Differential calculus Ida Karimfazli MATH104-106 Fall 2015 Week 0 - examples on logarithms Sept. 10, 2015 Example 1. Solve the following equations a. 9x 2 −3x+3/2 = 1/3 2 −3x+3/2 9x x2 −3x+3/2 log9 9 = 1 3 1 = log9 3 log3 (1/3) = log3 9 log3 1 − log3 3 = log3 32 0−1 = 2 3 2 3 x2 − 3x + 2 3 x2 − 3x + 2 3 1 x2 − 3x + + = 0 2 2 x2 − 3x + 2 = 0 (x − 2)(x − 1) = 0 x = 2, 1 x2 − 3x + b. 2log3 (x+2) = 5 2log3 (x+2) = 5 log2 2log3 (x+2) = log2 5 log3 (x + 2) = log2 5 3log3 (x+2) = 3log2 5 x + 2 = 3log2 5 x = 3log2 5 − 2 1 Differential calculus Ida Karimfazli MATH104-106 Fall 2015 Example 2. In the following equation, make y the subject: logy 3 = x2 − 2x logy 3 = x2 − 2x log3 3 = x2 − 2x log3 y 1 log3 y = 2 x − 2x 2 y = 31/(x −2x) 2
© Copyright 2026 Paperzz