc ea,
andArnus(Hlnvas& KurlNsuu,
198I ) ' An interglacialageon that basisis unquestionable,
and mostof the srtesare assumedto
b e E e m i a n( H l n v n s , 1 9 8 3 ) .
--I-1
t
l
l*l
t * b " d \ \ -' - H
-i"lJPontottf'......''...]
--Fig..6: Sketch showing the principle for constructing the
stratigraphyin Finland: Till beds, especiallythe direction of
ice-flow thatdepositedthem, are usedfor lateralcorrelations;
organic(andother non-glacial)bedsare usedlor ..clatinc...
riilbedil
l\l
_ t l
Eemian
320
l e NM e x c r n u o
Ahove thc youngcstintcrglacialhcdsf<rllowsa till (Till bcd lll) that is latcrallycorrclatc6hy
n r e a no
s f i t s t i l l f a b r i c( F i g s .5 a n d6 ) . H l n v e s& N e N o N e N( 1 9 8 7 )c o r r e l a t et h i st i l l o v e r l a r g c
partsof Northern Finland (Laplandand perripohjola.Fig. l). SurlNEN (t9g4) nrappcd
end
morainescorrelatedwith that till in the southernpart of Perzipohjola.
There seemsto be a
generalagreementin Finlandthattill III doesnot occur further south,andthusthatthemoraines
CENTRAL
LAPL AND
€g hrrvo3
el ot 1977
.
CHRONO
STRATI GRAPHY
LATE ANO
MI D D L E
W EI CH S EL I A N
<..
-/SANO aNO
\--_!RAvEL
rtrr ard---_
P ER AP O H J O
LA
INTERSTAOIAL
I N T E R S T A D I A LPEAT GYTIJA,
S I L TE, T C
I JAMTLAND.
8R9RUP )
t
EARLY
W E I C H S EI A
LN
LA 5 T
INTERGLAC I A L
INIE RGLACIAL
PEA] 6YT]JA
ETC
€EH
INIERGLACIAI
G YT T J A
{ E E M L, E V E A
N I E M IM, I K U L I N O )
l_'-
rILL8ED
L OWESI
I ILL A€O
tr
S A A LI A N
SILT SAND
r I L L8 E O
:a
'"0
{::^J
r
{ L
ht
i
;r
(l
I
Fig' 7: Correlation of the stratigraphyof Northern Finland. Note that the given
sequencefbr eacharea
is a synthesisof many sites;two organicbedsdo not occur aboveeach
other at any singlelocality. Reproducedfrom Hrnvrs & NeNoNrN (l997).
The ScandinavianIce Sheetthrough the last
interglacial/glacialcycle . 32 I
mappedby SurrNeN representthe limit of
the pre_perripohjola
glaciation(: isotopestage5d
glaciation).
At many sitesorganicand other non-glacial
sedimentsare found on tills identifiedas
till bed
III. The pollenflora in thesesedimentsis
alwaysdominatedby Beturaandherbs(Fig.
7),
sug_
gestinga birch forest,and thuscoolerconditions
thanduring the Holocene.All thesesites
are
referred to the Perdpohjolainterstadial,first
defined by Ko-nrer-a (1969). and generally
correlatedwith the Brorup (HInvns et al. 1981).
As discussed
'
above,the only alternativeperiod
within the weichselianthat could allow
a birch forestto thrive thereis the odderade.
T h ec o n c l u s i o bn y H t n v n se t a l . ( 1 9 8 1 ) ,H l n v e s
& N r N o N r N( 1 9 g 7 ) ,a n dm a n ye a r l i e ra u t h o r s
citedby them' is thatduring the weichselian
therewere in NorthernFinlandtwo glaciations,
separatedby one single ice-freeperiod,
the Periipohjolainterstadial,correlatedwith
rhc
Brorup' The strengthof thismodelis thatit
apparentlyexplainsall observations.
I will especially point out that if sites from two differeni
ice-free periods were grouped together in
the
Periipohjolainterstadial,this shouldhave
led to differenttill fabricsLelowand/or above
the
bedsfrom the differentinterstadiats
(Fig. 6), and suchsitesare not found.
I will briefly mentionthe interestingsite
of oulainen (Fig. l) further southin Finland.
which
h a s u p t o 9 0 % p i n u . sp o i l e n . F o n s s r n o u( 1 9 g 2 ,
1 9 g 4 , l 9 g 5 ) a s s u m e da n i n r e r g l a c i aarg c ,
w h e r e a sD o N N e n ( 1 9 g 3 ) , H v v A n r N E N( 1 9 g 5 ) ,
a n d F o n s s r n a ue t a r . ( 1 9 g 7 ) a s s u m e da
Periipohjola(Brorup)interstadialage,Iater
supportedby many TL dates(JuNcNen, l9g7).
If
the latterconclusionis correct,it would mean
that the northernboundaryof pine forestswas
bctwcenoulainen and{hcclassicalPcrripohjola
sitcs.This is surprisinglyI'arnorth c.nrparcd
to the vegetationin middleand Northern
Euiope (MENrr & TyNNl, | 9g4), andwourd
require
a lower temperature
gradientbetweenGermanyandFinland
duringtheBrorupthanat present.
if theclimaticpatternwassimilar.However,
duringtheBraruptherepossiblywasa more
continentalclimatewith steepersummertemperature
gradientstowardsthe cooler westcoast.
