University of Miami Scholarly Repository Open Access Dissertations Electronic Theses and Dissertations 2012-11-06 Physical Chemical Properties of Trace and Minor Components of Natural Waters: Solubility, Speciation, and Density Ryan J. Woosley University of Miami, [email protected] Follow this and additional works at: http://scholarlyrepository.miami.edu/oa_dissertations Recommended Citation Woosley, Ryan J., "Physical Chemical Properties of Trace and Minor Components of Natural Waters: Solubility, Speciation, and Density" (2012). Open Access Dissertations. 868. http://scholarlyrepository.miami.edu/oa_dissertations/868 This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact [email protected]. UNIVERSITY OF MIAMI PHYSICAL CHEMICAL PROPERTIES OF TRACE AND MINOR COMPONENTS OF NATURAL WATERS: SOLUBILITY, SPECIATION, AND DENSITY By Ryan J. Woosley A DISSERTATION Submitted to the Faculty of the University of Miami in partial fulfillment of the requirements for the degree of Doctor of Philosophy Coral Gables, Florida December 2012 ©2012 Ryan J. Woosley All Rights Reserved UNIVERSITY OF MIAMI A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy PHYSICAL CHEMICAL PROPERTIES OF TRACE AND MINOR COMPONENTS OF NATURAL WATERS: SOLUBILITY, SPECIATION, AND DENSITY Ryan J. Woosley Approved: ________________ Frank J. Millero, Ph.D. Professor of Marine and Atmospheric Chemistry _________________ M. Brian Blake, Ph.D. Dean of the Graduate School ________________ Anthony Hynes, Ph.D. Professor of Marine and Atmospheric Chemistry _________________ Jingfeng Wu, Ph.D. Professor of Marine and Atmospheric Chemistry ________________ Robert H. Byrne, Ph.D. Professor of Marine Physical Chemistry University of South Florida WOOSLEY, RYAN J. (Ph.D., Marine and Atmospheric Chemistry) Physical Chemical Properties of Trace (December 2012) and Minor Components of Natural Waters: Solubility, Speciation, and Density Abstract of a dissertation at the University of Miami. Dissertation supervised by Professor Frank J. Millero. No. of pages in text. (200) The physical properties of minor/trace components of natural waters aren’t well known. Although these components have received a great deal of study recently only a small focus has been on properties such as speciation and solubility, which influence the behavior and fate in the environment. The pH has a large influence on speciation. This is of increasing importance due to ocean acidification from the anthropogenic input of CO2 into the environment and the resultant uptake by the oceans. Metals that form strong complexes with hydroxide and carbonate will see large changes speciation over the next few centuries. Metals with biological importance, either as a nutrient or toxin, are of most interest. The bioavailable form of most metals will increase; this can be potentially helpful or harmful depending on the metal. Knowledge of speciation is often limited, when measurements are lacking, correlations have been used to make reasonable estimates. The hydrolysis of Al(III) in NaCl is well known over a wide range of conditions. A near linear correlation between the hydrolysis constants of Al(III) and a variety of +2, +3, and +4 metals has been found. This provides estimates of hydrolysis constants when measurements are not available. Lead is extremely difficult to measure due to low solubility, but is important because of its toxicity. The formation constant () of PbCO3 is not well known and most speciation calculations are done using correlations with Cd or Zn. The PbCO3 was measured in NaCl at 25°C from I= 0.05-3 m. This was then modeled using a Pitzer Model and combining the new measurements with all previously published data on PbCO3 and PbCln2-n. The Pitzer model can then be used for lead speciation in most natural waters including seawater. Calcite and Aragonite have been well studied due to their use by shell forming organisms. However, several lines of evidence show that 51-71% of the CaCO3 produced in the surface oceans is dissolving unexpectedly above the aragonite saturation horizon. The most likely explanation is a more soluble form of CaCO3, but no possible source was known. Then recently, it was discovered that telost fish produce a high magnesium calcite as a byproduct of osmoregulation. The solubility of fish produced high magnesium calcite was measured in Gulf Stream seawater at 25°C. The stoichiometric solubility product constant (K*sp) was determined to be 5.89, in agreement with Bahamas Banks high magnesium calcite and approximately twice as soluble as aragonite. This more soluble CaCO3 likely explains at least a portion of the CaCO3 dissolution above the aragonite saturation horizon. Minor components of seawater can also influence density, a highly used property; however most equations were determined on surfaces waters which have negligible concentrations of minor components. Deep waters can have significant amounts of silicate, nitrate and normalized total alkalinity. Using measurements of density and nutrient concentrations, semi-empirical equations have been determined for nitrate, silicate and normalized total alkalinity, and can increase density by up to ~20ppm. All of these measurements help to improve our understanding of the physical properties of minor components of seawater, and how they might change under future ocean conditions. DEDICATION To my parents David and Lee Woosley To my sisters Jennifer Gunther and Andrea Steckler for their love, caring, understanding, and support iii Acknowledgements I would like to thank my advisor, Dr. Frank J. Millero, for his dedication, knowledge, guidance and support throughout my entire time at RSMAS. I consider myself lucky to have had the opportunity to work with him. I would also like to thank Dr. Robert Byrne, Dr. Anthony Hynes, and Dr. Jingfeng Wu for serving on my dissertation committee and for all their knowledge and guidance. I owe a great deal of gratitude to Ms. Gay Ingram. For all the countless things she did and all the support and words of encouragement throughout my time as a student. You are already missed. RIP. I would like to thank everyone in Dr. Millero’s group, especially Dr. Jason Waters, Dr. John Michael Trapp, Dr. Mareva Chanson, Ms. Nancy Williams, Ms. Carmen Rodriguez, Ms. Fen Huang. Without their help and support I never would have been able to finish. Additional thanks goes to all my co-authors outside of Dr Millero’s group, Dr. Robert Letscher, Dr. Dennis Hansell, and Dr. Martin Grosell. Extra thanks go to Ms. Fen Huang for the countless hours she spent measuring nearly all of the 1750 density samples. Much gratitude is due to all my family and friends for all their love, support, and friendship, which has made all of this possible. This work was supported by the Oceanographic section of the National Science Foundation and the National Oceanic and Atmospheric Administration. iv Table of Contents List of Figures ...………………………………………………………………………..vii List of Tables ...…………………………………………………………………………..x Chapter 1 1.1 1.2 1.3 1.4 1.5 1.6 Introduction Minor and trace components of natural waters ...…………………………1 Speciation in natural waters ...…………………………………………….3 Effect of ocean acidification on trace metal speciation ...………………...4 Calcium carbonate in seawater ...………………………………………..17 Impact of minor components on the density of seawater ...……………..20 Scope of this work ...…………………………………………………….20 Chapter 2 2.1 2.2 2.3 The Hydrolysis of Al(III) in NaCl Solutions-A Model for Fe(III) Background ...……………………………………………………………22 Hydrolysis constants for Al(III) in NaCl solutions ...……………………25 Correlations of the hydrolysis constants of Fe(III) and Al(III) in NaCl solutions ...……………………………………………………………….28 Causes of the correlations of the hydrolysis constants of Fe(III) and Al(III) …...……………………………………………………………….30 2.4 Chapter 3 3.1 3.2 3.3 Chapter 4 The Hydrolysis of Al(III) in NaCl Solutions-A Model for M(II), M(III), and M(IV) ions Background .……………………………………………………………..36 Hydrolysis constants for Al(III) in NaCl solutions .……………………..38 Al(III) Correlations with +2, +3, and +4 metals ...………………………38 4.4 Pitzer Model for the Speciation of Lead Chloride and Carbonate Complexes in Natural Waters Background .……………………………………………………………..45 Determination of PbCO3 in NaCl 4.2.1 Methods ...………………………………………………………..47 4.2.2 PbCO3 formation results .………………………………………..49 The Pitzer model .………………………………………………………..52 4.3.1 Determination of Pitzer parameters for Pb-Cln and Pb-CO3 interactions ...…………………………………………………….55 4.3.2 Pb(CO3)Cl- formation....................................................................65 4.3.3 Activity coefficients and speciation in seawater .………………..66 Conclusions ……………………………………………………………...69 Chapter 5 5.1 5.2 5.3 The Solubility of Fish-produced High Magnesium Calcite in Seawater Background ……………………………………………………………...71 Methods ………………………………………………………………….73 Results ………………..………………………………………………….76 4.1 4.2 4.3 v 5.4 Discussion and conclusion ……………………………………………....80 Chapter 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 Effect of Composition on the Density of Seawater Background .……………………………………………………………..83 Experimental methods …………………………………………………..86 Indian Ocean …………………………………………………………….88 South Pacific …………………………………………………………….93 Arctic Ocean …………………………………………………………….96 Global Oceans ………………………………………………………….105 Effect of ocean acidification …………………………………………...108 Conclusions …………………………………………………………….110 Chapter 7 Conclusions…………………………………………………………….111 Appendix ……………………………………………………………………………....114 References ……………………………………………………………………………..188 vi List of Figures Figure 1.1: Classification of the elements in seawater based on typical concentrations…2 Figure 1.2. Increase in the pCO2 in the atmosphere over time…………………………...4 Figure 1.3. Expected changes in ocean pH as a function of time………………………...5 Figure 1.4: The decrease in the concentrations of OH- and CO32- ions in seawater due to ocean acidification (Calculated using the carbonate constants of Millero et al., [2006])...7 Figure 1.5: Graphical representation of the Pitzer equations for the activity of lead in seawater……………………………………………………………………………………8 Figure 1.6: Expected changes in the inorganic speciation of Cu(II) (top) and Fe(II) (bottom) as a function of time (year based on Caldeira and Wickett [2003])…………...16 Figure 1.7: Profile of the normalized total alkalinity of seawater in the North Atlantic (30°N and 23°E), showing an increase in NTA above the aragonite saturation horizon..19 Figure 2.1: Plot of the thermodynamic hydrolysis constants (Ki) for Fe(III) [Stefánsson, 2007; Stefánsson and Seward, 2008; Millero 2001a] versus Al(III) [Millero and Pierrot, 2007; Benézéth et al., 2001; Palmer and Wesolowski, 1993; Wesolowski, 1992] as a function of temperature in pure water. The dashed line is a second degree fit of the results…………………………………………………………………………………….23 Figure 2.2: Plot of the thermodynamic and stoichiometric (i) hydrolysis constants for Fe(III) versus Al(III) in NaCl solutions at different ionic strengths and 25°C [Millero and Pierrot, 2007; Benézéth et al., 2001]…………………………………………………….24 Figure 2.3: Comparison of the values of log i of Fe(III) and Al(III) as a function of square root of ionic strength [Millero, 2001a; Benézéth et al., 2001]………………………..31 Figure 2.4: Comparison of the activity coefficients of Fe3+ [Millero, 2001a] and Al3+ [Christov et al., 2007] in NaCl solutions at 25°C as a function of the square root of ionic strength…………………………………………………………………………………...33 Figure 2.5: Comparison of the activity coefficients of the Fe3+ and Al3+ complexes in NaCl solutions at 25°C as a function of the square root of ionic strength……………….35 Figure 3.1: A plot of the thermodynamic hydrolysis constants of M(II) versus Al(III) at 25°C (a Baes and Mesmer [1976]; b Paulson and Kester [1980]; c Pivovarov [2005])…..39 vii Figure 3.2: A plot of the thermodynamic hydrolysis constants of M(III) versus Al(III) at 25°C (a Baes and Mesmer [1976]; b Klungness and Byrne [2000]; c Rai et al. [2001])....40 Figure 3.3: A plot of the thermodynamic hydrolysis constants of M(IV) versus Al(III) at 25°C (a Baes and Mesmer [1976]; b Rai et al. [2001]; c Ekberg et al. [2000], d Ekberg et al. [2004]; e Tarapcik et al. [2005]; f Manfredi et al. [2006]; g Choppin et al. [1997]; h Neck and Kim [2001]).......................................................................................................40 Figure 3.4: The mean and standard deviations of the difference between the free energies of the free metal and the complex by charge. Reference lines represent the values of Al(III).................................................................................................................................42 Figure 4.1: Absorbance spectra for PbCO3 at 1.026 m NaCl. The height of the peak increase with increasing carbonate concentration..............................................................50 Figure 4.2: Comparison of the measured and modeled logPbCO3 in NaCl, NaClO4 and seawater (I=0.723). Measured values in NaClO4 are from Easley and Byrne [2011].......52 Figure 4.3: Difference between the measured logPbCln and calculated logPbCln as a function of ionic strength in all media (HCl, MgCl2, CaCl2, NaCl, NaClO4)...................57 Figure 4.4: Difference between the measured logPbCO3 and calculated logPbCO3 as a function of ionic strength in NaCl and NaClO4 media .....................................................64 Figure 5.1: Aragonite solubility measurement in seawater..............................................76 Figure 5.2: Scanning Electron Microscope picture of precipitates produced by the gulf toadfish (Opsanus beta).....................................................................................................79 Figure 5.3: Fish-produced carbonate solubility measurement in seawater.......................80 Figure 5.4: Depth profile of the normalized total alkalinity of seawater for the North Atlantic (30°N and 23°E) North Pacific (31°N and 151°W) and Southern Ocean (67°S and 151°W) showing the saturation horizons for aragonite (solid line) and fish-produced (dashed line) calcium carbonates. (Data taken from CLIVAR P16N, A16N, and S4P, http://cdiac.ornl.gov/oceans/RepeatSections/). No dashed line is given for the Southern Ocean station since the surface waters are under-saturated with respect to fish-produced calcium carbonate..............................................................................................................82 Figure 6.1: The measured for the Indian Ocean (28° S - 18° N) as a function of depth (m). The solid line is a linear fit and has a = 0.041 kg m-3.............................................89 Figure 6.2: Profiles of the changes in normalized total alkalinity (NTA), normalized total carbon (NTCO2), silicate (SiO2), and nitrate (NO3) for the Indian Ocean stations...............................................................................................................................91 viii Figure 6.3: The excess density due to changes in normalized total alkalinity (NTA), normalized total carbon (NTCO2), silicate (SiO2), and nitrate (NO3) for the Indian Ocean.................................................................................................................................92 Figure 6.4: Measured for the South Pacific (28° S-18° N) from CLIVAR cruise P18, as a function of depth.........................................................................................................94 Figure 6.5: Measured for samples collected on CLIVAR cruise P18 as a function of Si(OH)4, NO3-, NTA, and PO43-, all in mol kg-1...........................................................95 Figure 6.6: The values of S determined from density measurements plotted as a function on SiO2.................................................................................................................96 Figure 6.7: Normalized total alkalinity as a function of depth in the Arctic Ocean from cruise ARKXXIII/3............................................................................................................98 Figure 6.8: Dissolved organic carbon as a function of depth in the Arctic Ocean (cruise ARKXXIII/3).....................................................................................................................99 Figure 6.9: Distribution of normalized total alkalinity (NTA) for surface waters in the Arctic Ocean (cruise ARKXXIII/3).................................................................................100 Figure 6.10: Distribution of dissolved organic carbon (DOC) for surface waters in the Arctic Ocean (cruise ARKXXIII/3).................................................................................100 Figure 6.11: Values of as a function of depth in the Arctic Ocean (cruise ARKXXIII/3)...................................................................................................................101 Figure 6.12: Normalized total alkalinity (NTA) as a function of salinity for surface waters in the eastern and western Arctic Ocean..............................................................103 Figure 6.13: DOC as a function of salinity for surface waters in the eastern and western Arctic Ocean....................................................................................................................104 Figure 6.14: Correlation of the values of DOC and NTA for waters in the eastern and western Arctic Ocean.......................................................................................................104 Figure 6.15: All available density measurements versus depth broken down by ocean...........................................................................................................................106 Figure 6.16: All Available density data versus silicate (top) and NTA (bottom) by ocean................................................................................................................................107 Figure 6.17: Predicted changes in salinity as a result of increased TCO2 from the burning of fossil fuels as a function of time (top) and TCO2 (bottom).........................................109 ix List of Tables Table 1.1: Speciation of the hydroxide dominated trace metals in seawater as a function of pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on Millero and Pierrot [1998; 2002]......................................................................................10 Table 1.2: Speciation of the chloride dominated trace metals in seawater as a function of pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on Millero and Pierrot [1998; 2002]......................................................................................11 Table 1.3: Speciation of the free ion dominated trace metals in seawater as a function of pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on Millero and Pierrot [1998; 2002]......................................................................................11 Table 1.4: Speciation of the transition/mixed trace metals in seawater as a function of pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on Millero and Pierrot [1998; 2002] (lead speciation was calculated according to constants determined in Chapter 4)..................................................................................................12 Table 1.5: Speciation of the carbonate dominated trace metals in seawater as a function of pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on Millero and Pierrot [1998; 2002]......................................................................................13 Table 2.1: Values of the parameters for eqn. 2.15 for the Thermodynamic Hydrolysis constants of Al(III) in Water [Zotov and Kitova, 1979; Benézéth et al., 2001; Palmer et al., 2001]............................................................................................................................27 Table 2.2: Vales of the parameters for eqn. 2.16 for the Thermodynamic (Ki) and stoichiometric (i) Hydrolysis constants of Al(III) in NaCl solutions [Benézéth et al., 2001; Palmer and Wesolowski, 1993; Wesolowski 1992]................................................27 Table 2.3: Estimated Thermodynamic hydrolysis constants for Fe(III) as a function of temperature determined from eqn. 2.17. Literature values are in parenthesis below calculated values................................................................................................................28 Table 2.4: Estimated stoichiometric hydrolysis constants for Fe(III) as a function of temperature and molality in NaCl solutions determined from eqn 2.18...........................29 Table 2.5: Free energy (kJ mol-1) and enthalpy (kJ mol-1) for Al3+, Fe3+, and their complexes at 25°C.............................................................................................................32 Table 2.6: Log of the ratio of the activity coefficients of the free metal and the hydroxide complex for Fe(III) and Al(III). The differences in the ratios are close to the standard deviation of the fits............................................................................................................34 x Table 3.1: The Values of the parameters for eqn. 3.11. All coefficients and slopes were determined from Ki at 25°C, except As(III) which was determined from K1 from 25300°C.................................................................................................................................41 Table 4.1: Measured formation constants of PbCO3 in NaCl...........................................51 Table 4.2: Molal absorptivities determined from equation 4.7 at three representative wavelengths........................................................................................................................51 Table 4.3: Pitzer coefficients for chloride and perchlorate saltsa used in this study.........54 Table 4.4: Pitzer coefficients for lead chloride and lead carbonate complexes for Eqs. 4.20-4.24. The standard deviation () for PbCl- = 0.16, PbCl20 = 0.14, PbCl3+ = 0.19, PbCO3 = 0.11.....................................................................................................................58 Table 4.5: Stoichiometric formation constants for lead chloride at 15.1 °C determined by Luo and Millero [2007]......................................................................................................60 Table 4.6: Corrected stoichiometric formation constants for lead chloride at 25 °C determined by Luo and Millero [2007]..............................................................................61 Table 4.7: Stoichiometric formation constants for lead chloride at 34.7 °C determined by Luo and Millero [2007]......................................................................................................62 Table 4.8: Stoichiometric formation constants for lead chloride at 44.5 °C determined by Luo and Millero [2007]......................................................................................................63 Table 4.9: Measured and theoretical Pb(CO3)Cl-. Theoretical constants were calculated using the equations of Byrne [1980]..................................................................................66 Table 4.10: Comparison of the activity coefficients and stoichiometric constants in various media and seawater at I=0.723 and 25°C. Values calculated by Millero and Byrne [1984] (MB84) are given for comparison..........................................................................68 Table 4.11: Speciation of lead as a percent in seawater at 25°C and S=35 (I=0.723), total alkalinity = 2300 mol/kg. pH is on the free scale............................................................69 Table 5.1: Equilibrium [CO32-], [Ca2+] and pK*sp for individual fish-produced solubility experiments........................................................................................................................79 Table 6.1: Values of a and b from eqn. 6.7 for CLIVAR P18 samples............................95 Table 6.2: Slope and intercept of global density dataset fit to eqn 6.7. NTA is fit with and without Arctic data because of divergence at high NTA in the Arctic