17 ∞ Z ln x dx = lim t→∞ x 1 Z Z1 t = lim t→∞ t ln x dx x ln x(ln x)0 dx 1 Z ln t = lim t→∞ udu (u = ln x) 0 1 (ln t)2 t→∞ 2 =∞. = lim R∞ So the improper integral 1 ln x dx x is divergent. 22 Z 0 ∞ ex dx = lim t→∞ e2x + 3 t Z 0 ex dx e2x + 3 et Z 1 du (u = ex ) t→∞ 1 u2 + 3 et 1 u −1 √ = lim √ tan t→∞ 3 3 1 1 1 1 −1 −1 √ = √ lim tan (s) − √ tan 3 s→∞ 3 3 1 π 1 π =√ · − √ · 3 2 3 6 π = √ . 3 3 = lim et √ → ∞ as t → ∞ 3 28 Z 0 5 Z 5 w w dw + dw 0 w−2 2 w−2 Z t Z 5 w w = lim− dw + lim+ dw. t→2 t→2 0 w−2 t w−2 w dw = w−2 Z 2 Consider t Z lim t→2− 0 Z t 2 w dw = lim− 1+ dw t→2 w−2 w−2 0 = lim− [w + 2 ln |w − 2|]t0 t→2 =2 + lim− ln(2 − t) t→2 = − ∞. Therefore the improper integral R5 w dw 0 w−2 is divergent. 41 Z 0 ∞ x dx = 3 x +1 Z 1 Z0 1 ≤ Z0 1 = 0 Z ∞ x dx + x3 + 1 Z1 ∞ x dx + 3 x +1 Z1 ∞ x dx + x3 + 1 1 1 x3 x dx +1 x dx x3 1 dx. x2 Note that R1 x 0 x3 +1 dx and R∞ 1 1 dx x2 = 1 are both finite. So by comparison, 42 Z 1 ∞ 2 + e−x dx ≥ x Z ∞ 2 dx x 1 Z t 2 = lim dx t→∞ 1 x = lim [2 ln |x|]t1 t→∞ =∞. So by comparison, R∞ 1 2+e−x dx x is divergent. 2 R∞ 0 x dx x2 +1 is convergent.
© Copyright 2025 Paperzz