If
oulainen is of Brorup age' someother sites
earlier assumedto be Brorup probably represent
other ice-freeperiods,e.g. the Odderade.
The central area of Sweden and Norway
M a n y s i t e sw i t h s u b - t i l sl e d i m e n t sm, o s to f
t h e mw i t h o n r ym i n e r o g e n isce d i m e n t s ,
a r ek n . w n
from areasclose to the watershedof the
Scandinavianmountai; (e.g. LuNoqulsr,
r967,
BencrnseN& GnnNes,198l). when these
siteswere ice-free,nearlyall glacierice in
Scandinaviamust have beengone. A recentreview
is given by LuNnqursr (19g6),who assumed
that all sitesare from one single ice-freeperiod,
the Brorup interstadial(fbr which he assumed
a much lower age than in this paper).
T w o k e y s i t e sa r e B r u m u n d d a(rH e l l e
e t a l . , l g g r ) a n d p i r g r i m s t a d( L u N o g u r s r ,
1967),
becausethey containorganic sediments
that offered tne posiiuitity of constructing
pollen
diagrams'At Brumunddal(Helu et al.,
l98l) the lithostratigraphy(till/pear/riil)
and
the
pollen stratigraphyshow a full environmental
or climatic cycle: Glaciation/tundra/birch
forest/tundra/glaciation,where the ice-free
period did not ,each the temperature
of an in-
322 ' lxr'tM,rxcenuo
terglacial.The frequentoccurenceof lnrix and also the occurenceof Picea, within the Betula
forestsuggestsa correlationto the Brorup, eventhoughboth treesalsooccurredduring the Odderadein Northern Europe. The underlyingtill suggestsa glaciationbetweenthe precedinginterglacialand the Brumunddalinterstadial.The pollendiagramfrom Pilgrimstad(LuNnqursr,
1967)is very similar to the one from Brumunddal, except thatlnrix is missing, and probably
correlatesto the sameinterstadial.
Evidences of more than one Lower weichselian ice-free interstadial
As discussedabove, the stratigraphyin Northern Finland indicatesthat there was only one
Lower Weichselianice-freeinterstadial,the Periipohjola.Lulroeursr (1986) also concluded
that there was only one ice-freeinterstadialin the centralareasof Swedenand Norwav. which
r$ 9:
oo
>;i
-
, * , t * : E s Ff ;- r
6
c5!c
;EffiTtr3si
5 5,"3g5E
Upper
lill
Till witi
or9anic
mallar
--.ot+
Pinus
----*-
Alnus
picea
Fig' 8: Pollen diagram from Permantokoski,Perdpohjola,the type areafor the periipohjola
interstadial.
Reproducedfrom Konpell (1969); the original Germanrext is translated.Note ttuiin
tf,. total diagram
the amount of herb pollen (NAP) is given relative to 100 tree pollen (AP), so that throughout
the peal bed
Betula Sirch) pollen constitutes more than 70 to j5% of the total amount of pollen.
The ScandinavianIce Sheetthrough the last interglacial/glacialcycle . 323
he correlatedwith the Periipohjolaand the Brorup. However, in Northern Germanythe Brorup
was only slightly wanner thanthe Odderade(MeNxr & TyNNr, 1984;Brnnr & Lene. 1986).
Furthermore, if the correlation in Fig. 2 is correct, the duration of the Odderade(isotope stage
5a) andthe Brorup (5c) shouldbe similar, and indeedapproximatelyas long as the Eemian(5e)
and the Holocene (stage 1), all periods having a duration between l0 000 and 13 000 years.
Theseconsiderationslead me to examineif there is evidenceof more than one ice-freeperiod
in central areascoveredby the ScandinavianIce Sheet.
First I will simply statethat a reliablemutual correlationof the many individual sitescorrelated
with the Jiimtland,Gudbrandsdalen,Brumunddalenand other ''Brorup" interstadialsin Sweden and Norway is impossible.Theoretically,different sitesmay stemfrom many different interstadials,and even different glacials(MeNcenuo, l98l). When they all were groupedinto
one single interstadial(e.g. LuNnqutsr, 1986), it was partly becausethis was the simplest
model which explainedall observations.Up to now this model has not been contradicted.
The most obvious evidencefor more ice-free interstadialsis presentedby LncrnnAcx, who
from Northern Sweden(aroundJunosuando,Fig. l) reportedthree siteswith two interstadial
beds separatedby a till (LacrnnAcr, 1986; HrrrlnoRc et al., 1986). Basedon till fabric and
pollen stratigraphyLncensAcx & RonrnrssoN (1988)correlatethe lower interstadialwith the
Periipohjola.Also the upper, namedthe Tirendci interstadial,hasan infinite radiocarbonage,
and is tentativelycorrelatedwith the odderade (LncrnnAcr & Ronenrssor.r,1988).
LuNnquIsr(1967)describedsub-tillclayandsiltatVilbacken,nearPilgrimstadonFig.
l,and
includedthesesedimentsin theJiimtlandinterstadial.ManNrn ( I 981) found that the Vilbacken
sedimenthas a palaeomagneticsignal similar to the signal of event F in St. Germain II in the
Grande Pile, and different from the signal in St. Germain I. The correlationsgiven in Fig. 2
reflect ihat Vilbacken is of Odderade age.