compared to the other oceans................................................................................................................108 xi Table A.1: All available density measurements. All nutrients are in units of mol kg-1, density is in kg m-3. Cruise M78 is Millero et al. [1978].................................................115 xii Chapter 1: Introduction 1.1 Minor and Trace Components of Natural Waters Essentially every naturally occurring element can be found in seawater. Fourteen of these (O, H, Cl, Na, Mg, S, Ca, K, Br, C, Sr, B, Si and F) are found in concentrations greater than 1 part per million (ppm) and most of these constitute the major components of seawater. Most of the major components are conservative and make up the salinity (S) of seawater. The behaviors of these elements are well studied and understood. The remaining elements are considered minor or trace elements. The elements were classified according to their concentration by Bruland [1983] and are given in Figure 1.1. Although they are present in low concentrations, most are highly reactive, making them important in biogeochemical cycling. Many are also nutrients or toxins and are therefore important for organisms and ecosystems. Despite this importance, it has only been in the last few decades that techniques for sampling and analysis became available to study such low concentrations; therefore much about their behavior and fate is still uncertain. Some of this uncertainty includes even basic physical chemical properties, such as speciation and solubility. When direct measurements are unavailable it is often possible to use correlations with other elements to provide reasonable estimates. Such techniques have been used in many different applications [Millero and Byrne, 1984; Millero and Hawke, 1992] and have been applied to many different physical chemical properties. 1 Figure 1.1: Classification of the elements in seawater based on typical concentrations 2 3 1.2 Speciation in Natural Waters Speciation of an element can be thought of as the partitioning of the element among its different chemical forms. This is most often considered as the formation of complexes with both organic and inorganic ligands. Only inorganic complexes are considered here. For most natural waters the dominant inorganic ligands are Cl-, CO32-, and OH-. The fraction of any complex in a given system is a result of the stability of the complex and metal to ligand ratio. Trace metals in seawater can be classified into five main groups based on the dominant inorganic ligand [Byrne et al., 1988; Byrne 2002]: a.) Hydroxide (OH-): Al(III), Fe(III), In(III), Th(IV), U(IV) b.) Carbonate (CO32-): Cu(II), UO22+, Rare earth elements c.) Chloride (Cl-): Ag(I), Au(I), Cu(I), Hg(II) d.) Free: Mn(II), Fe(II), Co(II) e.) Transition/mixed: Pb(II), Y(III), Sc(III), Ac(III) The transition/mixed elements could be placed within the other categories, but are separated because of their more complex speciation. The speciation in other natural waters such as brines will vary greatly depending on the solution composition so a similar classification system is not as useful. Aside from chloride, most ligand concentrations (both organic and inorganic) are highly influenced by pH, making ocean acidification (the lowering of oceanic pH as a result of uptake of anthropogenic CO2 from the atmosphere) an important factor in the cycling of metals [Byrne et al., 1988; Byrne, 2002]. 4 1.3 Effect of Ocean Acidification on Trace Metal Speciation1 Since the industrial revolution atmospheric carbon dioxide concentrations have been steadily increasing due to the burning of fossil fuels, cement production, and land use change. Figure 1.2 shows the increase in the partial pressure of CO2 (pCO2) as a function of time based on Caldeira and Wickett [2003]. In order to maintain equilibrium the surface oceans must take up CO2 causing an increase in the amount of CO2 dissolved in the oceans. 2500 pCO2 (atm) 2000 1500 1000 500 0 1800 2000 2200 2400 2600 2800 3000 Year Figure 1.2. Increase in the pCO2 in the atmosphere over time. 1 This section was previously published as: Millero, F.J., R. Woosley, B. DiTrolio, and J. Waters (2009), Effect of Ocean Acidification on the speciation of metals in seawater, Oceanography, 22(4), 72-85. 5 Once in seawater the CO2 reacts with water molecules according to the following reactions: CO2(aq) + H2O ↔ H2CO3 (1.1) H2CO3↔ H+ + HCO3- (1.2) HCO3- ↔ H+ + CO32- (1.3) The shift in the equilibrium of these reactions leads to the production of hydrogen ions and a decrease in the carbonate ion, thus the process has been named ocean acidification. Figure 1.3 shows the expected changes in surface pH at 25°C over time based on the pCO2 shown in Figure 1.2. 8.4 8.2 8.0 H p 7.8 7.6 7.4 7.2 1800 1900 2000 2100 2200 2300 Year Figure 1.3. Expected changes in ocean pH as a function of time. 2400 6 This originally led to concern over calcifying organisms, mainly phytoplankton and corals, because of their need to produce CaCO3 shells. As the pH decreases the carbonate ion concentration also decreases, causing the saturation state of the two main forms of CaCO3 (calcite and aragonite) to decrease, potentially making it difficult or impossible for these organisms to produce their shells [Orr et al., 2005; Gattuso et al., 1998; Kleypas, et al., 1999; Langdon et al., 2003]. Phytoplankton form the base of the food chain, and disrupting their growth could have major impacts on the entire food chain, with implications for the entire ecosystem. Corals build reefs which provide food and protection for countless organisms. For these reasons nearly all ocean acidification research has focused on these classes of organisms. pH influences nearly all aspects of ocean chemistry, but until recently the impacts of ocean acidification on processes other than calcification have been ignored. The decrease in the pH can also affect the speciation and solubility, and therefore the behavior and fate, of trace metals in seawater. This can impact the entire biogeochemistry of the oceans. Studies by Byrne et al. [1988], Byrne [2002], and Turner et al. [1981] showed the large variations in trace metal speciation that can occur over the expected pH changes. The impact of these changes on organisms and metal cycling are only now being considered. Both OH- and CO32- are known to form strong complexes in natural waters with divalent [Baes and Mesmer, 1976; Byrne et al., 1988; Millero and Hawke, 1992] and trivalent [Millero, 1992; Millero et al., 1995; Cantrell and Byrne, 1987; Millero 2001a,b] metals. Hydroxide is expected to decrease by 82% and carbonate by 77% as shown in 7 Figure 1.4. Metals in categories a and d are not expected to be strongly influenced by changes in pH, but categories b, c, and e will undergo significant changes. The ionic interaction model of Pitzer [1991] is useful in examining the effect of pH on metal speciation [Millero and Pierrot, 1998; 2002]. The model will be discussed in detail in Chapter 4, but a brief overview will be given here. At first glance the equations that make up the Pitzer model seem very complex, but they are comparatively simple, and once the various coefficients are known activity coefficients () and the various thermodynamic properties can be calculated in a solution of nearly any composition with ease. 2.5 270 2.0 240 210 1 180 1.5 150 g k l o m , H O 1.0 120 CO32-, mol kg-1 OHCO32- 90 0.5 60 0.0 1800 1900 2000 2100 2200 2300 30 2400 Year Figure 1.4: The decrease in the concentrations of OH- and CO32- ions in seawater due to ocean acidification (Calculated using the carbonate constants of Millero et al., [2006]). 8 The Pitzer model for the activity () of an ion or complex consists of a DebyeHückel (D.H.) term plus the sum of all the various possible ionic interactions including anion-cation, anion-anion, cation-cation, and triple ionic interactions. A graphical representation of these equations for lead in seawater is given in Figure 1.5. Most of the coefficients required are available either directly from Pitzer [1991] or in the literature [Baes and Mesmer, 1976; Cantrell and Byrne, 1987; Byrne et al., 1988; Millero and Hawke, 1992; Millero, 1992, 2001a]. A Microsoft Excel program is available to examine the speciation of metals from 0-50°C and 0-6 m ionic strength (I) [Millero and Pierrot, 1998, 2002]. It should be pointed out that the Pitzer [1991] ionic interaction model only considers the formation of strong complexes and neglects the formation of weak complexes with chloride and sulfate (Cl- and SO42-). This model estimates the effect of the major components of seawater on metal ions and their complexes. The resultant activity coefficients are used to determine the stability constants () in seawater. Figure 1.5: Graphical representation of the Pitzer equations for the activity of lead in seawater. 9 The speciation for each metal was calculated from a pH (on the free scale) of 7.4 to 8.1 at 0.1 intervals and time (estimated from Caldeira and Wickett [2003]). The detailed results are given in Tables 1.1-1.5 organized according to the dominant ligand. The pH is expected to decrease most rapidly from the present until 2100, so the most rapid changes will occur over the latter half of this century. Figure 1.6 shows examples of the changes in Cu(II) and Fe(II) as a function of time (based on Caliera and Wickett [2003]). These are representative of all metals, although the magnitudes vary. This figure highlights the importance of understanding these changes and the impacts it will have on biogeochemical cycles because about half of the change will occur by the end of this century. Metals that form strong complexes with chloride will see little if any change in speciation because decreasing the pH will not change the chloride concentration. These metals include Cd2+, and Hg2+. The decrease in pH is not expected to strongly influence metals that are predominantly in the free form either. The metals Co2+, Zn2+, and Mn2+ will only increase by a few percent. There will be much larger increases in Fe2+ and Ni2+ in their ionic forms because they form carbonate complexes to a larger degree than the other free metals. Metals that are strongly complexed with hydroxide include Al3+, Ga3+, In3+, and Be2+. These metals form strong enough complexes with hydroxide such that the change in pH will not cause significant increases in their free forms. However, there will be a shift to fewer hydroxides per metal ion (i.e. Al(OH)4- to Al(OH)3). The metals mostly strongly affected by ocean acidification will be the carbonate dominated metals which include Cu2+, UO22+, and the rare earths. The largest change will 10 be for Cu2+ which will increase in the free form by 30%. This large change is significant not only in its magnitude but also because free copper is known to be toxic to organisms [Steeman-Nielsen and Wium-Anderson, 1970; Sunda and Ferguson, 1983]. Table 1.1: Speciation of the hydroxide dominated trace metals in seawater as a function of pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on Millero and Pierrot [1998; 2002]. Year pH Major Species Al(OH)3 Al(OH)4- 2000 2050 2070 2085 2100 2150 2200 2250 8.1 8 7.9 7.8 7.7 7.6 7.5 7.4 32.2 67.5 37.3 62.2 42.8 56.6 48.3 50.8 53.8 45.0 59.1 39.2 64.0 33.7 68.3 28.6 Ga(OH)3 Ga(OH)4- 0.9 99.1 1.2 98.8 1.5 98.5 1.9 98.1 2.3 97.7 2.9 97.1 3.7 96.4 4.6 95.4 In(OH)3 95.6 4.3 96.5 3.4 97.1 2.8 97.7 2.2 98.1 1.8 98.4 1.4 98.6 1.1 98.8 0.9 Be2+ 0.2 0.3 0.4 0.6 0.7 0.9 1.2 1.5 BeOHBe(OH)2 Be(OH)3 Be(CO3) 59.1 27.3 2.4 13.3 62.4 22.9 1.6 14.4 65.2 19.0 1.0 15.3 67.6 15.7 0.7 16.1 69.7 12.1 0.5 16.8 71.3 10.4 0.3 17.3 72.6 8.4 0.2 17.7 73.7 6.8 0.1 18.0 In(OH)4 - 11 Table 1.2: Speciation of the chloride dominated trace metals in seawater as a function of pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on Millero and Pierrot [1998; 2002]. Year pH Major Species Cd2+ 2000 2050 2070 2085 2100 2150 2200 2250 8.1 8 7.9 7.8 7.7 7.6 7.5 7.4 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 CdCl CdCl2 43.7 27.7 43.8 27.7 43.8 27.7 44.1 28.1 43.8 27.8 43.8 27.8 43.9 27.8 43.9 27.8 CdCl3- + 