CHAPTER 3. RULES FOR DERIVATIVES 3.4 76 The Chain rule Rule (Chain Rule.). d f (g(x)) = f � (g(x)) · g � (x) dx dy dy du = · dx du dx where y is a function of u and u is a function of x d du f (u) = f � (u) · dx dx d f (g(x)) = the derivative of the outside function (don’t dx change the inside) times the derivative of the inside function. Rule (Chain Rule function by function). ordinary rule −→ chain rule version in boxes d n x = nxn−1 dx −→ d ( dx d x e = ex dx −→ d e dx d sin(x) = cos(x) dx −→ d sin( dx d cos(x) = − sin(x) dx −→ d cos( dx d tan(x) = sec2 (x) dx −→ d tan( dx �) n = n( �) n−1 � = e � · ( �) � ·( �) � �) = cos(�) · (�) � �) = − sin(�) · (�) �) = sec (�) · (�) 2 � � or chain rule version in u or d n du (u ) = nun−1 · dx dx or u du d u e =e · dx dx or d du sin(u) = cos(u) · dx dx or d du cos(u) = − sin(u) · dx dx or d du tan(u) = sec2 (u) · dx dx In each formula, we imagine putting something (some function of x) inside of each or each u. � d Example 1. Find sin(x2 + 1) using three or four different kinds of notation, dx and decide which kind of notation you like best. Solution. Eff-prime notation: sin(x2 + 1) = f (g(x)) where f (x) = sin(x), g(x) = x2 + 1 f � (x) = cos(x) g � (x) = 2x f � (g(x)) · g � (x) = cos(x2 + 1) · 2x. CHAPTER 3. RULES FOR DERIVATIVES 77 Leibniz notation: sin(x2 + 1) = y(u) where y(u) = sin(u), u = x2 + 1 dy = cos(u) du du = 2x dx dy dy du = = cos(u)2x = cos(x2 + 1)2x. dx du dx Word notation: d sin(x2 + 1) = cos(x2 + 1) · 2x dx deriv. of outside deriv. of inside don’t change inside . Box notation: � � � d � sin( ) = cos( ) · dx � � � � � d sin x2 + 1 = cos x2 + 1 · x2 + 1 dx = cos(x2 + 1) · 2x. U notation: d du sin(u) = cos(u) · dx dx d du sin(x2 + 1) = cos(u) · (where u = x2 + 1) dx dx = cos(x2 + 1) · 2x. d� 2 4x + x. dx Solution. This time we use only three kinds of notation: U notation: d√ 1 d√ 1 du x = √ −→ u= √ · dx dx 2 x 2 u dx d� 2 1 du 4x + x = √ · dx 2 u dx 1 = 2 · (8x + 1) 4x + x Example 2. Find Box notation: d√ 1 d� x = √ −→ dx dx 2 x � = 2�1� · � � CHAPTER 3. RULES FOR DERIVATIVES d dx � 78 � 1 4x2 + x = � · 4x2 + x 2 4x2 + 1 1 = √ · (8x + 1) 2 4x2 + 1 Word notation: d � 2 1 4x + x = √ · (8x + 1) dx 2 4x2 + x deriv. of outside d Example 3. Find dt � deriv. of inside don’t change inside sin(t) 2 t +t+1 �15 Solution. We combine the chain rule form of the derivative of ( quotient rule on the inside to get d dt � d ( dt �) sin(t) 2 t +t+1 15 �15 = 15( �) · � 14 � �) 15 and use the � � �14 sin(t) sin(t) = 15 · 2 t2 + t + 1 t +t+1 � �14 sin(t) cos(t)(t2 + t + 1) − sin(t)(2t + 1) = 15 2 · t +t+1 (t2 + t + 1)2 Here’s another way to write it: d dt � sin(t) t2 + t + 1 �15 deriv. of outside Example 4. Find = 15 � sin(t) t2 + t + 1 �14 · cos(t)(t2 + t + 1) − sin(t)(2t + 1) (t2 + t + 1)2 don’t change inside deriv. of inside d 2 5x sin(6x2 ). dx Solution. We combine the product rule with the chain rule: � �� d 2 5x sin(6x2 ) = (5x2 )� sin(6x2 ) + (5x2 ) sin(6x2 ) dx = 10x sin(6x2 ) + 5x2 cos(6x2 )(6x2 )� = 10x sin(6x2 ) + 5x2 cos(6x2 )12x = 10x sin(6x2 ) + 60x3 cos(6x2 ) CHAPTER 3. RULES FOR DERIVATIVES Example 5. Find e 79 �√ � 5x+3 sin 2 tan(x)+1 Solution. �√ d 5x+3 sin e dx =e 2 tan(x)+1 5x + 3 sin � �� � 2 tan(x) + 1 =e �√ � 5x+3 sin 2 tan(x)+1 =e �√ � 5x+3 sin 2 tan(x)+1 =e �√ � 5x+3 sin 2 tan(x)+1 · � �� � · 5x + 3 sin 2 tan(x) + 1 5 + 3 cos · 5 + 3 cos · � � � 2 tan(x) + 1 �� 2 tan(x) + 1 � � 2 � � 2 tan(x) + 1 � 1 2 tan(x) + 1 �� Rule. General exponential rule: d x a = ax ln(a), for a > 0 dx Proof. a = eln(a) d x d ln(a) x a = (e ) dx dx d x ln(a) = e dx =e x ln(a) · x ln(a) = ex ln(a) · ln(a) = (eln(a) )x · ln(a) = ax ln(a) � · 2 tan(x) + 1 �� � 1 5 + 3 cos 2 tan(x) + 1 � · 2 sec2 (x) 2 2 tan(x) + 1 This is where we ended on Tuesday, October 15 � �
© Copyright 2026 Paperzz