Ice-free periods with finite radiocarbon ages?
Many finite radiocarbon dateswith agesabove20 000 B. P. have beenobtained from the central
p a r t s o fS c a n d i n a v i a ( s e e L u N o q u r s1r9, 8l , 1 9 8 6 ;H r n v l s e t a l . , 1 9 8 1 ,M a N c B n u o ,l g g l f o r
further references).Many of them canbe demonstratedto be minimum agesonly, e.g. because
they dateforestedperiods.In my opinion no finite datefrom Central Scandinavia,e.g. the area
proximal to the Younger Dryas endmoraines,can at presentbe convincingly arguedto be correct. This may be changed in the future, but with Fig. 5 I have assumedthat the central areas
were coveredby ice from 500m to 12000 B.P..
BrncensrN & THonnseN(oral communication 1988) recently obtaineda TL date of 37 000
B.P. for windblown sedimentsfrom Gudbrandsdalen(Fig. l). LeunnznN (oral communicationl988)obtainedU-seriesdatesaround30000B.P.onspeleothemsfromNordland(Fig.
l).
Both thesecaseshaveto be re-tested,andI haveconservativelynot includedthemin thediagram
(Fig. 5). Still they openexciting ways of dating ice-freeperiodsto cold, or to short, for organic
production. If they are correct, eachof them would demonstratethat central areasindeed were
ice-free.
324 . ttn Mrxcrnuo
Discussion and conclusionsfor the eastern flank of the ice sheet
It seemsquite clear that there was a glaciationin the centralareasduring the Herning stadial
(isotopestage5d): All interglacialbedsare directly overlainby a till (and not a "mild" interstadial),
andall interstadial
bedsarefoundon till (andnoton an interglacial).A mainproblem
in mapping the geographicalextentof that glaciationis that interglacialand interstadialsites
hardly exist betweenthe centralareaand the marginalzoneof the Weichselianglacialmaximum.
not separated
by a till is Stenberget
The mostproximalsitewith Eemianand Brorupsediments
( F i g . l ) i n S o u t h e r nS w e d e n( B e n c r u r u n& L n c r , n r - u N nl,9 8 l ) . I f t h ed a t i n go f t h et i l l I I I i n
Finlanclis correct, Lapland and PerZipohjola
districtswere glaciated,whereasOsterbotten
(aroundthe siteOulainen,Fig. l) remainedice-freeduring stage5d. The Brumunddalsite in
N o r w a y( F i g . l ) ( H r l l e e t a l . , l 9 8 l ) s u g g e s tas g l a c i e rw i t h a m i n i m u me x t e n s i o o
nf nearly
t h e Y o u n g e rD r y a s s i z e .M a i n l y b a s e do n T L d a t e s ,M o r s x t ( 1 9 8 0 , 1 9 8 5 ) ,G a l o N ( 1 9 8 2 ) .
( 1984),andLINnNEn et al. ( 1984)concludedthatthelowestWeichselian
Lrr.roNen
till bedalong
the lower Vistulavalleyin Polandis of pre-Brorupage,which would suggesta stage5d glaciation considerably
largerthantheYoungerDryas,andincompatiblewith theconclusions
drawn
from Finland.However,thisageis not provenby overlyingBrorup sediments,
and Kozensrt
( 1980),for example,postulates
a Late Weichselianagefor that till.
The patternof glaciationduringtheHerningandthe LateWeichselianmaximumwasquitedifferent. During the Herning the ice-shedremainedin the mountainsto the west (Hrnve,s&
Ne,NoNeN,1987;Hlnvls et al., 1986)whereasduring the Late Weichselianit was far to the
east.Basedon thegivenobservations,
I concludethatthe sizeof the Herningtime glacierwas
of the sameorder of magnitudeas the YoungerDryasglacierwestof the mountains,and probably somewhatsmalleron the eastside.
I also concludethat there were two (or possiblymore) interstadials,of agesbeyondthe range
of radiocarbon
dating,whenareascloseto the mountainswereice-free.The olderof thesecor(LlceneAcx & RoerRrssoN,1988),or at leastwith someof the
relateswith the Periipoh.jola
grouped
localities
togetheras Periipohjola,andprobably with the Brorup. The logical assumption will then be that the younger Tdrendriinterstadialcorrelateswith the Odderade.The correlation,or rather the splitting,of the other Swedishand Norwegiansites into the two interstadials
is difficult, simply becausemostof them lack any criteriafor both relativeand absolute ages. The most promising techniquesfor solving this problem are TL dating and
palaeomagnetic
correlationswith areasoutsidethe Wcichselianglaciation.
(thatshouldbe Rederstallstadial:
The scaleof the glaciationbetweenthe two interstadials
isotopestage5b) is unknown.LecsnsAcx (writtencommunication1988)assumesthat it had
a considerable
extentin NorthernSwedenand Finland,eventhougha till bedof this ageis not
reported from Northern Finland.