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 - 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 2- 88.2 88.2 88.2 88.2 88.2 88.2 88.2 88.2 HgCl3 HgCl4 Table 1.3: Speciation of the free ion dominated trace metals in seawater as a function of pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on Millero and Pierrot [1998; 2002]. Year pH Major Species 2000 2050 2070 2085 2100 2150 2200 2250 8.1 8 7.9 7.8 7.7 7.6 7.5 7.4 Fe2+ 66.0 70.4 74.6 78.4 81.8 84.8 87.3 89.5 FeCO3 FeOH 32.0 1.4 27.8 1.2 23.8 1.0 20.2 0.8 16.9 0.7 14.0 0.6 11.5 0.5 9.4 0.4 Ni2+ 68.3 72.5 76.4 79.9 83.1 85.8 88.2 90.1 NiCO3 30.3 26.2 22.3 18.8 15.7 13.0 10.6 8.6 CoCO3 CoOH 92.6 5.3 1.5 93.8 4.4 1.2 94.8 3.6 0.9 95.7 2.9 0.8 96.4 2.4 0.6 97.0 1.9 0.5 97.4 1.5 0.4 97.8 1.2 0.3 Zn2+ 80.6 84.4 87.5 89.9 91.7 93.2 94.4 95.3 ZnOH+ 5.7 4.7 3.9 3.2 2.6 2.1 1.7 1.3 ZnCO3 7.2 6.1 5.1 4.2 3.5 2.8 2.3 1.8 Mn2+ 97.3 97.7 98.1 98.4 98.6 98.8 98.9 99.1 Co 2+ 12 Table 1.4: Speciation of the transistion/mixed trace metals in seawater as a function of pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on Millero and Pierrot [1998; 2002] (lead speciation was calculated according to constants determined in Chapter 4). Year pH 2000 2050 2070 2085 2100 2150 2200 2250 8.1 8 7.9 7.8 7.7 7.6 7.5 7.4 Major Species 2+ Pb Transistion/Mixed 3.3 3.8 4.2 4.8 5.3 5.8 6.4 6.9 2.3 50.8 2.1 47.8 1.9 44.4 1.7 40.8 1.5 36.9 1.3 33.0 1.1 29.1 1.0 25.3 11.9 12.8 13.5 14.6 15.3 16.4 17.2 18.5 19.1 20.5 21.1 22.7 23.0 24.7 24.9 26.7 4.1 4.6 5.2 5.9 6.5 7.2 7.9 8.5 13.2 9.5 12.4 10.7 11.5 11.8 10.6 13.0 9.6 14.2 8.6 15.3 7.6 16.3 6.6 17.2 YOH2+ 14.8 13.2 11.7 10.2 8.8 7.5 6.4 5.4 + 41.5 38.0 34.2 30.3 26.5 22.9 19.5 16.4 + PbOH PbCO3 PbCl+ PbCl2 PbCl3- Pb(CO3)Cl 3+ Y YCO3 YSO4+ - 9.3 10.5 11.6 12.8 13.9 15.0 16.0 16.9 2+ 16.9 19.0 21.1 23.2 25.3 27.2 29.0 30.6 2+ 5.3 6.0 6.6 7.3 8.0 8.6 9.1 9.6 YCl YF 13 Table 1.5: Speciation of the carbonate dominated trace metals in seawater as a function of pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on Millero and Pierrot [1998; 2002]. Year pH Major Species 2000 2050 2070 2085 2100 2150 2200 2250 8.1 8 7.9 7.8 7.7 7.6 7.5 7.4 Cu2+ 7.7 9.6 12.0 14.9 18.3 22.3 26.8 31.8 CuOH+ CuCO3 4.7 67.0 4.7 68.5 4.7 69.3 4.6 69.1 4.5 68.1 4.3 66.3 4.1 63.5 3.9 60.0 Cu(CO3)22- 18.3 15.3 12.5 10.1 8.0 6.2 4.7 3.6 UO2(CO3)22- 13.8 16.5 19.6 23.2 27.3 31.9 37.0 42.5 UO2(CO3)34- 86.1 83.5 80.4 76.7 72.5 67.9 62.7 57.2 La3+ 17.0 20.5 24.4 28.6 33.0 37.4 41.7 45.9 56.2 55.2 53.1 50.2 46.4 42.1 37.5 32.8 19.2 15.3 11.9 9.1 6.8 4.9 3.5 2.4 LaSO4- 3.9 4.7 5.6 6.5 7.5 8.5 9.5 10.5 LaCl2+ 2.5 3.0 3.5 4.1 4.8 5.4 6.0 6.6 Ce3+ 12.6 15.5 18.8 22.5 26.5 30.6 34.9 39.1 57.2 57.2 56.1 54.1 51.1 47.4 43.0 38.4 22.4 18.2 14.5 11.3 8.5 6.3 4.6 3.3 CeSO4+ 3.5 4.3 5.2 6.3 7.4 8.5 9.7 10.9 2+ 1.9 2.4 2.9 3.5 4.1 4.7 5.4 6.0 10.6 13.2 16.3 19.7 23.6 27.7 32.0 36.3 56.8 57.6 57.4 56.2 53.9 50.6 46.6 42.1 Pr(CO3)2- 26.2 21.6 17.4 13.7 10.6 7.9 5.8 4.2 PrSO4+ 2.8 3.5 4.3 5.2 6.2 7.3 8.4 9.5 2+ 1.6 2.0 2.5 3.1 3.6 4.3 4.9 6.6 8.5 10.7 13.3 16.4 20.0 23.8 28.0 32.3 56.9 58.5 59.1 58.7 57.2 54.7 51.2 47.0 LaCO3 + La(CO3)2 CeCO3 + Ce(CO3)2 CeCl Pr - - 3+ PrCO3 PrCl + 3+ Nd NdCO3 + Nd(CO3)2- 29.4 24.6 20.1 16.1 12.6 9.6 7.2 5.3 + 2.2 2.7 3.4 4.2 5.1 6.1 7.1 8.3 2+ 1.3 1.6 2.1 2.5 3.1 3.7 4.3 5.0 NdSO4 NdCl 14 Table 1.5 cont. Year pH Major Species 2000 2050 2070 2085 2100 2150 2200 2250 8.1 8 7.9 7.8 7.7 7.6 7.5 7.4 Pm3+ PmCO3+ - 6.7 8.5 10.8 13.5 16.6 20.1 24.0 28.1 55.1 57.4 58.8 59.3 58.6 56.8 54.0 50.3 33.4 28.3 23.5 19.1 15.1 11.8 8.9 6.6 + 2.0 2.6 3.3 4.1 5.1 6.2 7.4 8.6 PmCl2+ 1.0 1.3 1.6 2.0 2.5 3.0 3.6 4.2 Sm3+ 5.3 6.8 8.9 11.1 13.9 17.2 20.8 24.8 53.1 56.1 58.4 59.8 60.1 59.0 57.3 54.3 37.9 32.5 27.4 22.6 18.3 14.4 11.1 8.4 SmSO4+ 1.4 1.9 2.4 3.0 3.8 4.7 5.7 6.7 SmCl2+ 0.8 1.0 1.3 1.7 2.1 2.6 3.1 3.7 Eu3+ 4.2 5.6 7.2 9.3 11.8 14.7 18.0 21.7 50.8 54.3 57.1 59.1 60.0 59.9 58.6 56.2 41.6 36.1 30.8 25.7 20.9 16.7 13.0 10.0 EuSO4+ 1.4 1.9 2.4 3.1 4.0 4.9 6.1 7.3 2+ 0.6 0.8 1.0 1.3 1.7 2.1 2.6 3.1 3.4 4.5 5.9 7.7 9.9 12.6 15.7 19.3 47.5 51.5 55.0 57.8 59.7 60.6 60.3 58.8 46.8 41.2 35.6 30.2 25.0 20.3 16.1 12.5 GdSO4+ 0.9 1.2 1.5 2.0 2.5 3.2 4.0 4.9 2+ 0.5 0.7 0.9 1.1 1.4 1.8 2.3 2.8 3.6 4.9 6.4 8.4 10.8 13.6 16.9 44.1 48.3 52.2 55.6 58.2 59.9 60.4 59.8 Pm(CO3)2 PmSO4 SmCO3 + Sm(CO3)2 EuCO3 + Eu(CO3)2 EuCl - - Gd3+ GdCO3 + Gd(CO3)2 GdCl - 3+ Tb TbCO3 + Tb(CO3)2- 51.0 45.4 39.7 34.1 28.7 23.6 19.0 15.0 + 0.6 0.8 1.1 1.5 1.9 2.5 3.1 3.9 2+ 0.4 0.5 0.7 0.9 1.2 1.5 1.9 2.4 TbSO4 TbCl 15 Table 1.5 Cont. Year pH Major Species 2000 2050 2070 2085 2100 2150 2200 2250 8.1 8 7.9 7.8 7.7 7.6 7.5 7.4 Dy3+ DyCO3 + - 2.2 3.0 4.0 5.4 7.1 9.3 11.9 15.0 40.1 44.5 48.7 52.5 55.8 58.2 59.5 59.8 55.8 50.3 44.6 38.7 33.0 27.6 22.5 18.0 + 0.5 0.6 0.8 1.1 1.5 1.9 2.5 3.1 DyCl2+ 0.3 0.4 0.6 0.8 1.0 1.3 1.7 2.1 Ho3+ 1.8 2.5 3.4 4.5 6.1 8.0 10.5 13.4 36.1 40.5 44.8 49.0 52.7 55.6 57.7 58.6 60.4 55.0 49.3 43.4 37.5 31.7 26.2 21.2 HoSO4+ 0.4 0.5 0.7 1.0 1.3 1.7 2.2 2.8 Er3+ 1.5 2.1 2.8 3.9 5.3 7.1 9.3 12.0 32.7 37.0 41.4 45.7 49.7 53.2 55.8 57.4 64.3 59.1 53.5 47.6 41.6 35.6 29.8 24.4 1.2 1.7 2.4 3.3 4.5 6.1 8.2 10.8 28.6 32.6 37.0 41.4 45.7 49.5 52.8 55.1 Tm(CO3)2- 69.0 64.2 58.8 53.0 47.0 40.8 34.7 28.8 Yb3+ 1.1 1.5 2.1 3.0 4.1 5.6 7.6 10.1 25.5 29.4 33.6 37.9 42.3 46.4 50.0 52.7 72.4 67.8 62.7 57.1 51.1 44.9 38.6 32.4 0.9 1.2 1.7 2.5 3.5 4.8 6.6 8.9 21.9 25.5 29.4 33.6 38.0 42.3 46.3 49.7 76.4 72.3 67.6 62.3 56.6 50.4 44.0 37.6 Dy(CO3)2 DySO4 HoCO3 + Ho(CO3)2 - ErCO3+ Er(CO3)2 Tm - 3+ TmCO3 + YbCO3+ Yb(CO3)2 - 3+ Lu LuCO3 + Lu(CO3)2- 16 80 70 species % 60 50 Cu2+ CuCO3 40 30 20 10 0 1950 2000 2050 2100 2150 2200 2250 2300 Year 100 Species % 80 60 Fe2+ FeCO3 40 20 0 1950 2000 2050 2100 2150 2200 2250 2300 Year Figure 1.6: Expected changes in the inorganic speciation of Cu(II) (top) and Fe(II) (bottom) as a function of time (year based on Caldeira and Wickett [2003]) 17 Lead and yttrium are placed in their own category because of their more complex speciation. Both form strong complexes with multiple ligands, thus speciation is very dependent on media composition. The speciation of lead is determined in great detail in Chapter 4. Ocean acidification will affect properties besides speciation. Most metals are amphoteric causing them to be more soluble in high and low pH with a minimum somewhere in the circum-neutral pH (5-9). Depending on the exact location of the minimum ocean acidification will either increase or decrease the solubility of many metals in seawater. For example, Fe(III) solubility will increase by about 40% from a pH of 8.1 to 7.4. This could have large impacts on biogeochemical cycles because iron is an important micronutrient [Brand, 1991]. Aluminum on the other hand will likely see a 30% decrease in solubility (based on its solubility in NaCl [Wesolowski, 1992]). There will also be changes in kinetics as well as organic speciation, but that will not be discussed in this dissertation. 1.4 Calcium Carbonate in seawater The oceans play a major role in the earth’s carbon cycle [Millero, 2007]. A major component of the ocean’s carbon cycle is the production and dissolution of calcium carbonate minerals. There are generally two dominant polymorphs of calcium carbonate minerals, the stable form, Calcite, and the semi-stable form, Aragonite. There is also a less stable form that receives little consideration, high magnesium calcite. Although these minerals can form biotically or abiotically the biogenic forms are dominant and better studied because of their importance to organisms. Until recently, it was thought that marine biogenic production of calcium carbonate was dominated by coccolithophores and 18 foraminifera, as well as corals and coralline algae [Feely et al., 2004]. Recently, Wilson et al. [2009] based in part on the observations of Walsh et al. [1991], showed that teleost fish also contribute to carbonate production by up to 15% or higher of the global carbonate production. These bony fish continually produce a high magnesium calcite (defined as >4 mol % Mg) as a byproduct of osmoregulation [Grosell, 2011]. The biogenic calcification process involves the reaction of calcium (Ca2+) with bicarbonate (HCO3-) to form solid calcium carbonate of one of the three crystalline forms according to the following reaction: Ca2+ + 2HCO3- ↔ CaCO3 + CO2 + H2O (1.4) Planktonic organisms produce the majority of oceanic biogenic calcium carbonate [Feely et al., 2004]. When these organisms die their skeletons sink to deeper ocean layers where they can either dissolve in the water column or reach the bottom and be buried in the sediments. The depth at which, thermodynamically, the calcium carbonate can dissolve is determined by the saturation state (), defined as: = [Ca2+][CO32-]/K*sp (1.5) Where K*sp is the stoichiometric solubility product constant. When is greater than one the solution is supersaturated, when is less than one it is undersaturated, and when equals one it is in equilibrium. Dissolution is expected to begin once the solution becomes undersaturated. Since dissolution is the reverse reaction of eqn 1.4 there is an increase in total alkalinity (TA) with depth. It would be expected that there would not be an increase in TA until below the depth at which =1, or the saturation horizon [Sverdrup et al., 1941; Broecker, 1977]. However, there are several lines of evidence suggesting that 50-71% of calcium carbonate exported from the surface is dissolved 19 above the aragonite saturation horizon [Feely et al., 2002; Milliman et al., 1999; Milliman and Droxler, 1996]. This can be demonstrated by the profile of normalized total alkalinity (NTA = TA/S*35) from the North Atlantic shown in Figure 1.7. Several possible explanations have been proposed, the most likely being a more soluble form of calcium carbonate [Byrne et al., 1984], but a probable source wasn’t identified until recently [Wilson et al., 2009]. -1 NTA (mol kg ) 2250 0 2300 2350 2400 Depth (db) 500 1000 1500 2000 Aragonite Saturation 2500 3000 Figure 1.7: Profile of the normalized total alkalinity of seawater in the North Atlantic (30°N and 23°E), showing an increase in NTA above the aragonite saturation horizon. 20 High magnesium calcite with greater than about 10 mol % Mg is known to more soluble than aragonite [Morse and Mackenzie, 1990; Morse et al., 2007, 2003]. Fishproduced high magnesium calcite could potentially contribute to the source of increased NTA. The first step in determining this would be to determine the solubility of this material. 1.5 Impact of minor components on the density of seawater The international equation of state for seawater [Millero and Poisson, 1981] is largely based on the conductivity-density relationship, but changes in the composition of minor components of seawater can result in variations in this relationship [Brewer and Bradshaw, 1975; Connors and Weyl, 1968]. There have been many studies examining the limitations of the international equation of state [Millero, 1975, 1978, 2000; Millero et al., 1976a, b, c, d; Millero and Kremling, 1976; Poisson et al., 1980]. Brewer and Bradshaw [1975] were to first to make estimates of the relationship between changes in composition and the calculated density. They estimated that changes in salinity of 0.015 could result in changes in density of 0.012 kg m-3. The changes in salinity are mainly a result of the inputs of carbon and minor nutrients (mainly silicate and nitrate) as organic matter is decomposed as depth. Despite the large number of studies the measurements are limited in number and geographical coverage. 