Applied Orbit Perturbation and Maintenance Chia-Chun “George” Chao The Aerospace Press • El Segundo, California American Institute of Aeronautics and Astronautics, Inc. • Reston, Virginia Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 A Review of Two-Body Mechanics . . . . . . . . . . . . . . . . . . . 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Kepler’s Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equations of Motion in Relative Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . Orbit Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conic Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conversion Between Earth-Centered Inertial Coordinates. . . . . . . . . . . . . Types of Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Equations of Motion with Perturbations . . . . . . . . . . . . . . 7 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 General Equations of Motion in Earth-Centered Inertial Coordinates for Gravity Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Third-Body (Sun-Moon) Attractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Solar-Radiation Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Atmospheric Drag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Other Small Forces for High-Precision Orbit Prediction . . . . . . . . . . . . . 10 Coordinates for Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Methods of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Numerical Integration Methods and Tools . . . . . . . . . . . . . . . . . . . . . . . . 15 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Averaged Equations of Motion in Classical Elements . . . . 19 3.1 3.2 3.3 3.4 Background of General Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Method of Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Kozai’s Method for Earth Zonal Harmonics . . . . . . . . . . . . . . . . . . . . . . 21 Extension of Kozai and Kaufman’s Approach to Sun-Moon Gravitational Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Averaged Equations of Motion from Solar-Radiation Pressure . . . . . . . . 29 Simplified Averaged Equations for Earth Atmospheric Drag . . . . . . . . . 33 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5 3.6 3.7 vii 1 1 2 3 4 5 6 Contents 4 Resonant Tesseral Harmonics in Kaula’s Formulations . . . 37 4.1 4.2 4.3 4.4 4.5 4.6 4.7 G Function for Eccentricity Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F Function for Inclination Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Generalized Equations of Variation in Terms of F and G Functions . . . . Equilibrium Longitudes for 24-Hour Orbits . . . . . . . . . . . . . . . . . . . . . . . Equilibrium Longitudes for 12-Hour Circular Orbits . . . . . . . . . . . . . . . . Equilibrium Longitudes for 12-Hour Molniya Orbits. . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Application of Averaged Equations to Orbit Analysis . . . . 59 5.1 Long-Term Eccentricity and Inclination Variations in Geosynchronous Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Long-Term Eccentricity and Inclination Variations in Medium Earth Orbits (GPS Orbits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Long-Term Eccentricity and Inclination Variations in Highly Elliptical Orbits (Molniya and GTO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Resonance Effects in Gravity, Solar-Radiation Pressure, and Third-Body Equations for Low Earth Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 J3 Effects and Frozen Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 5.3 5.4 5.5 5.6 37 42 46 46 52 54 57 6 Orbit Maintenance of LEO, MEO, and HEO Satellites and Constellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.1 6.2 6.3 6.4 6.5 Orbit Maintenance of LEO Satellites and Constellations . . . . . . . . . . . . . Maintenance of GPS and Other MEO Constellations . . . . . . . . . . . . . . . . Maintenance of Molniya Orbits and Other HEO Constellations . . . . . . . Guidelines for Designing Orbit Analysis Tools . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Stationkeeping of GEO Satellites . . . . . . . . . . . . . . . . . . 