Topics in Mathematics 201-BNJ-05 Vincent Carrier Euler’s Identity The Maclaurin Series of a function f is given by f (x) = ∞ X f (n) (0) n! n=0 xn . Maclaurin Series of sin x n 0 f (n) (x) sin x f (n) (0) 0 sin x = 1 2 3 4 cos x − sin x − cos x sin x 1 −1 0 0 5 6 7 8 cos x − sin x − cos x sin x 1 −1 0 0 ··· ··· ··· 0 0 1 1 0 2 1 3 0 4 1 5 0 6 1 7 0 8 x + x + x − x + x + x + x − x + x + ··· 0! 1! 2! 3! 4! 5! 6! 7! 8! sin x = x − x3 x5 x7 x9 + − + − ··· 3! 5! 7! 9! Maclaurin Series of cos x n f (n) (x) 0 1 2 3 cos x − sin x − cos x sin x f (n) (0) cos x = 1 0 −1 0 4 5 6 7 cos x − sin x − cos x sin x 1 0 −1 0 8 ··· cos x ··· 1 ··· 1 0 0 1 1 2 0 3 1 4 0 5 1 6 0 7 1 8 x + x − x + x + x + x − x + x + x + ··· 0! 1! 2! 3! 4! 5! 6! 7! 8! cos x = 1 − x2 x4 x6 x8 + − + − ··· 2! 4! 6! 8! Maclaurin Series of ex f (n) (x) = ex f (n) (0) = 1 ex = 1 + x + for n = 0, 1, 2, . . . x3 x4 x5 x2 + + + + ··· 2! 3! 4! 5! Maclaurin Series of eix Let i be a number such that i2 = −1. Then i1 = i eix = 1 + ix + i2 = −1 i3 = −i i4 = 1 i5 = i ··· (ix)2 (ix)3 (ix)4 (ix)5 (ix)6 (ix)7 (ix)8 (ix)9 + + + + + + + + ··· 2! 3! 4! 5! 6! 7! 8! 9! x2 x3 x4 x5 x6 x7 x8 x9 −i + +i − −i + +i − ··· 2! 3! 4! 5! 6! 7! 8! 9! x2 x4 x 6 x8 x3 x5 x 7 x9 = 1− + − + − ··· + i x − + − + − ··· 2! 4! 6! 8! 3! 5! 7! 9! = 1 + ix − = cos x + i sin x. Therefore, eix = cos x + i sin x. Letting x = π yields eiπ = cos π + i sin π = −1 + i(0) = −1. Thus, eiπ + 1 = 0.
© Copyright 2026 Paperzz