The extensionof theisotopestage4glaciationis unknown,too. Bothfor this, andfor theearlier
advances.Polandmay be the key area. Dnozoowsxl (1980), Dnozoowsxr & Feoonowrcz
( 1 9 8 7 ) .M o l s x t ( 1 9 8 0 ,1 9 8 5 ) ,L t N o n r n ( 1 9 8 4 ) ,a n d L t N o N r nc t a l . ( 1 9 8 4 )c o n c l u d er,n a i n l y
T h e S c a n d i n a v i alnc e S h e e t h r o u g ht h e l a s t i n t e r g l a c i a l / g l a c i cayl c l e
325
on the basisofTL dates,that the ScandinavianIce SheettransgressedPolandaroundthis time,
and that the ice front approachedthe limit of the Late Weichselianmaximum. However. this
is not yet generallyaccepted(Koznnsxl, 1980).
The Dssebackasite, near Gotenburgin south-westernSwedenhas severaltill beds, too,
separated
from oneanotherby horizonssuggesting
ice-freeconditions,mostlyaswind abraded
s u r f a c e s w i t h s o m e o r g a n i c m a t t e r ( H t l r - e n1o9n7s 4
, ,1986).Thedatingisproblematictyetthe
stratigraphysuggests
thattheiceoverrodethisareaseveraltimesduringtheWeichselian.A TL
dategaveabout50 000 B. P. for an interstadial
bed(Hrllrrons, 1986);if correctit may suggest
that the underlying till is of isotopestage4 age.
PrrrnsnN (1984)assumedthata till at Holmstrup(correlatedwith the oldestWeichseliantill
in RistingeKlint) in Denmark was depositedby a glacier flowing from the Baltic at a time that
may correlate with isotopestage4. If he is right. the ice sheetmust also have transgressed
Poland,and thus his conclusionis indeedcompatiblewith the similar conclusionfor poland
givenabove.However,HoutraRx-NTELSEN
( 1987)postulated
thesametill to beof pre-Eemian
age.LlcenluNn (1987)concludedthatthe first Weichselianice advanceover southernmost
Sweden,andthusDenmark,postdatetheGdrdslsvbeds(Mrr-lrn , 1977)from which thereare
severalradiocarbondatesin the range2l 000 to 30 000 B. P. I still considerthe time of the first
Weichselianice advanceto Denmark as unsolved.
Towardsclimaticand glaciologicalmodelsfor the Weichselianglaciations
Glaciologicalmodelsfor the Weichselianhavebeendevelopedby, for example,DeNroN &
H u c n e s ( 1 9 8 1 ) ;B o u l r o N e t a l . ( 1 9 8 5 ) ,a n dL A c s n L u N n( 1 9 8 7 ) .S u c hm o d e l sa r ee x t r e m e l y
importantto improve the understanding
both of the climatic role of the ice sheets,and fbr
severalothergeologicalproblems.A crucialboundaryconditionin all suchmodelsis the type
of observations
discussed
in this paper:Field dataon the sizeof the ice sheetat differenttimes.
I shall not discussthe modelshere, but only presentsomethoughtsoriginating in the geological
observations
presentedhere.
The Weichselianwas not one simpleglacialcycle from an interglacialto a glacialmaximum.
In fact ice sheetsdeveloped(at least) three times, each time from virtually no glacier ice.
However, only the first of thesestartedfrom a full interglacialclimate, with an oceanto the west
as warm as at present.In contrast,the lastmajor expansionto the LateWeichselianmaximunt
started(around30000 B.P.) from an ice sheetthat alreadywas relativelylarge.Thereare all
reasonsto believethatthedifferentstartingpointsanddifferentclimatesduringthc cyclescaused quite differenttypesof developmentof the geometryof the ice shcetsmentioned.
Allobservationssuggestthatthefirstglaciation(stage5d) remaineda mountaincentcre6glaciation, with the ice-shedremaining in the mountainsthroughout the glaciation. This contrasts
strongly with the Last Glaciation,when the ice-shedmoved far eastand southof the watershed
in Swedenand Norway (LuNoqutsr, 1974,BancenseN& GnnNBs,1983).Whetherthis was
a slow movementduring severalthousandyears,or whetherit had happenedrapidly around
the
time of the maximumglaciation,is unknown.Furthernorth Hrnves et al. (l98l) and Hrnvns
326 . sexMeNcsnuo
& NTNoNEN(1987)did not find any fabricin thetill
suggesting
thatthis LastGlaciationstarted
in the westernmountains,and their observations
would ratherleadto a model of instantaneous
glacierizationof large areasof Northern Finland.
Acknowledgements
A draft of this manuscriptwas widely distributed
to Nordic colleaguesearly February l9gg,
and I receiveda large number of written and orar
comments,noruuiyfrom J. J. DoNNen, M.
EnoNeN,L. FonssrRdu, H. HrRv,rrs,
and K. NTNoNENfrom Finiand; R. LecrnnAcx,
E.
LAcERr-uNn,J. Lunoqursr, and A. M. RosrnrssoN
from sweden;M. Hourrllnr_NlErspN
andK' S. Perrnsrhr,Denmark;B. G. ANoensEN,
o. F. Bnnornsrp, J. LaNnvrx, E. LlnssN,
s' E' LnunrrzrN, A. Nrs*, H. p. Sarnup,and
M. THoREsnN,
Norway. MrcHneLTnlsor
correctedthe Englishlanguage.To all thesefriends
I offer my sincerethanks.The project was
financially supported by the Norwegian Research
council for Science and Humanities
(NAVF).