101 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Longitude (East-West) Stationkeeping . . . . . . . . . . . . . . . . . . . . . . . . . . Inclination (North-South) Stationkeeping . . . . . . . . . . . . . . . . . . . . . . . . Solar-Radiation Pressure and the Sun-Pointing Strategy . . . . . . . . . . . . Perturbations and Control of Tundra Orbits . . . . . . . . . . . . . . . . . . . . . . Guidelines for Designing GEO Orbit Analysis Tools. . . . . . . . . . . . . . . Stationkeeping Using Ion Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 79 85 91 95 98 101 107 108 112 116 123 124 Contents 8 Collocation of GEO Satellites . . . . . . . . . . . . . . . . . . . . . 125 8.1 8.2 8.3 8.4 8.5 ITU Policies and the Need for Collocation . . . . . . . . . . . . . . . . . . . . . . . Strategies of GEO Collocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operational Requirements for Collocation Maintenance . . . . . . . . . . . . Collision Avoidance Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Advanced Concepts of Orbit Control . . . . . . . . . . . . . . . 157 9.1 9.2 Autonomous Onboard Stationkeeping of GEO Satellites Using GPS . . . 157 Autonomous Formationkeeping of Cluster Satellites Through Relative Ranging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Ground Tracking of GEO Collocation Satellites via the Raven Telescope System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 9.3 9.4 10 125 126 152 153 154 End-of-Life Disposal Orbits: Strategies and Long-Term Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 10.1 10.2 10.3 10.4 Policies for End-of-Life Disposal of Satellites . . . . . . . . . . . . . . . . . . . . Study 1: Stability of GEO Disposal Orbits . . . . . . . . . . . . . . . . . . . . . . . Study 2: MEO Disposal Orbit Stability and Direct Reentry Strategy. . . Study 3: Long-Term Evolution of Navigation Satellite Orbits: GPS/ GLONASS/Galileo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 Study 4: Reentry Disposal for LEO Spacecraft . . . . . . . . . . . . . . . . . . . 10.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 199 212 230 236 249 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 ix 1 A Review of Two-Body Mechanics 1.1 Kepler’s Laws Johannes Kepler’s three laws of orbital motion lay the foundation of the field of orbital mechanics. A review of two-body (Keplerian) mechanics requires familiarity with these laws: 1. An orbit is an ellipse with a central body at one focus. 2. An orbiting body’s radius vector from a central body sweeps out equal areas in equal times. 3. The square of an orbiting body’s revolutionary period is proportional to the cube of the satellite’s mean distance from the central body. The content of this book is restricted to the motion of bodies in elliptical orbits with Earth as the central body. The reader may apply methods or theories discussed here to satellite orbits around other planets, with the understanding that changes to certain constants and assumptions will be necessary. It is important to add that Kepler’s laws work in the inertial space with no perturbing forces. Once established, unperturbed elliptical orbits stay fixed in their inertial reference frames. 1.2 Equations of Motion in Relative Form Through Newton’s law of gravitation and his second law of motion ( F = ma ), one can derive the equations of motion of a space object moving under the influence of a central force field. As shown in several texts,1.1–1.5 the equations of motion of a Keplerian orbit can be given in relative form as: dr 2 ⁄ dt 2 = – µr ⁄ r 3 , (1.1) where r is the position vector of the space object with its origin at the center of mass of the primary body. The gravitational constant µ, sometimes called GM if the primary body is Earth, is defined by the following equation. µ = k 2 ( m 1 + m 2 ), (1.2) where k represents the Gaussian, or heliocentric, gravitational constant AU 3 ⁄ 2 - ); m1 is the mass of the primary body, or Earth; and m2 is ( 0.01720209895 ---------------------1⁄2 m sun day the mass of the second body, or the satellite. Figure 1.1 shows the position vector in an Earth-centered inertial (ECI) coordinate system. The x-axis is pointing to the vernal equinox, ϒ, and the y- and zaxes complete the right-handed system with the x-y axes in Earth’s equatorial plane. In spherical coordinates, the corresponding equations of motion