1.6 Scope of this work This work will cover a variety of topics relating to the physical chemical properties of minor and trace components of seawater. The main focus will be on trace metals, but CaCO3 and minor nutrients will also be covered. The objectives are to better 21 understand the behavior and fate of these components in natural waters through the determination of their physical chemical properties, mainly speciation, solubility, and density. Chapters two and three will use correlations of the hydrolysis of the well-studied metal Al(III) with other metals to estimate hydrolysis when measurements aren’t available. Chapter four will use a Pitzer model, published measurements and new measurements of the formation constant of lead chloro and lead carbonate complexes to model the speciation of lead in natural waters. Chapter five will measure the solubility of fish-produced high magnesium calcite to help determine their contribution to the oceanic carbon cycle. Finally, chapter six will provide nearly 2000 measurements on the density of seawater from every major ocean to better determine the effect of minor components on the conductivity-density relationship. Chapter 2: The Hydrolysis of Al(III) in NaCl Solutions-A Model for Fe(III)2 2.1 Background There is currently a large interest in the speciation of Fe(III) in natural waters due to its importance as a nutrient for primary production. Fundamental to understanding the forms of Fe(III) in natural waters is a knowledge of the hydrolysis constants in the media of interest. Recently Millero and Pierrot [2007] used the limited data for the hydrolysis of Fe(III) in NaCl solutions to determine the activity coefficients of Fe(OH)2+, Fe(OH)2+, Fe(OH)30 and Fe(OH)4- as a function of temperature (5 to 50oC) and ionic strength (0 to 6 m). These results were examined using the ionic interaction model of Pitzer [1991] that can be used to model the behavior of Fe(III) in natural waters using the methods of Christov and Møller [2004], Greenberg and Møller [1989], Harvie and Weare [1980], Harvie et al. [1984], and Møller [1988]. To extend the model to higher temperatures and ionic strengths reliable hydrolysis constants of Fe(III) are needed. Since higher order hydrolysis constants of Fe(III) are determined from solubility measurements, this will require a significant effort due to the low solubility of Fe(III) near the pH of most natural waters [Liu and Millero, 1999]. At the present time thermodynamic values for the first hydrolysis constants are available [Stefánsson, 2007; Stefánsson and Seward, 2008; Zotov 2 This chapter was previously published as: Millero, F. J., and R. J. Woosley (2009), The hydrolysis of Al(III) in NaCl solutions-A model for Fe(III), Environ. Sci. Technol., 43, 1818-1823. DOI:10.1021/es802504u. 22 23 and Kotova, 1979, 1980] up to 200oC, but little data are available for the higher order constants needed to model the behavior of Fe(III) in high temperature brines. log Ki [Fe(III)] 0 -10 5o C 25oC 50oC Stefansson [2007; Stefansson and Seward [2008] -20 -30 -30 -20 -10 0 log Ki [Al(III)] Figure 2.1: Plot of the thermodynamic hydrolysis constants (Ki) for Fe(III) [Stefánsson, 2007; Stefánsson and Seward, 2008; Millero, 2001a] versus Al(III) [Millero and Pierrot, 2007; Benézéth et al., 2001; Palmer and Wesolowski, 1993; Wesolowski, 1992] as a function of temperature in pure water. The dashed line is a second degree fit of the results. The limited hydrolysis constants for Fe(III) and Al(III) appear to be related over a wide range of temperature and ionic strength. This is shown in Figure 2.1 where the thermodynamic hydrolysis constants (Ki) at 25oC for Fe(III) [Stefánsson, 2007; Stefánsson and Seward, 2008; Millero 2001a] are plotted versus the values for Al(III) [Millero and Pierrot, 2007; Benézéth et al., 2001; Palmer and Wesolowski, 1993; Wesolowski, 1992]. As shown in Figure 2.2, this behavior also appears to be the case at 24 high ionic strengths in NaCl solutions. This near linear relationship suggests that it may be possible to use the known hydrolysis constants for Al(III) to estimate the values for Fe(III) over a wide range of temperature and ionic strength. In this chapter, the published hydrolysis constants for Al(III) in NaCl have been fitted to equations as a function of ionic strength and temperature. Correlations of the hydrolysis constants of Al(III) complexes have been used to determine the values for Fe(III) complexes from 0 to 100oC and 0 to 5 m in NaCl solutions. These results allow one to estimate the speciation of Fe(III) for hydrothermal brines. 0 log i [Fe(III)] -5 -10 -15 -20 I=0m I = 0.7 m I = 5.0 m -25 -30 -30 -25 -20 -15 -10 -5 0 log i [Al(III)] Figure 2.2: Plot of the thermodynamic and stoichiometric (i) hydrolysis constants for Fe(III) versus Al(III) in NaCl solutions at different ionic strengths and 25°C [Millero and Pierrot, 2007; Benézéth et al., 2001]. 25 2.2 Hydrolysis Constants for Al(III) in NaCl Solutions The speciation of Al3+ in natural waters is largely controlled by the formation of hydroxide complexes. The formation of these complexes are normally expressed as the stepwise hydrolysis of Al3+ Al3+ + H2O = AlOH2+ + H+ (2.1) Al3+ + 2 H2O = Al(OH)2+ + 2 H+ (2.2) Al3+ + 3 H2O = Al(OH)3 + 3 H+ (2.3) Al3+ + 4 H2O = Al(OH)4- + 4 H+ (2.4) The stoichiometric hydrolysis (formation) constants (i) are given by: i = [Al(OH)j(3-j)] [H+]j/[Al3+] (2.5) where i and j equal 1 to 4, and i’s are related to the thermodynamic values (Ki) by Ki = i γ(Al3+) a(H2O)j/ γ(Al(OH)j(3-j)) γ(H+])j (2.6) The hydrolysis constants for Al3+ have been determined by a number of workers [Benézéth et al., 2001; Bourcier et al., 1993; Castet et al., 1993; Couturier et al., 1984; Fink and Peech, 1963; Palmer and Bell, 1994; Palmer and Wesolowski, 1992, 1993; Palmer et al., 2001; Schofield and Taylor, 1954; Volokhov et al., 1971; Wesolowski, 1992; Wesolowski and Palmer, 1994]. The earlier studies have been summarized by Baes and Mesmer [1976] and Apps et al. [1988]. The most extensive studies have been made by Palmer and co-workers (referenced above) over a wide range of temperature (0 to 300oC) in dilute solutions and to 100oC in NaCl to 5 m. Most of the estimates of the hydrolysis constants have been determined from the solubility of the minerals Gibbsite (Al(OH)3(s)) [Palmer and Wesolowski, 1992; Volokhov et al., 1971; Wesolowski, 1992] and Boehmite (γ-AlOOH) [Benézéth et al., 2001; Bourcier et al., 1993; Castet et al., 26 1993; Palmer et al., 2001] and potentiometry [Palmer and Wesolowski, 1993] as a function of pH. The solubility for Gibbsite (Qsi) as a function of pH can be summarized by the equations Al(OH)3(s) + 3H+ = Al3+ + 3 H2O Qs0 (2.7) Al(OH)3(s) + 2H+ = Al(OH)2+ + 2 H2O Qs1 (2.8) Al(OH)3(s) + H+ = Al(OH)2+ + 2 H2O Qs2 (2.9) Al(OH)3(s) = Al(OH)3 Qs3 (2.10) Al(OH)3(s) + H2O = Al(OH)4- + H+ Qs4 (2.11) The stoichiometric hydrolysis constants (i) at a given temperature and concentration are related to the solubility quotients by i = Qsi/ Qs0 (2.12) The effect of pH on the solubilities of Al(III) is related to the speciation by log [Al(III)] = log Qs0 + 3 log[H] – log αAl (2.13) where αAl, the fraction of free Al3+, is given by αAl = 1/(1 + 1/[H+] + 2/[H+]2 + 3/[H+]3 + 4/[H+]4 ) The value of Qs0 (2.14) has been determined from solubility measurements of Gibbsite or Boehmite in acidic solutions [Palmer and Wesolowski, 1992; Palmer et al, 2001]. Benézéth et al. [2001] have tabulated the thermodynamic hydrolysis constants (Ki) as a function of temperature. These results have been fitted to equations of the form: log Ki = A + B/T + C ln T + D T (2.15) and the coefficients are given in Table 2.1. The values of i for Al(III) as a function of ionic strength (I) and temperature (T/K) have been fitted to equations of the form log βi – log Ki = a0 I0.5 + a1 I2 + a2 I + a3 I0.5/T + a4 I2/T (2.16) 27 The coefficients ai’s for eqn. 2.16 are given in Table 2.2. These equations for the hydrolysis constants for Al(III) have been used to generate values of log i, as a function of temperature and ionic strength. Table 2.1: Values of the parameters for eqn. 2.15 for the Thermodynamic Hydrolysis constants of Al(III) in Water [Zotov and Kitova, 1979; Benézéth et al., 2001; Palmer et al., 2001]. log K1 log K2 log K3 log K4 Constant 1/T ln T T 4.615 -2888.30 0.02128 -185.22 915.62 32.03 151.38 -13211.03 -22.9244 -310.00 100.31 54.3931 -0.036755 0.023365 -0.077331 Std.Err.Fit 0.002 0.06 0.02 0.04 T. Range (°C) 0 to 200 2 to 300 2 to 300 2 to 300 Table 2.2: Vales of the parameters for eqn. 2.16 for the Thermodynamic (Ki) and Stoichiometric (i) Hydrolysis constants of Al(III) in NaCl solutions [Benézéth et al., 2001; Palmer and Wesolowski, 1993; Wesolowski 1992]. Variable Parameter log 1 – K1 log 2 – K2 log 3 – K3 log 4 – K4 a0 I0.5 -3.3789 -4.6161 -2.681 -1.7546 a1 a2 a3 I2 I 0.5 I /T 0.0432 0.833 622.5755 -0.0158 1.459 718.494 -0.4573 3.2979 -591.4436 -0.119 1.1875 -28.7545 a4 I2/T -36.3802 -43.9861 33.5847 -10.0329 0.04 43 0.1 20 0.15 20 0 to 125 0 to 125 0 to 125 Std.Err.Fit Number T. Range (°C) 0.09 20 0 to 125 28 2.3 Correlations of the Hydrolysis Constants of Fe(III) and Al(III) in NaCl Solutions As discussed earlier the thermodynamic and stoichiometric stepwise hydrolysis constants correlate with one another (Figures 2.1 and 2.2). The recent log Ki results of Stefánsson [2007] and Stefánsson and Seward [2008] at 25oC are in good agreement with the tabulations of Millero and Pierrot [2007]. The values of log Ki for Fe(III) at higher temperature are slightly lower and give a better fit if fit to a second degree equation ( = 0.53): log Ki [Fe(III)] = 1.067 + 0.456 log Ki [Al(III)] - 0.0238(log Ki[Al(III)])2 (2.17) Table 2.3: Estimated Thermodynamic hydrolysis constants for Fe(III) as a function of temperature determined from eqn. 2.17. Literature values are in parenthesis below calculated values. Temp. (oC) Log K1 Log K2 Log K3 Log K4 0 -1.8 -2.4 (-2.18)a,b,d -1.4 (-1.71, -1.60)a,d -0.5 (-0.68,-0.66)c,d -0.5 -0.02 (-0.04,-0.07)c,d -0.4 (-0.59,-0.65)c,d -8.1 -6.5 (-5.76,-6.9)a,b -5.2 (-6.4)b -16.5 -13.1 (-14.3, -13.0)a,b -10.5 (-12.0)b -26.2 -21.7 (-21.71, -22.3)a,b -18.1 (-19.4)b -4.1 -6.9 -15.2 -3.1 -5.7 -12.9 -2.4 -4.6 -11 -1.8 -3.1 -9.5 25 50 100 125 150 200 a Stefánsson, 2007 Millero and Pierrot, 2007 c Stefánsson and Seward, 2008 d Zotov and Kotova, 1979, 1980 b 29 Table 2.4: Estimated stoichiometric hydrolysis constants for Fe(III) as a function of temperature and molality in NaCl solutions determined from eqn 2.18. Temperature (oC) 0 25 50 75 100 m NaCl log 1 log 2 log 3 log 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 -2.7 -2.6 -2.6 -2.7 -2.9 -2.2 -2.2 -2.1 -2.2 -2.3 -1.8 -1.8 -1.8 -1.8 -1.9 -1.5 -1.5 -1.4 -1.5 -1.5 -1.2 -1.2 -1.2 -1.2 -1.2 -8.9 -8.8 -8.9 -9.2 -10 -7.5 -7.4 -7.5 -7.8 -8.4 -6.3 -6.3 -6.3 -6.6 -7.1 -5.3 -5.3 -5.4 -5.6 -6 -4.4 -4.5 -4.5 -4.7 -5.1 -21.1 -20.8 -20.7 -21.1 -21.9 -18.3 -18 -17.9 -18.2 -19.1 -16 -15.6 -15.5 -15.9 -16.8 -14 -13.6 -13.5 -13.9 -14.9 -12.4 -12 -11.9 -12.3 -13.3 -27.8 -27.9 -28.3 -29.1 -30.4 -23.2 -23.2 -23.5 -24.2 -25.4 -19.4 -19.5 -19.7 -20.3 -21.4 -16.5 -16.5 -16.7 -17.2 -18.2 -14 -14 -14.2 -14.7 -15.5 The values of log Ki [Fe(III)] estimated from this equation are tabulated in Table 2.3 along with literature data (Millero and Pierrot, 2007; Stefánsson, 2007; Stefánsson and Seward, 2008; Zotov and Kotova, 1979, 1980]). The extrapolated values are in reasonable agreement with the recent measurements log K1 to high temperatures by Stefánsson and Seward [2008] and Zotov and Kotova [1979, 1980]. The values of i of 30 Fe(III) and Al(III) from 0 to 50oC as a function of ionic strength shown in Figure 2.2 can also be represented by the thermodynamic values fit to the eqn 2.17. The values of log i [Fe(III)] as a function of temperature and ionic strength can be estimated by combining eqns 2.16 and 2.17 to create eqn 2.18: log i [Fe(III)] = 1.067 + 0.456 (log i [Al(III)]) – 0.0238 (log i [Al(III)])2 (2.18) This equation yields values of log i [Fe(III)] in NaCl solutions from 5 to 50oC and I = 0.1, 0.7, 1.3 and 5 m that agree with the measured values by ± 0.52, 1.22, 1.00 and 0.73, respectively. The estimated values of log i [Fe(III)] as a function of temperature and ionic strength are given in Table 2.4. The results are in reasonable agreement with literature data [Stefánsson, 2007; Zotov and Kotova, 1979, 1980]. 