References
A N o E n s EBN.'G . ,N v o n r -R, . ,w n n c e N ,o . p . & o s r r , . r o , ( r 9 g l ) :
s.R.
w e i c h s e r i a n b e fro5r0e0 o y e a r s
B.P. at Jaren-Karmoy
in southwestern
Norway.Boreas10, 2g:'_314.
-, Sr'rnup,
p.
H. & KrnrHus,6. (r9g3):Eemian
andweichselian
a.pnrit,atBoon Karmoy,SWNor_
way: A preliminaryreport.Norgesgeologiske
undersskerse
.
3g0,ig9-20r.
ANornsrN's' T' (1961):vegetation
andits-environment
in Denmark
in theEartyweichselian
Glacial
(lastglacial).DanmarksGeologiske
Undersskelse.
II Rekke 75,r_r75.
AVERDIECK,
F' R. (1967):Die vegetationsentwicklung
4., n..-int..gi"ri.r, undder Frtihwiirm-lntersradiale
vonOdderade/Schleswig_Holstein.
Fundamenta
2, l0t _ i2S.
BrnuLtEu,J' L' nr & Rrlue, M.
A longUpperpleistocene
1t9441:
pollenrecordfromLesEchets,near
Lyon,France.
Boreasf-i, lll_132.
BeHnn'K' E' & Le'pe,u' {1986):EineFolgevon
Eemund4 weichsel-lnterstadialen
in oerel/Niedersachsen
und ihr Vegetarionsablauf.
EiszJitalter
u. Gegenwa
*
rt 36, ll-36.
Bencrn,A., Irrrsn|E,
J., Hevs,J., Kuxle, G. & SAirzrueN,
B. (eds.)(19g4):Milankovitch
andclimare.
NATO ASI Series126(2 volumes),D. Reidel,
Dordrecht.
BsncensEN'
o' F' & GrnNss,K. (1981):weichselian
in centralSouthNorway:TheGudbrandsdal
Interstadial
andthefollowingglaciation.
Boreas10, 315-322.
- & - (1983):Glacialdeposits
in theculmination
zoneofthe Scandinavian
icesheet.In: EslEns,J.
(ed'): Glacialdepositsin north-wesr
Europe,zg-40. A. A. Batkemo,noii.roor.
BencluNo'B' E' & LecBnLuNo,
E. (1981j:Eemianandweichselian
stratigraphy
in southSweden.
Boreas10, 323-362.
BoulroN' G' s', Srrrrrn,
G. D., JoNrs,A. s. & Nrwsorrlr,J. (19g5):
Glacialgeorogy
andgraciorogy
of thelastmid-latitude
icesheets.
J. Geol.Soc.London142,44i474.
BownN,D. e. (197g):euaternaryGeology.p".garnonpress,
Oxford.
tt:il?
i;;i?l:;Jrlfi
MEYER.
x."o.*sE')'Report
ontrre
sfmposium
Visturian
srrarigraphy,
cHrppcLt-,J'&sH,c,cxl-sroN,N.J...(1986):oxygenisotopesandsealevel.Nature
324, 137-.140.
De*screno,w' (1987):Icecoreevidence
of abruitclimaticchanges.l;,;;";.*, w.
H. & Lensynrr,
L' D. (eds.):Abruptcrimaticchange,NATO
A'sI Seriesc. 216,223_234.D. Reider,Dordrecht.
The Scandinavian
Ice Sheetthroughthe lastinterglacial/glacialcycle . 327
D e x r o N , G . H . & H u c s p s , T . J . ( e d s . ) ( 1 9 8 1 ) : T h e l a s t g r e a t i c e s h e e t s . J o h n W i l e y & S oY
no
s ,r N
k .e w
DonNEn, J. (1983): The identificationof Eemianinterglacialand Weichselianinterstadialdepositsin
Finland. Annales AcademiaeScientiarumFennica. SeriesA 136, l-38.
Dnozoowsrt, E. (1980): Chronostratigraphyof the Vistulian glaciation on the lower Vistula valley.
Quatern. Studiesin Poland2, 13-20.
- & FBponowlcz, S. (1987): Stratigraphyof Vistulian glaciogenicdepositsand correspondingthermoluminescencedatesin the lower Vistula region. Boreas16, 139-153.
Fonssrnou, L. (1982): The Oulaineninterglacialin Ostrobothnia,westernFinland. Acta Universitatis
Oufuensis.SeriesA 136, l-125.
- (1984):Eemianand Weichseliancorrelationproblemsin Finland.Boreas13, 301-318.
- (1985): Further observationson Weichselianand Eemian correlationsin Finland: A reply to Hannu
Hyvdrinen. Boreas14, 2&-266.
-, EnoNrr,M.&GnONluNo,T.(1987):OnmarinephasesandshorelevelsoftheEemianlnterglacial
and Weichselianinterstadialson the coast of Ostrobothnia,Finland. Geological Survey of Finland.
SpecialPaper2,3742.
Grt-oN, R. (1982): On the stratigraphy and chronology of the last glaciation (Vistulian) in Poland.
Quatern. Studiesin Poland 3,3'748.
