CC1529 Semester 1, 2015 Page 1 of 3 PHYS1001 Physics 1 (Regular) Formula Sheet Vectors Kinematics ~ = Ax î + Ay ĵ + Az k̂ A q ~ A = A = A2x + A2y + A2z ~r = xî + y ĵ + z k̂ ~r2 − ~r1 ∆~r ~vav = = t2 − t1 ∆t ∆~r d~r ~v = lim = ∆t→0 ∆t dt dy dz dx , vy = , vz = vx = dt dt dt ~v2 − ~v1 ∆~v ~aav = = t2 − t1 ∆t d~v ∆~v ~a = lim = ∆t→0 ∆t dt dvx dvy dvz ax = , ay = , az = dt dt dt ~ =A ~ +B ~ =B ~ +A ~ R Rx = Ax + Bx , Ry = Ay + By , Rz = Az + Bz ~ cos φ ~ B ~ ·B ~ = AB cos φ = A A ~ ·B ~ = Ax Bx + Ay By + Az Bz A ~ =A ~ × B, ~ C C = AB sin φ Cx = Ay Bz − Az By , Cz = Ax By − Ay Bx Cy = Az Bx − Az Bz , Simple motions Constant acceleration in one direction: v = v0 + at 1 x = x0 + v0 t + at2 2 v 2 = v02 + 2a(x − x0 ) v0 + v x − x0 = t 2 Projectile motion: x = (v0 cos α0 )t 1 y = (v0 sin α0 )t − gt2 2 v = v0 cos α0 vy = v0 sin α0 − gt Uniform circular motion: v2 4π 2 R arad = = ω2R = R T2 Force and Momentum X ~ = m~a, F ~ A on B = −F ~ B on A F w = mg fk = µk n, fs 6 µs n X ~ dP ~ ext = F dt Zt2 X ~ dt, ~J = ~p2 − ~p1 = F t1 M= X mi i X ~ ext = M~acm ~ = d~p , F F dt ~ = m1~v1 + m2~v2 + m3~v3 + . . . = M~vcm P P mi~ri m1~r1 + m2~r2 + m3~r3 + . . . i ~rcm = = M m1 + m2 + m3 + . . . ~p = m~v, X CC1529 Semester 1, 2015 Page 2 of 3 Work and Energy Rotational Motion 1 1 K = mv 2 , Ugrav = mgy, Uel = kx2 2 2 F = −kx Wtot = K2 − K1 = ∆K ~ · ~s = F s cos φ W =F Z P2 Z P2 ~ · d~l F F cos φ dl = W = dθ , v = rωz dt d2 θ dωz = 2 αz = dt dt 2 dv dω v = ω 2 r, atan = =r = rαz arad = r dt dt IP = Icm + M d2 , vcm = Rω X I = m1 r12 + m2 r22 + . . . = mi ri2 P1 P1 ∆W Pav = ∆t dW ~ · ~v P = =F dt Wel = −∆Uel , Wgrav = −∆Ugrav E =K +U ∆E = Wother Periodic Motion ω 1 2π , f= = ω = 2πf = T 2π T r r k κ ω= , ω= m I r r g mgd ω= , ω= L I Fx = −kx x = A cos(ωt + φ) 1 1 1 E = mvx2 + kx2 = kA2 = constant 2 2 2 r k b2 −(b/2m)t 0 0 x = Ae cos ω t, ω = − m 4m2 √ bcritical = 2 k m Fmax A= q 2 (k − mωd2 ) + b2 ωd2 ωz = i ~ ~ = ~r × F τ = rF sin θ, τ X X ~ dL ~ = τz = Iαz , τ dt 1 1 2 + Icm ωz2 , P = τz ωz K = M vcm 2 2 Z θ2 1 1 W = τz dθ, Wtot = Iω22 − Iω12 2 2 θ1 ~ = ~r × ~p = ~r × m~v (particle) L ~ = Iω ~ L (rigid body) Moments of inertia 1 M L2 12 1 Thin rod, axis through one end:I = M L2 3 Thin rod, axis through centre:I = 1 M (a2 + b2 ) 12 1 Thin rectangular plate, axis along edge:I = M a2 3 1 Hollow cylinder:I = M (R12 + R22 ) 2 1 Solid cylinder:I = M R2 2 Thin-walled hollow cylinder:I = M R2 2 Solid sphere:I = M R2 5 2 Thin-walled hollow sphere:I = M R2 3 Rectangular plate, axis through centre:I = CC1529 Semester 1, 2015 Page 3 of 3 Thermal physics ∆L = αL0 ∆T, ∆V = βV0 ∆T Q = mc∆T, Q = nC∆T, Q = ±mL pV = nRT = N kT N = nNA 3 CV = R (ideal monatomic gas) 2 5 CV = R (ideal diatomic gas) 2 CV = 3R (ideal monatomic solid) CP CP = CV + R, γ = CV f CV = R (f = degrees of freedom) 2 γ pV = constant T V γ−1 = constant r 3RT vrms = M mtot = nM = nNA m QC W e= = 1 − QH QH K= |QC | |QC | = |W | |QH | − |QC | Mechanical waves v = λf, s 1 2L F µ β = (10 dB) log I I0 ∆U = Q − W dU = dQ − dW (infinitesimal process) Z 2 dQ ∆S = (reversible process), S = k ln w T 1 P I= A dQ TH − TC H= = kA , Hnet = Aeσ(T 4 − Ts4 ) dt L dQabs Habs = = AeσTs 4 and Habs = aIA dt dQrad = AeσT 4 Hrad = dt λpeak T = 2.898 × 10−3 m.K ∆U = nCV ∆T Q = nCV ∆T, Q = nCp ∆T Q = W = nRT ln (V2 /V1 ) TH − TC TC = eCarnot = 1 − TH TH TC KCarnot = TH − TC 3 1 3 Ktr = nRT, m(v 2 )av = kT 2 2 2 v= F µ y(x, t) = A cos(kx ± ωt) y(x, t) = (ASW sin kx) sin ωt (standing wave) String fixed at both ends: v fn = n = nf1 (n = 1, 2, 3, . . .) 2L s f1 = p dV, V1 s v= V2 W = Longitudinal sound waves 2π k= λ ω = 2πf = vk, Z r B ρ s (fluid), v = Y ρ (solid rod) γRT (ideal gas) M nv fn = (n = 1, 2, 3, . . .) (open pipe) 2L nv fn = (n = 1, 3, 5, . . .) (stopped pipe) 4L v + vL v fL = fs , sin α = v + vS vS fbeat = |fa − fb | v=
© Copyright 2026 Paperzz