become: dr 2 ⁄ dt 2 – r ( dθ ⁄ dt ) 2 = – ( µ ⁄ r 2 ) rd 2 θ ⁄ dt 2 + 2 ( dr ⁄ dt ) ( dθ ⁄ dt ) = 0, 1 (1.3) 2 A Review of Two-Body Mechanics z r y ϒ x Fig. 1.1. Geometry of ECI coordinates. where θ is the angular variable measured from a reference axis that is usually the ascending node, or the intersection of the orbit with Earth’s equatorial plane. Positive values for θ correspond to counterclockwise movement or movement in the direction of motion, and θ lies in the orbital plane. Therefore, two-body, or Keplerian, motion is two-dimensional if it is expressed in terms of spherical coordinates as described here. Figure 1.2 shows the geometry of the position vector in terms of these spherical coordinates. 1.3 Orbit Parameters In accord with commonly used conventions, orbit parameters are denoted by the following symbols. The four angular variables are defined in Fig. 1.3. The six classic orbit elements that define an orbit in a three-dimensional inertial space are • a, the semimajor axis • e, eccentricity • i, inclination (0 < i < 180 deg) • Ω, right ascension of the ascending node r θ Ω or Fig. 1.2. Geometry of spherical coordinates. Conic Solutions 3 z Perigee axis r ν y ω Ω Vernal equinox x Orbital plane i Ascending node Fig. 1.3. Orbit orientation and geometry in an inertial reference coordinate system. • ω, argument of perigee • M, mean anomaly, or M0, mean anomaly at epoch t0 Orbit perturbations to be discussed in the later chapters of this book will be in terms of the deviations from those six classic elements. Additional orbit parameters are used to compute the position and velocity of an orbiting object. Some of these parameters appear in the equations of motion with perturbations: • E, eccentric anomaly • v, true anomaly • u, argument of latitude (= v + ω) • p, semilatus rectum (= a[1 – e2]) • n, mean motion (= [µ/a3]1/2) • P, period (= 2π/n = 2π[a3/µ]1/2) • γ, flight-path angle • Re, Earth equatorial radius • hp, perigee altitude • ha, apogee altitude 1.4 Conic Solutions The solutions to the equations of motion (Eqs. [1.1] and [1.2]) are the conic solutions (i.e., ellipse, parabola, and hyperbola). This book’s content is restricted to the ellipse. The mathematical derivations can be found in fundamental books on orbital mechanics or astrodynamics. Table 1.1 contains the commonly used relations, included here for quick reference (following Herrick1.2). 4 A Review of Two-Body Mechanics Table 1.1. Equations Commonly Used in Orbital Mechanics Entity to be defined (or name of equation) Equation Vis viva energy integral V 2 = µ ( 2 ⁄ r – 1 ⁄ a ). Angular momentum h = ( µp ) 1 ⁄ 2 . Kepler’s equation M = E – e sin E. Radius equation r = a ( 1 – e 2 ) ⁄ ( 1 + e cos v ). Time rate of change of r dr ⁄ dt = ( µ ⁄ p ) 1 ⁄ 2 e sin v. Conversion of eccentric anomaly (E) to true anomaly (v) cos v = ( cos E – e ) ⁄ ( 1 – e cos E ). sin v = [ ( 1 – e 2 ) 1 ⁄ 2 sin E ] ⁄ ( 1 – e cos E ). Conversion of true anomaly (v) to cos E = ( cos v + e ) ⁄ ( 1 + e cos v ) . eccentric anomaly (E) sin E = [ ( 1 – e 2 ) 1 ⁄ 2 sin v ] ⁄ ( 1 + e cos v ) . Half-angle relation tan ( v ⁄ 2 ) = [ ( 1 + e ) ⁄ ( 1 – e ) ] 1 ⁄ 2 tan ( E ⁄ 2 ). Flight-path angle tan γ = e sin v ⁄ ( 1 + e cos v ) = e sin E ⁄ ( 1 – e 2 ) 1 ⁄ 2 . Mean anomaly at t M = M 0 + n ( t – t 0 ). Perigee altitude hp = a ( 1 – e ) – Re . Apogee altitude ha = a ( 1 + e ) – Re . 1.5 Conversion Between Earth-Centered Inertial Coordinates An orbit analyst often needs to know how the perturbations in orbit elements translate into satellite position and velocity deviations. Although the computation can be done accurately by computer via calling subroutines, it is important to understand the fundamental relations between the two sets of orbit conditions. Some of the orbit perturbation and maintenance equations to be discussed in later chapters are derived from these relations. The conversion of classic orbit elements to ECI Cartesian coordinates may be accomplished through these equations (following Herrick1.2): x = r ( cos Ω cos u – sin Ω sin u cos i ). y = r ( sin Ω cos u + cos Ω sin u cos i ). z = r sin u sin i. (1.4) Types of Orbits dx ⁄ dt = V [ ( x ⁄ r ) sin γ – cos γ ( cos Ω sin u + sin Ω cos i cos u ) ]. dy ⁄ dt = V [ ( y ⁄ r ) sin γ – cos γ ( sin Ω sin u + cos Ω cos i cos u ) ]. dz ⁄ dt = V [ ( z ⁄ r ) sin γ + cos γ cos u sin i ]. 