2.4 Causes of the Correlations of the Hydrolysis Constants of Fe(III) and Al(III) The correlations of the hydrolysis constants of Fe(III) and Al(III) in pure water can be examined using the free energies of the ionic species tabulated in Table 2.5 [Millero, 2001a]. Although the values for the free ions and complexes are different for Fe(III) and Al(III), the difference between them ΔG0(Al3+) - ΔG0 (Al(OH)j(3-j)) ΔG0 (Fe3+) - ΔG0 (Fe(OH)j(3-j)) (2.19) are similar (see Table 2.5). The correlations of the hydrolysis constants of Fe(III) and Al(III) at higher ionic strengths and temperatures are related to their similar behavior as functions of temperature (K) and ionic strength (I0.5) (see Figure 2.3). The differences in the enthalpies of the ions and complexes like the free energy are similar (see Table 2.5) ΔH0(Al3+) - ΔH0 (Al(OH)j(3-j)) ΔH0 (Fe3+) - ΔH0 (Fe(OH)j(3-j)) (2.20) 31 -14 -1 -15 -2 Log3 Log1 -16 -3 -4 -17 -18 -5 -6 -19 0.0 0.5 1.0 1.5 2.0 -20 2.5 0.0 0.5 1.0 1.5 2.0 2.5 1.5 2.0 2.5 I0.5 I0.5 Al Fe -22.0 -6 -7 -22.5 -23.0 -9 Log4 Log2 -8 -10 -24.0 -11 -24.5 -12 -13 -23.5 0.0 0.5 1.0 0.5 I 1.5 2.0 2.5 -25.0 0.0 0.5 1.0 0.5 I Figure 2.3: Comparison of the values of log i of Fe(III) and Al(III) as a function of square root of ionic strength [Millero, 2001a; Benézéth et al., 2001]. 32 Table 2.5: Free energy (kJ mol-1) and enthalpy (kJ mol-1) for Al3+, Fe3+, and their complexes at 25°C. ΔG0 ΔG0 ΔG0 ΔG0 ΔG0 Species [M3+] [M(OH)2+] [M(OH)2+] [M(OH)3] [M(OH)4-] Al(III)a -487.2 -696 -900 -1110 -1306 Fe(III)b Species Al(III)a Fe(III)d -10.6 ΔH0 [M3+] -539.4 209c 413c 623c 819c -236 -449 -640 -832 c c 630 c 821c 225 438 ΔH0 [M(OH)2+] -769.7 ΔH0 [M(OH)2+] -998.3 ΔH0 [M(OH)3] -1270.7 ΔH0 [M(OH)4-] -1503 209c 413c 623c 819c -284.4 -521.4 -701 -938.6 -47.7b c 237 474 c a Benézéth et al., 2001 b Millero, 2001a c ΔG0[M3+] - ΔG0[M(OH)j(3-j)] or ΔH0[M3+] - ΔH0[M(OH)j(3-j)] d Estimated from the slopes of log Ki vs 1000/T c 653 891c The effect of ionic strength on the complexes are related for the activity coefficients of the free ions and the complexes by log K1 – log 1 = log γ(M3+) + log a(H2O) – log γ(M(OH)2+) – log γ(H+) (2.21) Since the activity coefficient of H+ (H) and activity of water (aH2O) at a given ionic strength in NaCl solutions are the same, the differences of the free ions and complexes are log (Fe3+) - log (Fe(OH)j(3-j)) log (Al3+) - log (Al(OH)j(3-j)) (2.22) (Fe3+)/(Fe(OH)j(3-j)) (Al3+)/(Al(OH)j(3-j)) (2.23) or To demonstrate that this relationship is valid, the activity coefficients for (Al(OH)j(3-j)) have been determined from 33 ln γ(M(OH)j(3-j)) = ln Ki - ln i + ln γ(M3+) + ln a(H2O) – ln γ(H+) (2.24) 4 3 3+ ln (Fe3+ or Al3+) 2 Fe 3+ Al 1 0 -1 -2 -3 0.0 0.5 1.0 1.5 2.0 2.5 3.0 I0.5 Figure 2.4: Comparison of the activity coefficients of Fe3+ [Millero, 2001a] and Al3+ [Christov et al., 2007] in NaCl solutions at 25°C as a function of the square root of ionic strength. The values for ln γ(Fe(OH)j(3-j)) from 0 to 50oC are available [Millero, 2001a] and the values for ln γ(Al(OH)j(3-j)) from 0 to 100oC have been determine using eqn. 2.24. The literature Pitzer [1991] parameters for NaCl [Greenberg and Møller, 1989; Møller, 1988], HCl [Christov and Møller, 2004], and AlCl3 [Christov et al., 2007] were used in these calculations. A comparison of the trace activity coefficients of Al3+ and Fe3+ in NaCl solutions at 25oC calculated from the Pitzer [1991] equations are compared in Figure 2.4. Below 1 m, the values are similar, but differ at higher ionic strengths. The 34 values for ln γ(Fe(OH)j(3-j)) (1) and ln γ(Al(OH)j(3-j)) at 25oC are shown in Figure 2.5. The differences are quite large, but the ratios of γ(M3+)/γ(M(OH)j(3-j)) for the two systems are the same order of magnitude (see Table 2.6). In summary the correlations of the hydrolysis constants of Fe(III) and Al(III) are related to a similarity of the differences in the thermodynamic properties of the free metals and their complexes. The results of this chapter demonstrate that the hydrolysis constants for Al3+ can be used to make reasonable estimates of the values for Fe3+ in NaCl solutions over a wide range of temperatures. These results should be useful in examining the speciation of Fe(III) in NaCl brines over a wide range of ionic strength and temperature. Since it is frequently easier to determine the stoichiometric hydrolysis constants log β1 and log β4 for Fe(III) and other trivalent metals, the correlations can be useful in estimating the values of log β3 and log β3 needed to examine the speciation at the near neutral pH of most natural waters. Table 2.6: Log of the ratio of the activity coefficients of the free metal and the hydroxide complex for Fe(III) and Al(III). The differences in the ratios are close to the standard deviation of the fits. log (γM3+/γM(OH)j(3-j)) I M 0.7 5 j=1 Al Fe Al Fe -0.7 -1.1 -3.1 -1.7 j=2 -1.1 0.7 -0.5 1.6 j=3 -3.8 -2.3 -3.8 -1.1 j=4 -1.1 -2.3 0.4 -1.1 35 AlOH2+ FeOH2+ 12 10 lnM(OH)3 8 lnMOH2+ Fe(OH)3 12 10 6 4 2 8 6 4 2 0 -2 Al(OH)3 14 0 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 0.5 I I Al(OH)2+ 6 2.0 2.5 1.5 2.0 2.5 Fe(OH)4- 2.5 2.0 2 lnM(OH)4- lnM(OH)2+ 1.5 0.5 Al(OH)4- 3.0 Fe(OH)2+ 4 0 -2 1.5 1.0 0.5 -4 -6 1.0 0.0 0.0 0.5 1.0 I0.5 1.5 2.0 2.5 -0.5 0.0 0.5 1.0 I0.5 Figure 2.5: Comparison of the activity coefficients of the Fe3+ and Al3+ complexes in NaCl solutions at 25°C as a function of the square root of ionic strength. Chapter 3: The Hydrolysis of Al(III) in NaCl Solutions-A Model for M(II), M(III), and M(IV) Ions3 3.1 Background Most metal cations form soluble hydroxide complexes in aqueous solutions. Trivalent metals (M3+) for example hydrolyze as follows M3+ + H2O = MOH2+ + H+ (3.1) M3+ + 2 H2O = M(OH)2+ + 2 H+ (3.2) M3+ + 3 H2O = M(OH)3 + 3 H+ (3.3) M3+ + 4 H2O = M(OH)4- + 4 H+ (3.4) The resulting complexes at a given pH have a large influence over the chemical behavior of the metal. The various hydrolysis products control the adsorption of the dissolved metal onto particles, the formation of colloids, the solubility of the metal, the complexation with other species in solution, and the oxidization or reduction of the metal [Baes and Mesmer, 1976]. To identify and understand the stability of a metal as a function of pH one needs to know the hydrolysis constants for the metal. Ki = i γ(M3+) a(H2O)j/ γ(M(OH)j(3-j)) γ([H+])j (3.5) Ki is the thermodynamic and i are the stoichiometric constants, γ(i) is the activity 3 This paper was previously published as Woosley, R. J. and F. J. Millero (2010), The hydrolysis of Al(III) in NaCl solutions: A model for M(II), M(III), and M(IV) ions, Aquat. Geochem., 16, 317-324. DOI: 10.1007/s10498-009-9075-2. 36 37 coefficient and a(H2O) is the activity of water in the solution. If the values of i or Ki are known, the fraction α(i) of the various complexes at a given pH = - log[H+] are given by α(M3+) = 1/(1 + 1/[H+] + 2/[H+]2 + 3/[H+]3 + 4/[H+]4) (3.6) α(MOH2+) = α(M3+)1/[H+] (3.7) α(M(OH)2+) = α(M3+) 2/[H+]2 (3.8) α(M(OH)3) = α(M3+) 3/[H+]3 (3.9) α(M(OH)4-) = α(M3+) 4/[H+]4 (3.10) Similar equations can be derived for divalent and quadrivalent metals. Despite the importance of the hydrolysis of metals in natural waters, thermodynamic (Ki) and stoichiometric hydrolysis constants (βi) are only known over a very limited range of temperature and ionic strength. This is partly due to the difficulty in experimentally determining the hydrolysis constants of metals due to the precipitation of oxides and low solubilities [Baes and Mesmer, 1976]. This is most significant when determining the second and third hydrolysis constants due to the low solubilities at near neutral pH where they are important. Predicting hydrolysis constants has been difficult since few discernible patterns of behavior between metals have been determined. As shown in Chapter 2, there is a near linear relationship between the hydrolysis constants of Al(III) and Fe(III) over a wide range of temperature and ionic strength allowing for an estimate of the Fe(III) hydrolysis constants to high temperature and ionic strength in NaCl solutions, applicable to hydrothermal brines. As will be shown in this chapter, this near linear relationship appears to hold over a variety of metals of various charges. 38 3.2 Hydrolysis Constants for Al(III) in NaCl Solutions As discussed in section 2.2, the hydrolysis constants of Al(III) are well known over a wide range of temperature and ionic strength in NaCl solutions [Benézéth et al., 2001; Bourcier et al., 1993; Castet et al., 1993; Couturier et al., 1984; Frink and Peech, 1963; Palmer and Wesolowski, 1993; Schofield and Taylor, 1954; Verdes et al., 1992; Wesolowski, 1992; Wesolowski and Palmer, 1994]. The earlier work was tabulated by Baes and Mesmer [1976]. The most extensive studies [Benézéth et al., 2001; Palmer and Wesolowski, 1993; Palmer and Wesolowski, 1992] provide hydrolysis constants of Al(III) in dilute solutions from 0-300°C and to 100°C in NaCl solutions up to 5 m. In Chapter 2 the thermodynamic hydrolysis constants were fit as a function of temperature and the stoichiometric hydrolysis constants as a function of ionic strength (I) and temperature (K) according to eqns 2.15 and 2.16. The coefficients for eqn. 2.15 are given in Table 2.1 and the coefficients for eqn. 2.16 are given in Table 2.2. 3.3 Al(III) Correlations with +2, +3, and +4 metals The near linear relationship that was found between Al(III) and Fe(III) (Section 2.3) appears to hold for the limited thermodynamic hydrolysis constants for several +2, +3, and +4 metals. This relationship is shown in Figures 3.1-3.3, where the thermodynamic hydrolysis constants of Al(III) at 25°C are plotted verses several +2, +3, and +4 metals, respectively. Using a second degree fit improved the standard error of some of the fits (Be(II), Bi(III), Cr(III), Dy(III), Er(III), Sc(III), Yb(III), Hf(IV), Np(IV), Pa(IV), Pu(IV), Sn(IV), Tl(IV), Zr(IV)). The hydrolysis constants have been fit to equations of the form: 39 log βi [M] = a * log βi [Al(III)] + b * (log βi [Al(III)])2 + c (3.11) The adjustable coefficients a, b, and c for eqn. 3.11 for the various metals are given in Table 3.1. Hg(II) has a much larger standard deviation than the other metals. This may be caused by the very strong complex that Hg(II) forms with chloride, or because K4 has not been determined. Ti(III) is also different in that the slope is much smaller than the other +3 metals, resulting in a less negative estimated value for K4. Since K4 has not been determined, it is difficult to determine the cause. 0 Be(II)a Mn(II)a Fe(II)a Co(II)a Ni(II)a Cu(II)a,b,c Zn(II)a,c Pb(II)a a Hg(II) Cd(II)c Sn(II)a log Ki [M(II)] -10 -20 -30 -40 -50 -25 -20 -15 -10 -5 log Ki [Al(III)] Figure 3.1: A plot of the thermodynamic hydrolysis constants of M(II) versus Al(III) at 25°C (a Baes and Mesmer [1976]; b Paulson and Kester [1980]; c Pivovarov [2005]). 40 0 Cr(III)c Sc(III)a Ti(III)a Y(III)a,b Nd(III)a,b Gd(III)a,b Dy(III)a,b Er(III)a,b Yb(III)a,b Bi(III)a log Ki [M(III)] -10 -20 -30 -40 -25 -20 -15 -10 -5 0 log Ki [Al(III)] Figure 3.2: A plot of the thermodynamic hydrolysis constants of M(III) versus Al(III) at 25°C (a Baes and Mesmer [1976]; b Klungness and Byrne [2000]; c Rai et al. [2001]). log Ki [M(IV)] 0 Hf(IV)b Th(IV)c Zr(IV)d Pa(IV)e U(IV)f Np(IV)h Pu(IV)a,g Tl(IV)a Sn(IV)a -5 -10 -15 -20 -25 -20 -15 -10 -5 0 log Ki [Al(III)] Figure 3.3: A plot of the thermodynamic hydrolysis constants of M(IV) versus Al(III) at 25°C (a Baes and Mesmer [1976]; b Rai et al. [2001]; c Ekberg et al. [2000], d Ekberg et al. [2004]; e Tarapcik et al. [2005]; f Manfredi et al. [2006]; g Choppin et al. [1997]; h Neck and Kim [2001]). 