Gnucrn, E. (1979a): Die Seeablagerungen
von Samerberg/Obb.und ihre Stellung im Jungpleistoziin.
Eiszeitalteru. Gegenwart29, 23-34.
- (1979b):Commenton"GrandePilepeatbog:Acontinuouspollenrecordforthelastl40000years"
by G. M. WorLLnno. Quatern.Res. 12, 152-153.
Hlr',rsonc,M., Hrnvns, H., Le,cBnsAcK,R., MAKTNEN,
K., NeNoxen, K., OrsrN, L., RoHoe, L.,
SurtNeN,R. &THonrsBN, M. (1986):Mapof Quaternarygeology,
sheet4:Quaternarystratigraphy,
Northern Fennoscandia,1: I mill., GeologicalSurveysof Finland, Norway and Sweden.
Her-ls, M., SoNsrrcelno,8., coopB, R. G. & Rve, N. (1981):Early weichselianpeatat Brumunddal, southeasternNorway. Boreas .10,369-379.
Hlllrrons, A. (tSU+):The stratigraphyand genesisof the Drisebackaand Ellesbodrumlins. A contribution to the knowledge of the Weichsel-glacialhistory in western Sweden.GeologiskaForeningensi
Stockholm Forhandlingar96, 355-37 4.
- (1986): The Dtisebackainterstadials,17. Nordiska geologmotet,Helsingfors Universitet, 54.
Htnve,s,H. (1983): Correlationproblemsof interglacialdepositsin Finnish Lapland.QuaternaryGlaciations in the Northern Hemisphere,IGCP project 24, Report 9, 129-139, paris.
-, Konpele, K. & Kul,c'Nsuu,R. (1981): Weichselianin Finland before 15 000 B.P. Boreas
10,
42343t.
- & KurnNsuu,R. (1981):Quaternary
stratigraphy
andchronology
in northern
Finland.In: GonBUNov, G. I. (ed.): Glacial depositsand glacial history in easternFennoscandia,Kola branch of the
USSR Academyof Sciences,Aparity, 5-15.
- , L l c B n g A c K ,R . , M A K I N E NK, . , M r N e r _ 1H, . , N n n o n p N ,K . , O r s e N ,L . , R o H o r , L . ,
S u r r r . r e NR, .
& TsonesBN, M. (1986): Map of Quaternarygeology, sheet5: Ice flow directions, Northern Fennoscandia.Geological SurveysofFinland, Norway and Sweden.
- & NnNoneN, K. (1987): The till stratigraphyof Finland. GeologicalSurvey of Fintand
Specialpaper
3,49-63.
Houturnx-NtersEN, M. (1987): Pleistocenestratigraphyand glacial history of the central part of Denmark. Bull. Ceol. Soc. Denmark-i6, l-189.
HvvAntNEN,H. (1985): Weichselianand Eemian correlationsin Finland: A discussion.Boreas14,
262-263.
JuNcxen, H. (1987): Thermoluminescence
dating of sedimentsfrom Oulainenand Vimpeli,
Ostrabothnia,
Finland.Boreas16, 231-236.
-, LeNovIx,J. & MnNcenuo,J. (1989):Thermoluminescencedatesof
Weichselian
sediments
in western Norway.Boreas,18,23-29.
328
lnN MnNcenuo
Konpnle, K. (1969): Die Weichsel-Eiszeitund ihr Interstadialin Perdpohjola(n<irdlichesNordfinland)
im Licht von submoriinenSedimenten.Annales Academia ScientiarumFennicie Series A III 99.
r-t09.
Kozensrl, S. (1980): An outline of vistulian stratigraphyand chronologyof the grearpoland lowland.
Quatern.Studiesin Poland2,21-36.
Kuru, G. l. (1977):Pleistocene
land-seacorrelations.Earth scienceRev. 1-1,301-374.
LncE nsicx. R. ( I 986):SGU:s kvartdrgeologiska
kartliiggningi skalaI : 100000 inomnorraSverige,I 7.
Nordiskageologmotet,HelsingforsUniversitet,91.
- & RosenrssoN,A.-M. (1988):Kettleholes- stratigraphical
archivesfor Weichseliangeologyand
paleoenvironmentin northern-mostSweden.Boreas17, 439_-469.
LecEnl-uNo,E. ( 1987):An alternativeWeichselianglaciationmodelwith specialreferenceto theglacial
historyofSkine, SouthSweden.Boreas16, 433-459.
LrNovtx, J. Y. & Hnltnonc, M. ( 1987):Weichselianglacialepisodesin outerSunnmore,westernNorway. Norsk geologisktiddskrift 67, 107-123.
- & Mlr'rcEnuo,J. (1985):A Pleistocene
sandurin westernNorway:Faciesrelationships
andsedimentologicalcharacteristics.
BoreasI 4, 16l-|i4.
L n n s r r u ,E . , G u r - r - r x s r Ns,. , L e . u n r r z E NS, . 8 . , L r a , R . , L o v L r E ,R . & M e N c r n u o , J . ( 1 9 g 7 ) :C a v e
stratigraphyin westernNorway; multipleWeichselianglaciationsand interstadialvertebratefauna.
B<rrcas/6, 267-292.
Lrunt t ztN, S. E. ( 1984):Speleothem
datingin Norway: An interglacialchronology.Norskgeogralisk
tidsskriftJ8, 198.