5 (1.5) where V is the magnitude of the velocity (Table 1.1). A detailed derivation may be found in Chapter 4 of Orbital Mechanics.1.4 To convert ECI Cartesian coordinates to classical elements, one may use the following relations. Solve for a using vis viva equation (Table 1.1). Solve for e using: e cos E = rV 2 ⁄ µ – 1 and e sin E = r ( dr ⁄ dt ) ⁄ ( µa ) 1 ⁄ 2 . (1.6) and sin v = [ a ( 1 – e 2 ) 1 ⁄ 2 sin E ] ⁄ r. (1.7) Solve for v using: cos v = a ( cos E – e ) ⁄ r Solve for i and Ω using the following relations: rxV = rVw. (1.8) w x = sin i sin Ω. w y = – sin i cos Ω. (1.9) w z = cos i. Solve for u using Eq. (1.4). Solve for ω through u = v + ω . 1.6 Types of Orbits The following definitions of various orbit types are useful for discussing concepts related to the orbits of Earth satellites. ACE (apogee at constant time-of-day equatorial) orbit: An elliptical orbit that lies in Earth’s equatorial plane with a sun-pointing apogee. To satisfy the sunpointing property, the secular rate of the apsidal rotation in the inertial reference frame must equal the rate of the right ascension of the sun. frozen orbit: An Earth satellite orbit whose mean eccentricity and argument of perigee remain constant, such as NASA’s Topex mission orbit. GEO: Geostationary or geosynchronous orbit; one with an altitude of about 35,786 km. Its orbital mean motion equals the Earth’s rotation rate. A geostationary satellite requires both longitude and latitude control, while a geosynchronous satellite requires only longitude stationkeeping. A geostationary satellite appears stationary to a ground observer. Most communication satellites, such as Intelsat and PanAmSat, are geostationary. 6 A Review of Two-Body Mechanics GTO: Geostationary transfer orbit; an elliptical orbit that completes a Hohmann and plane-change transfer from a low, circular parking orbit to a geosynchronous drift orbit. A geosynchronous or geostationary drift orbit is a circular orbit with a mean altitude either higher or lower than the stationary altitude required for a newly launched satellite to move to its desired longitude, usually at a rate of 3 deg/day, equivalent to an altitude of 234 km above or below GEO altitude. HEO: Highly elliptical orbit; one with eccentricity larger than 0.5. LEO: Low Earth orbit; one with altitude less than 1000 km, the level where atmospheric drag becomes significant. Magic orbit: An orbit that has a period of about 3 hours, an inclination of 116.6 deg, and a nonzero eccentricity. Its semimajor axis and eccentricity values satisfy conditions for both sun-synchronous and frozen orbits. MEO: Medium Earth orbit; one with an altitude between 1000 km and 35,286 km (500 km less than geostationary distance), such as the orbits of Galileo and GLONASS. Molniya orbit: A highly elliptical orbit that has a 12-hour period and an inclination near the critical value (63.4 deg). It has an argument of perigee of 270 deg, and its ground traces repeat every other revolution. sun-synchronous orbit: A satellite orbit whose nodal rate equals the angular rate of the mean sun, or one for which the local time of every ascending node crossing remains the same throughout the year, such as the weather satellite orbits. supersynchronous orbit: A circular or nearly circular orbit with an altitude higher than that of the GEO orbit (about 35,786 km), such as the GEO disposal orbits. Tundra orbit: An orbit with a 24-hour period, 30 to 70 deg inclination, and eccentricity from 0.13 to 0.5. Its primary purpose is to ensure good polar coverage in situations where regular GEO orbits cannot do so. 1.7 References 1.1. D. Brouwer and G. M. Clemence, Methods of Celestial Mechanics (Academic Press, New York, 1961). 1.2. S. Herrick, Astrodynamics, Vol. 1 (Van Nostrand Reinhold Company, London, 1971). 1.3. R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics (AIAA, Reston, VA, 1987). 1.4. V. A. Chobotov, ed., Orbital Mechanics, 3rd ed. (AIAA, Washington, 2002). 1.5. D. Vallado, Fundamentals of Astrodynamics and Applications, 2nd ed. (Space Technology Library, Microcosm, Inc., and Kluwer Academic Publishers, El Segundo, CA 2001).
© Copyright 2026 Paperzz