41 Table 3.1: The Values of the parameters for eqn. 3.11. All coefficients and slopes were determined from Ki at 25°C, except As(III) which was determined from K1 from 25300°C. Ion a b c Be(II) 1.2814 -0.019 1.5788 1.6243 Cd(II) 2.1911 1.6677 Co(II) 2.0969 1.7473 Cu(II) 1.8101 0.8579 Fe(II) 2.0525 6.9209 Hg(II) 1.6491 -0.1426 Mn(II) 2.1414 0.4116 Ni(II) 1.9406 2.3236 Pb(II) 1.9283 1.283 3.9525 Sn(II) 0.3969 Zn(II) 1.8253 -6.8491 As(III) 0.4789 Bi(III) -0.3862 -0.0555 -1.6855 Cr(III) 0.7461 -0.0214 0.4772 Dy(III) 1.9264 0.0164 1.7551 Er(III) 1.8982 0.0171 1.6724 -0.682 Gd(III) 1.506 -0.058 Nd(III) 1.6424 0.772 -0.0163 0.0245 Sc(III) -0.6091 Ti(III) 0.2407 1.631 0.2837 Y(III) Yb(III) 1.9185 0.0171 2.0366 Hf(IV) 0.1995 -0.0153 1.2588 Np(IV) 0.176 -0.0125 0.5227 Pa(IV) 0.0801 -0.0083 1.4939 Pu(IV) 0.2333 -0.0101 1.002 Sn(IV) -0.1393 -0.0079 0.0651 0.371 Th(IV) 0.7282 Tl(IV) -1.0406 -0.0656 -4.4137 2.6942 U(IV) 0.6551 Zr(IV) 0.0615 -0.0065 0.8338 std error 0.75 1.18 1.55 1.09 0.31 5.75 1.3 1.03 1.3 2.99 0.84 0.08 0.2 0.04 0.93 0.95 1.03 0.91 0.45 1.06 0.93 0.87 0.42 0.64 0.42 0.44 0.04 0.7 1.12 0.48 0.36 r2 n 0.999 0.9967 0.9937 0.9958 0.9997 0.8198 0.9957 0.9967 0.9919 0.9107 0.9976 0.9927 0.9998 1 0.9977 0.9974 0.9946 0.9964 0.9992 0.7389 0.9962 0.9979 0.9974 0.9915 0.9901 0.9958 0.9991 0.9895 0.9907 0.9938 0.988 4 4 4 4 4 3 4 4 3 3 4 7 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 42 The reason for the correlation in pure water is related to the Gibb’s free energy (Section 2.4). Although the free energies of the individual species are very different, the difference between the free ions and complexes are similar ΔG°(Al3+) – ΔG°(Al(OH)j(3-j)) ΔG°(Mn+) – ΔG°(M(OH)j(n-j)) (3.12) The mean free energy differences by charge on the metal are shown in Figure 3.4. The values for aluminum are also shown for reference. There is a trend of increasing values with increasing charge. This indicates that plotting two metals of the same charge would give a stronger correlation; however, there are currently only limited hydrolysis constants for M2+ and M4+ over a wide range of temperatures and ionic strengths. The difference between the charges is small enough that Al(III) provides an adequate fit for all three n+ n-j G(M )-G(M(OH)j ) (Kj/mol) charges. 1000 Al(OH)4+ M(II) M(III) M(IV) 800 Al(OH)3 600 Al(OH)2- 400 200 0 Al(OH)2- M(OH) M(OH)2 M(OH)3 M(OH)4 Figure 3.4: The mean and standard deviations of the difference between the free energies of the free metal and the complex by charge. Reference lines represent the values of Al(III). 43 A similar relationship is found for the enthalpies of the free ions and complexes ΔH°(Al3+) – ΔH°(Al(OH)j(3-j)) ΔH°(Mn+) – ΔH°(M(OH)j(n-j)) (3.13) which explains the correlation at other temperatures in pure water. There is no literature data for the enthalpies of many of the complexes, but those that are available agree with eqn. 3.13. For example for the first hydrolysis, the enthalpy difference for aluminum is 230 KJ/mol, while the values for uranium and cobalt are 240 and 222 KJ/mol, respectively. The values for the enthalpy differences for the second hydrolysis for Al and Co are 459 and 460 KJ/mol, respectively. Section 2.4 showed that the correlation between Fe(III) and Al(III) at higher ionic strengths to be related to the ratio of the activity of the free ion and complexes (Mn+)/(M(OH)j(n-j)) (Al3+)/(Al(OH)j(3-j)) (3.14) The equation results from the activity of water and activity coefficients in NaCl being the same at a given ionic strength [Millero and Pierrot, 2007]. There is very little literature data to confirm this relationship for most of the metals. Klungness and Byrne [2000] determined the β1 for Yttrium and the rare earth metals from 25-55°C up to 5 m in NaClO4. Their values are in good agreement with those calculated from eqn. 3.11 (standard deviations Y(III) = ±0.78, Nd(III) = ±0.78, Gd(III) = ±0.74, Dy(III) = ±0.82, Er(III) = ±0.81, Yb(III) = ±0.82). Only K1 has been experimentally determined for As(III). Zakaznova-Herzog et al. [2006] determined K1 from 25-300°C. This data was fit to eqn. 3.11 and used to predict the undetermined hydrolysis constants at 25°C, K2 = 11.49, K3 = -14.79, K4 = -17.77. The results of this chapter show that the hydrolysis of Al(III) can be used as a model for the hydrolysis of a variety of other metals in the +2, +3, and +4 oxidation states 44 (i.e. Mn(II), Cr(III), U(IV), Pu(IV)) over a wide range of temperature and ionic strength. This makes it possible to estimate unknown hydrolysis constants under a variety of conditions. This should be useful in examining the speciation of metals in natural brines. The model is most useful for determining the second and third hydrolysis constants, which are the most difficult to determine experimentally. Further experimental measurements would be useful to examine the reliability of these correlations in NaCl solutions over a wide range of ionic strengths and temperature. Chapter 4: Pitzer Model for the Speciation of Lead Chloride and Carbonate Complexes in Natural Waters4 4.1 Background Lead (Pb2+) has been widely studied in the environment due to its toxicity to organisms [Borgmann et al., 1993; Bryan, 1971; Hannan and Patouillet, 1972] and because of its large anthropogenic input into the environment [Boyle et al., 1994]. Since the chemical form, and not the total concentration, is important in determining bioavailability, behavior, and fate of the metal, accurate knowledge of the speciation of Pb2+ is essential. Speciation is largely controlled by complexation with organic and inorganic ligands. This complexation is a function of temperature, ionic strength, and type of media; therefore, ionic interaction models require reliable formation constants over a range of temperature, ionic strength, and media. Lead is a somewhat unusual metal because the inorganic speciation is not dominated by one ligand, but by both chloride and carbonate in most natural waters. The formation of lead complexes can be expressed by: Pb2+ + nCl- ↔ PbCln2-n (4.1) and Pb2+ + nCO32- ↔ PbCO32‐2n 4 (4.2) This chapter is currently under review: Woosley, R. J. and F. J. Millero (Submitted), Pitzer model for the speciation of lead chloride and carbonate complexes in natural waters, Mar. Chem.. 45 46 Where n is the number of chloride or carbonate ions, and values typically range from 1 to 3 for chloride and 1 for carbonate, although dicarbonato species exist at high pH [Easley and Byrne, 2011]. The stoichiometric formation constants (i) are then given by: PbCln = [PbCln2-n]/[Pb2+][Cl-]n (4.3) PbCO3 = [PbCO3]/[Pb2+][CO32-] (4.4) Where brackets denote concentration in molality (m). These constants are related to the thermodynamic (pure water) constants (Ki) through the activity coefficients () of the species by: KPbCln = PbCln{PbCln2-n)/(Pb2+)/n(Cl-)} (4.5) KPbCO3 = PbCO3{(PbCO3)/(Pb2+)/(CO32-)} (4.6) Determination of activity coefficients requires reliable formation constants, which are often lacking [Byrne et al., 1988]. Powell et al. [2009] critically compiled and reviewed the most reliable constants available for all the lead complexes available in the literature. Byrne et al. [2010] then used these stoichiometric values for chloride to determine the best thermodynamic constants, and fit the stoichiometric constants as a function of ionic strength. As shown by Millero and Byrne [1984] and Byrne and Miller [1984], the stoichiometric constants vary in different media at the same ionic strength, particularly at high ionic strengths. Very few values for the thermodynamic formation constants of the PbCO3 complex have been published; many instead rely on correlations with other metals. Thus, Powell et al. [2009] were unable to recommend a reliable thermodynamic value and instead gave an “indicative value” of log K = 6.45 ± 0.72. Since then Easley and Byrne [2011] have determined the PbCO3 in NaClO4 up to 5 m at 25°C. We have further extended the 47 measured constants by determining the PbCO3 in NaCl up to 3 m at 25°C. The constants recommended by Powell et al. [2009] and these recently published stoichiometric and thermodynamic constants are used in the ionic interaction model of Pitzer [1991] to determine a complete set of Pitzer coefficients for PbCln2-n in NaCl, NaClO4, HCl, HClO4, MgCl2, and CaCl2 media at 25°C and PbCO3 in NaCl and NaClO4. From this model the activity coefficients of the lead-chloro and lead-carbonate complexes can be calculated in a variety of media relevant to natural waters including brines and seawater. 4.2 Determination of PbCO3 in NaCl 4.2.1 Methods Measurements of PbCO3 were made using a spectrophometric technique developed by Byrne and coworkers [Byrne and Yao, 2008; Soli et al., 2008; Easley and Byrne, 2011]. All the solutions were made using Milli-Q water. Lead stock solutions (1 x 10-3 m) were made using PbCl2 (Alfa Aesar, 99.999%, metal basis). A standard solution of 0.2 N NaCO3 was made from reagent grade NaCO3 purchased from Sigma Aldrich (St. Louis, MO) and was dried at 110°C for two hours prior to use. The NaCl solutions were made gravimetrically from reagent grade NaCl purchased from BDH (VWR), exact concentrations were determined by density using an Anton-Par DMA-5000 densitometer and the equations of Lo Surdo et al. [1982]. The values of pH of the solutions were monitored by Orion Ross (8101) glass and reference pH electrode and an Orion pH meter (model 720A). The filling solution of the reference electrode was 3m NaCl. The electrode was calibrated by titration of 0.7 m NaCl with standardized HCl (~0.12 m). 48 Solutions were housed in a thermostated cell containing the electrodes and circulated through a 10 cm quartz microflow cell (Starna Cells, Inc., Asascadero, CA) using a syringe pump (Norgren Kloehn, Inc., Las Vegas, NV). The absorbance was measured at 1 nm intervals between 210-350 nm using an HP 8453 spectrophotometer. Experimental solutions with added sodium carbonate (2 x 10-4 – 1 x 10-3 m) were used as a blank for the spectroscopic measurements. Sufficient stock Pb2+ solution was then added to give a final concentration of 5 mol/kg or 10 mol/kg. Concentrations of lead and carbonate were increased at higher ionic strengths to help minimize potential interference of the chloride ion. Measurements were made at 4 different carbonate concentrations for each NaCl solution. The [CO32-] was calculated from the total alkalinity and pH using the dissociation constants of Millero et al. [2007] using the MIAMI model [Millero and Pierrot, 1998]. The temperature was held at 25 ± 0.1°C throughout the experiment using a Neslab RTE7 temperature bath. The solution was constantly stirred using a magnetic stirrer. The pH was kept between 7.85 and 8.5 in order to preclude the formation of Pb(CO3)22- at higher pH and minimize PbCln2-n formation as much as possible. This narrow pH range limited the number of different carbonate concentrations possible for each NaCl solution. The absorbance of PbCO3 in NaCl can be described according to the following equation: A/(l[Pb]T) = (Pb + PbCO3’PbCO3[CO32-]T)/(1 + ’PbCO3[CO32-]T) (4.7) where A is the absorbance at wavelength , l is the path length (cm), [Pb]T is the total lead concentration, i is the molal absorptivity of species i at wavelength It is 49 important to note that the ’PbCO3 is slightly different from that defined in eqn. 4.4. Here ’PbCO3 is defined as: 'PbCO3 = [PbCO3]/[Pb2+T’][CO32-] (4.8) where [Pb2+T’] is the total concentration of lead which is not associated with PbCO3, this includes the free lead as well as any lead associated with chloride. These values then must be corrected to the free lead for use in equation 4.4. Derivation of this equation can be found in Byrne [1981] and Soli et al. [2008]. A baseline correction was made by subtracting the average of the wavelengths from 305-315 nm from each wavelength and was always less than 0.001. The 4 spectra obtained at each [Cl-] were fit to eqn. 4.7 using nonlinear least squares analysis with the global curve-fitting function in OriginPro 8.6 (OriginLab, Northampton, MA). The model stipulated that molal absorbances and ’PbCO3 were greater than or equal to 0. The wavelengths used in the analysis were 225 ≤ ≤ 250 nm. There was too much noise in the NaCl media below ~215 nm to include the free Pb2+ peak as Easley and Byrne [2011] did in perchlorate media. 