- (1986):KarstformeriNordland, Reportto Direktoratetfor
Naturforvaltning.152p, Oslo.
LINonrn, L. ( 1984):An outlineof Pleistocene
chronostratigraphy
in Poland.Acta Geologicapolonica
34. 27 -49 .
-, Menxs, L. & Pprnu, K. (1984): Late
Quaternaryglacial episodesin the Hornsundresion of
Spitsbergen.
Boreas/J, 35-4'7.
LuNoqutsr, J. (1967):Subntordna
sedimentiJ:imtlandsliin. SverigesGeologiskaUndersokningSerie
c 6t8,t-267.
-
(1971):The interglacialdepositat the Leveaniemimine, Svappavaara,
SwedishLapland.Sveriges
GeologiskaUndersokningSerieC 658, l-163.
(1974):Outlinesof the WeichselGlacialin Sweden.GeologiskaForeningens
i StockholmFsrhandlingar 96,327-339.
(1981):Weichselianin Swedenbefore l5 000B.p. Boreas,l0,395_402.
( 1 9 8 3 ) :T h e g l a c i a h
l i s t o r y o f S w e d e nI.n : E H l r n s , J . ( e d . ) : G l a c i a d
l eposirsinnorth-wesrEurope,
77-82, A. A. Balkema.Rotrerdam.
(1986): Stratigraphyof the central area of the Scandinavianglaciation.
euatern. ScienceRev. j,
25r-268.
l-svttB, R. & Snr'roNss,A. (1987): Paleomagnetic
excursionsrecordedin mid-Weichseliancave
sedimentsfrom Skjonghelleren,Valderoy, W. Norway. Physicsof the Earth and planetary
Interiors
45 , 337 -348.
MnNcenuo, J. (1977):
Weichselianmarinesediments
containingshells,foraminifera,and pollen,
.Late
at Agotnes,wesrernNorway. Norsk GeologiskTidskrift 52, n_,1.
- ( 1 9 8 1 )T: h e E a r l y a n d M i d d l e w e i c h s e l i a n i n N o r w a y :
Areview.Boreas/0,3gl-393.
- ( 1 9 8 3 ) :T h e g l a c i a h
l i s t o r y o f N o r w a y .I n : E s l e n s , J . ( e d . ) : G l a c i a d
l eposirsinnorth-westEurope,
3-9, A. A. Balkema,Rotrerdam.
-
( I 987): TheAllersd/Younger
Dryasboundary.
In: Bencrn,w. H. & Lesnynre,
L. D . ( e d s . ) : A b r u p l
- Evidence
climaticchange
andimplications.
NATo ASI Series
c 216, 163-li | . D. Reidel,Dordrecht.
-,
ANDERSEN,
s. T., BrncLuNo, B. E. & DoNNrn, l. J. (191,4):
of Norden,
euaternarysrratigraphy
a proposal for terminology and classification.Boreas3, l}g_l2j.
TheScandinavian
lce Sheetthroughthe lastinterglacial/glacial
cycle 329
-
& Bnnct'uNo' B E (1978):The subdivisionof
thc Quatcrnaryof Nor<Jcn:
A cliscrssi.n.B.rcas z,
t79-18t.
-' soNsrnceARD,E' & Ssrnup,
H. P. (1979): Correlationof Eemian (interglacial)
stage and the deep.
seaoxygen-isotopestratigraphy.Nature 277, lgg_lg2
-' SoNsrecrARD,E., Sernup,
H. p. & HnloonseN, s. (lggl): A continuous
Eemian-Earry
weichselian sequencecontainingpollen and marine
fossilsat Fjosani"., *.r,..n Norway. Boreas,10,
137_208.
, . G . , H , ^ v s J, .
M e n r r r s o N , D . G . , p r s r n sN
D . , I r r . r s n *J, . , M o o n e ,T . c . & S H n c x L E r o NN, . J . ( 1 9 g 7 ) :
Age dating and orbital theory if the ice ages: Development
of a high-resolution0 to 300000 year
chronostratigraphy.euatern. Fies.27, l._129.
MENxr' B' (1982): on the Eemian interglacialand
the weichselianglacial in northwesternGermany
(vegetation,stratigraptrypareosols,sediments;.
studies in poland 3, 6r-6g.
Quatern.
- & TvnNt, R' (1984):Das
Eeminterglacial
unddasweichselfriihglazial
von Rederstall/Dithmarschen
Bedeutungfiir die mitteleuropdischeJungpteistozdn-ci"a".ungln.
Geol. Jb. Reihe A 26,
;1,ff:
Mtllen' G' H' & MeNcrnuo, J. (1986):Aminostratigraphy
of Europeanmarineinterglacialdeposits.
Quatern. ScienceRev. 4, ZIS_271.
-' Srrnup'H'P''MrNcEnuo,J.&ANornseN,B.G.(1983):Aminoacidratiosineuaternarymolluscs
and foraminifera from westernNorway: correlation,
geochronologyunJfut"or..perature estimates.
Boreas12, l}'l-124.
MrLr-En,u ' (1977):Pleistocene
depositsof theAlnarp Valley, southernswedenMicrofossilsandtheir
stratigraphicalapplication'Lundquathesis4,Departmentof
euaternaryGeology,universityof Lund,
Mo'rsxt'J' E' (1980):Vistulianstratigraphy
in theglaciatedareaof the polishlowlands.
euarern.Studies
in Poland2 , '7i -99.
- (1985):
Quaternary'Part 3b of Geologyof Poland.PublishingHousewydawnicrwa
Geologiczne,
Warsaw,248 p.
MonNen' N' A' (1969): The Late
Quaternaryhistory of the KattegatSeaand the Swedish wesr coast.
SverigesGeologiskaUndersokningSerie C 640,
l_4g:..
- (1981): weichserian chronostratigraphy
and correrations.Boreas./0, 463_470.
N E s r r ,A ' , A N o n , E . , R v E , N . , L r B N ,i . , - H o r - r , p .
A . & B l r x n n , L . H . ( l g g 7 ) : T h e v e r t i c aer x r e n r
of
,:;\i;::;\iselian
ice sheetin the Nordfor d-Msrearea,western
Norway. Norsk geotogisktidsskrift
PerrnsrN, K. S. (1984):Stratigraphical
positionsof weichseliantills in Denmark.
Striae 20,75- 7g.
Rvp' N' ' Nasre'A'. LrrN, R. & ANoe, g. (tssz):
The Lateweichselianice sheerin theNordfiord-Sunnoeglaciationchronologyfor Nordford, western
Nor*uy. N;;l geografisktidsskrift4t
,
ry:Tuuno
SE:nup'H' P' (1987):Molluscanandforaminiferal
biostratigraphy
- of an Eemian-Earlyweichseliansection on Karmsy, southwesternNorway. Boreas16,
2j42.
- , A n R s e r H ,I . , E l r - r N c s p N ,
K . L . , R r r r s r n , E . , J e N s E NE
, ., Lov'*, R., BeNr, A., BnrcHeuGnprrE, J', Le'nsEN,E. & sroxpn, M. (1987):
euaternaryrr;tigrr;l; oi ,t. ntua.n area,cenrral
North Sea:A multidisciplinarystudy.J.
euatern. Science2, 35_5g.
SHrcxt-s-roN,N' J' (1969): The last interglacialin
the marine and terrestrialrecords.proceedingsRoyal
SocietyLondon B 174, 135_154.
- (1987):
isotopes,ice vorumeand searevel.
lx1sen
euatern. ScienceRev. 6, lg3_r90.
SvpNossN'J' I' & MlNce nuo, J. (1987):Late weichselian
and Holocenesea-levelhisroryfor a crosssectionof western Norway. J.
euatern. Science2, l13_132.
SurlNeN' R' (1984): on the glacial stratigraphy
in Pudzijarviarea, periipohjola.In: KoNrcssoN,
L.-K.
(ed.): Ten yearsof Nordic till research.
Siriae20, gl-.94.
TunoN'J L' (1984):Directland/seacorrelationsinthelastinrerglacial
complex.Naturej0g, 6.73--676.
330 ' :eN MeNcrnuo
VonnrN, T. O. & RoeLnser, E. (1977):Stratigraphyand lithologyof Late Pleistocene
sedimentsat
Mosvatn, Hardangervidda,south Norway. Boreas6, 53-69.
- VonnsN,K.D.,Ar-r'l,T.,Gur-LrrssN,S.,&Lovr-rp,R.(1988
T )h:e l a s t d e g l a c i a t i o n ( 2 0 0 0 0 t o
I I 000) on Andoya, northern Norway. Boreas1Z 4l-77.
WEI-rrN, M. ( l98l ): Verdriingungund Vernichtungder anspruchsvollenGeholzeam Beginnder letzten
Eiszeit und die Korrelation der Friihwiirm-lnterstadialein Mittel- und Nordeuropa. Eiszeitalteru.
Gegenwart3l , 187-202.
WotLLeno, G. ( 1975):Recherches
palynologiques
sur le Pl6istocdne
dansI'estde la Bdlgiqueet dansles
VosgesLorraines.Acta Geographica
Lovaniensia14, l-118.
WoIlLlno, G. M. (1978): GrandePile peatbog: A continuouspollen record for the last 140 000 years.
Q u a t e r nR
. e s .9 , 1 - 2 L
- & Moox, W. G. (1982): Carbon-14datesat GrandePile: Correlationof land and seachronologies.
Science215 , 159-161.
ZrcwtrN, W. H. (1961): Vegetation,climate and radiocarbondatingsin the Late Pleistocene
of the
Netherlands. Part I: Eemian and Early Weichselian. Mededelingenvan de GeologischeStichting
Nieuwe Serie14, l5-45.
- (1975):Indelingvan het Kwartairop grondvan veranderingen
in vegetatieen klimaat.In: Zncwr:r.r,
W. H. & AstenLourNEN, C. J. (eds.): Geologischeoverzichtskaarten
van Nederland,Rijks
GeologischeDienst,Haarlem, 109-l 13.
- (1983): Sea-levelchangesin the Netherlandsduring the Eemian. Geologieen Mijnbouw 62,
437-450.
Received,
March25, 1988
Author'saddress:
Prof.Dr. JeNMnNcrnuo,universityof Bergen,Department
of Geology,Section
B, Allegt.41,
N-5007Bergen