4.2.2 PbCO3 Formation Results Measurements were made from 0.05-3 m NaCl. Typical absorbance spectra at 1.026 m NaCl is shown in Figure 4.1. The formation constant results are given in Table 4.1. Including all 50 molal absorptivities for each experiment would be excessive and not very useful so only the values at three representative wavelengths are given in Table 4.2. Interference with chloride ions prevented measurements at higher concentrations and the low solubility of lead prevented measurements at lower concentrations. The results are plotted in Figure 4.2 along with the values in NaClO4 determined by Easley and Byrne [2011]. In order to test the reliability of the method two measurements were made in 50 seawater (S = 35). The log ’PbCO3 = 4.12 ± 0.01 was found to be in excellent agreement with the value of Byrne and Yao [2008]. The seawater result (corrected to free Pb2+) is also shown in Figure 4.2 for comparison. The large difference in formation constants between NaCl and NaClO4 at high ionic strengths highlights the importance of using constants for the media of interest, not just ionic strength. The model results will be discussed in the next section along with the chloride complexes. 0.5 Absorbance 0.4 0.3 0.2 Increasing [CO32-] 0.1 0.0 220 240 260 280 300 Wavelength (nm) Figure 4.1: Absorbance spectra for PbCO3 at 1.026 m NaCl. The height of the peak increases with increasing carbonate concentration. 51 Table 4.1: Measured formation constants of PbCO3 in NaCl. I (m) 0.05012 0.10015 0.19901 0.4017 0.49636 0.59852 0.69803 0.70237 1.00453 2.05551 3.14222 log'PbCO3 St'd error logPbCO3 St'd error 6.32 6.01 5.46 5.01 4.63 4.67 4.37 4.31 3.91 3.19 2.95 0.05 0.08 0.02 0.04 0.04 0.10 0.09 0.10 0.13 0.27 0.31 6.55 6.37 6.01 5.87 5.60 5.77 5.58 5.53 5.43 5.62 6.21 0.20 0.21 0.19 0.19 0.19 0.21 0.21 0.21 0.23 0.33 0.36 Table 4.2: Molal absorbtivities determined from equation 4.7 at three representative wavelengths. m (I) 0.0501 0.1001 0.1990 0.4017 0.4964 0.5985 0.6980 0.7024 1.0045 2.0555 3.1422 225Pb 225PbCO3 236Pb 236PbCO3 240Pb 240PbCO3 3805.042 4213.384 3885.521 3284.068 1453.226 1721.014 3334.386 2862.593 2416.751 1687.246 1388.486 2649.066 2541.902 1927.641 1541.299 1132.019 542.0124 142.4727 4.42E-13 302.479 9.00E-13 0 2041.121 2815.639 3299.021 1600.4 1083.132 1888.935 3502.328 3301.078 2777.352 2744.016 1808.643 2058.285 2162.8 2043.62 4365.419 2009.727 2861.329 1361.247 1106.324 3559.96 3109.915 5137.14 1355.721 2133.3 2787.145 878.9851 928.772 1800.626 3375.364 3191.135 2733.506 3358.884 2445.433 1597.884 1736.906 1711.43 4625.652 1984.906 2945.97 1415.251 1181.878 4092.433 3488.42 6802.699 52 PbCO3 Formation Constants 8 Log PbCO3 7 6 5 4 NaClO4 Model NaClO4 Meas 3 NaCl Model NaCl Meas Seawater 2 0 1 2 3 4 5 I (m) Figure 4.2: Comparison of the measured and modeled logPbCO3 in NaCl, NaClO4 and seawater (I=0.723). Measured values in NaClO4 are from Easley and Byrne [2011]. 4.3 The Pitzer Model Since activity coefficients vary not only with ionic strength but also with ionic media [Millero and Byrne, 1984] estimates of stability constants for brines and seawater using an extended Debye-Hückel equation such as the Specific Ion Interaction model [Easley and Byrne, 2011; Powell et al., 2009] can lead to large errors, particularly at higher ionic strengths (see Figure 4.2 for example). The differences in activity coefficients in various 53 ionic media can be estimated by using the equations of Pitzer [1991]. Though seemingly complex, these equations allow one to account for all the possible ionic interactions in multi-component electrolyte solutions with relatively simple equations which can be applied to natural waters [Whitfield, 1975; Harvie and Weare, 1983; Millero, 1983; Harvie et al., 1984, Millero and Hawke, 1992, Millero and Pierrot, 2002]. For the variety of media considered in this chapter, the activity coefficients for lead, chloride, and carbonate are given by: lnPb2+ = 4Pbf + 2mCl(BPbCl + ECPbCl) + 2mClO4(BPbClO4 + ECPbClO4) + 4PbR + 2S (4.9) lnCl- = f + 2mH(BHCl + ECHCl) + 2mNa(BNaCl + ECNaCl) + 2mMg(BMgCl2 + ECMgCl2) + 2mCa(BCaCl2 + ECCaCl2) + R + S (4.10) lnCO3 = 4f + 2mNa(BNaCO3 + ECNaCO3) + 4R + 2S + mClO4(2ΘClO4CO3 + mNaNaClO4CO3) + mCl(2ΘClCO3 + mNaNaClCO3) (4.11) where mi is the molality, and E = ½ miZi. B and C are the second and third virial terms. The Debye-Hückel limiting law (f is given by: f = A[I1/2/(1 + 1.2I1/2) + 2/1.2ln(1 + 1.2I1/2)] (4.12) where I is the ionic strength (I = ½ ∑ Z2i mi ) and the limiting slope, A is a function of temperature given by Møller [1988] and has a value of 0.3915 at 25°C. The media terms R and S are given by: R = mM mX B’MX (4.13) S = mM mX CMX (4.14) M is the cation and X is the anion. The second and third viral coefficients are given by: BMX = 0MX + (1MX/2I)[1 - (1 + 2I1/2)exp(-2I1/2)] (4.15) 54 B’MX = (1/2I2)[-1 + (1 + 2I1/2+2I)exp(-2I1/2)] (4.16) CMX = CMX/(2|ZMZX|1/2) (4.17) The values of 0, 1, C and the higher order terms Θ and used in this study are given in Table 4.2. The values of 0, 1, and C for PbCl2 are not available so the values of ZnCl2 are used as in earlier studies [Millero and Byrne, 1984] since the values should be equal within experimental error. Table 4.3: Pitzer coefficients for chloride and perchlorate saltsa used in this study. ° 1 C HCl 0.17750 0.29450 0.00080 HClO4 NaCl 0.17470 0.07650 0.29310 0.26640 0.00879 0.00127 NaClO4 0.05540 0.27550 ‐0.00118 MgCl2 0.35235 1.68150 0.00519 CaCl2 0.31590 1.61400 -0.00034 PbCl2b 0.26018 1.64250 ‐0.08798 Pb(ClO4)2 0.33323 1.72200 -0.00880 Na2CO3 0.03620 1.51000 0.00520 Higher Order Terms ClO4CO3c ClCO3 Θ ‐0.2618 0.1356 ‐0.02 0.0085 a Taken from Pitzer [1991] unless otherwise noted b Values for ZnCl2 (see section 4.3 for details) ClO4- values from Millero et al. [2010] c 55 4.3.1 Determination of Pitzer Parameters for Pb-Cln and Pb-CO3 Interactions The activity coefficients for the complexes can be determined by the following equations: lnPbCl+ = f +2mClO4(BPbCl-ClO4 + mClO4CPbCl-ClO4) + 2mCl(BPbCl-Cl + mClCPbCl-Cl) 2mMgPbCl-Mg + 2mCaPbCl-Ca + R +S + (4.18) lnPbCl2 = 2mClO4PbCl2-ClO4 + 2mNaPbCl2-Na + 2mClPbCl2-Cl + 2mHPbCl2-H + 2mMgPbCl2-Mg + 2mCaPbCl2-Ca + mNamClO4PbCl2-ClO4-Na + mNamClPbCl2-Cl-Na + mHmClPbCl2-Cl-H + mMgmClPbCl2-Cl-Mg + mCamClPbCl2-Cl-Ca (4.19) lnPbCl3- = f + 2mNa(BPbCl3-Na + mNaCPbCl3-Na) + 2mH(BPbCl3-H + mHCPbCl3-H) + 2mMg(BPbCl3-Mg + mMgCPbCl3-Mg) + 2mCa(BPbCl3-Ca + mCaCPbCl3-Ca) +R-S (4.20) lnPbCO3 = 2mClPbCO3-Cl + 2mClO4PbCO3-ClO4 +mNamClO4PbCO3-ClO4 + mNamClPbCO3-Cl (4.21) The term is due to the interactions between ions of the same charge. The and terms represent the double and triple interactions with the neutral species respectively. In eqn 4.18 PbCl-Na = 0, and in eqn 4.20 PbCl3-Cl = 0 and PbCl3-ClO4 = 0 [Luo and Millero, 2007]. We found PbCO3-Na = 0 in eqn 4.21. These terms have been omitted from the equations. Further rearrangement of these equations gives: lnKPbCl - ln(PbCl/Pb2+Cl-) - ideal = 2mClO40PbCl-ClO4 + 2mClO41PbCl-ClO4f1 + 2m2ClO4CPbCl-ClO4 + 2mCl0PbCl-Cl + 2mCl1PbCl-Clf1 + 2m2ClCPbCl-Cl + 2mMgPbCl-Mg + 2mCaCa (4.22) 56 lnKPbCl2 - ln(PbCl2/Pb2+2Cl-) = 2mClO4PbCl2-ClO4 +2mNaPbCl2-Na + 2mClPbCl2-Cl + 2mHPbCl2-H + 2mMgPbCl2-Mg + 2mCaPbCl2-Ca + mNamClO4PbCl2-ClO4-Na + mNamClPbCl2-Cl-Na + mHmClPbCl2-Cl-H + mMgmClPbCl2-Cl-Mg + mCamClPbCl2-Cl-Ca (4.23) lnKPbCl3 - ln(PbCl3/Pb2+3Cl-) - ideal = 2mNa0PbCl3-Na + 2mNa1PbCl3-Naf1 + 2m2CPbCl3-Na + 2mH0PbCl3-H + 2mH1PbCl3-Hf1 + 2mNa2HCPbCl3-H + 2mMg0PbCl3-Mg + 2mMg1PbCl3-Mgf1 + 2m2MgCPbCl3-Mg + 2mCa0PbCl3-Ca + 2mCa1PbCl3-Caf1 + 2m2CaCPbCl3-Ca (4.24) –ln(PbCO3/Pb2+CO3=) =- lnKPbCO3 + 2mClPbCO3-Cl + 2mClO4PbCO3-ClO4 + mNamClO4PbCO3-ClO4-Na + mNamClPbCO3-Cl-Na (4.25) where f1 = [1 – (1 + 2I1/2)exp(-2I1/2)]/2I and ideal =Z2 f +Z2R + ZS. All terms on the left hand side of eqns. 4.22-4.25 are known or can be calculated using eqns. 4.4 and 4.5. The fits were made using a nonlinear least squares regression of the left hand size as a function of 2m, 2mf1, and 2m2 which yields the Pitzer parameters 0, 1, C,, and for all the interactions as well as lnKPbCO3 in eqn. 4.25. The results of these fits are summarized in Table 4.3. This data analysis discovered an error in Table 1 of Luo and Millero [2007]. A corrected version of the Table was made using the original experimental data and is given in Table 4.4-4.7. Although the constants at temperatures other than 25°C were correct, they are included here for completeness. The differences between the measured logPbCln and those calculated from the Pitzer parameters are shown in Figure 4.3. It is important to note that the values in CaCl2, MgCl2, and HCl were determined from measurements only up to 1.0 m, so the coefficients should be used with caution at high ionic strengths. 57 logPbCl 0.4 0.2 0.0 -0.2 -0.4 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 logPbCl 0.6 0.4 0.2 0.0 -0.2 -0.4 logPbCl -0.6 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 I (m) Figure 4.3: Difference between the measured logPbCln and calculated logPbCln as a function of ionic strength in all media (HCl, MgCl2, CaCl2, NaCl, NaClO4). 58 Table 4.4: Pitzer coefficients for lead chloride and lead carbonate complexes for Eqs. 4.20-4.24. The standard deviation () for PbCl- = 0.16, PbCl20 = 0.14, PbCl3+ = 0.19, PbCO3 = 0.13. PbCl- Parameter Coefficient 0PbCl-ClO4 0.13 1PbCl-ClO4 CPbCl-ClO4 0PbCl-Cl 0.40 -0.03 1PbCl-Cl 1.16 CPbCl-Cl -0.19 -0.51 -0.52 PbCl-Mg PbCl-Ca PbCl20 0.0014 PbCl2-H PbCl2-Ca PbCl2-Mg PbCl2-ClO4 PbCl2-Na PbCl2-Cl PbCl2-ClO4-Na PbCl2-Cl-Na PbCl2-ClO4-H PbCl2-Cl-H PbCl2-Cl-Ca PbCl2-Cl-Mg 0.29 0.19 0.28 -0.14 0.28 -0.23 -0.014 -0.34 0.29 -0.008 -0.18 -0.32 59 Table 4.4 cont. Parameter PbCl3- Coefficient 0PbCl3-H -2.22 1PbCl3-H CPbCl3-H 0PbCl3-Ca 1PbCl3-Ca CPbCl3-Ca 0PbCl3-Mg 1PbCl3-Mg CPbCl3-Mg 0PbCl3-Na 1PbCl3-Na 4.73 1.05 2.07 -2.30 -3.32 2.79 -3.48 -4.00 -0.21 0.90 CPbCl3-Na 0.029 PbCO3 ClO4‐PbCO3 -0.160 -0.020 Cl‐PbCO3 ClO4‐PbCO3 Cl‐PbCO3 0.069 -0.145 60 Table 4.5: Stoichiometric formation constants for lead chloride at 15.1 °C determined by Luo and Millero [2007]. I(m) log PbCl1 log PbCl2 log PbCl3 0.80 1.30 1.20 1.12 1.09 1.05 1.11 1.10 1.66 [NaClO4](m) [NaCl] (m) 0.0504 0.0504 0.0504 0.0504 0.0504 0.0504 0.0504 0.0530 0.1114 0.1730 0.4142 0.7968 1.4663 2.1867 2.9580 3.7802 4.1915 4.6534 5.5609 5.8184 0.0765 0.1340 0.1917 0.2688 0.3269 0.3851 0.4435 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.1269 0.1844 0.2421 0.3193 0.3773 0.4355 0.4939 0.3798 0.4383 0.4999 0.7411 1.1237 1.7932 2.5136 3.2849 4.1071 4.5184 4.9802 5.8878 6.1453 0.59 0.63 0.70 0.79 0.88 0.97 1.07 1.45 1.84 1.24 1.43 1.61 1.75 1.90 2.39 2.80 0.93 1.02 1.23 1.48 1.72 1.91 2.10 2.67 3.10 6.0034 0.3269 6.3303 2.30 3.29 3.60 0.73 0.68 0.65 0.63 0.64 0.64 0.63 0.62 0.62 0.60 1.05 1.05 1.04 1.03 1.03 1.11 1.17 0.96 0.97 0.88 0.99 0.98 0.87 0.89 0.91 0.89 61 Table 4.6: Corrected stoichiometric formation constants for lead chloride at 25 °C determined by Luo and Millero [2007]. I(m) [NaClO4](m) [NaCl] (m) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0472 0.0948 0.1449 0.3446 0.6523 1.1973 1.7749 2.3876 3.0384 3.7214 0.0608 0.1066 0.1524 0.2136 0.2597 0.3058 0.3521 0.3985 0.4449 0.3521 0.3521 0.3521 0.3521 0.3521 0.3521 0.3521 0.3521 0.3521 0.3521 0.0608 0.1066 0.1524 0.2136 0.2597 0.3058 0.3521 0.3985 0.4449 0.3993 0.4469 0.4970 0.6967 1.0044 1.5494 2.1270 2.7397 3.3905 4.0735 4.4393 0.3521 4.7914 log PbCl 0.98 log PbCl2 log PbCl3 1.69 0.90 0.85 0.80 0.79 0.74 0.76 0.73 0.71 0.76 0.77 1.46 1.34 1.27 1.20 1.19 1.12 1.15 1.11 1.08 1.15 1.16 0.77 0.76 0.71 0.76 0.80 0.85 0.97 1.04 1.16 1.14 1.11 1.19 1.27 1.37 1.56 1.70 0.91 0.93 0.88 1.03 1.15 1.31 1.54 1.73 1.23 1.97 2.07 1.19 1.12 0.91 0.99 0.87 0.89 0.86 0.83 0.88 0.92 62 Table 4.7: Stoichiometric formation constants for lead chloride at 34.7 °C determined by Luo and Millero [2007]. I(m) log PbCl [NaClO4](m) [NaCl] (m) 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0568 0.1142 0.1748 0.4168 0.7922 1.4636 2.1827 2.9526 3.7771 4.6488 5.5711 0.0765 0.1340 0.1917 0.2688 0.3269 0.3851 0.4435 0.5020 0.5802 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.1306 0.1881 0.2458 0.3230 0.3810 0.4392 0.4976 0.5561 0.6344 0.3837 0.4411 0.5017 0.7437 1.1191 1.7904 2.5096 3.2795 4.1040 4.9757 5.8980 1.00 0.94 0.91 0.89 0.87 0.88 0.88 0.87 0.82 0.87 0.85 0.82 0.78 0.78 0.87 0.92 1.01 1.06 1.51 1.51 6.0059 0.3269 6.3328 1.86 log PbCl2 1.45 1.35 1.29 1.24 1.19 1.23 1.21 1.19 1.14 1.19 1.17 1.12 1.14 1.12 1.26 1.38 1.55 1.68 2.23 2.33 2.75 log PbCl3 1.34 1.21 1.12 1.10 1.01 1.08 1.07 1.06 0.99 1.05 1.01 0.96 1.01 0.97 1.20 1.37 1.61 1.81 2.44 2.61 3.08 63 Table 4.8: Stoichiometric formation constants for lead chloride at 44.5 °C determined by Luo and Millero [2007]. I(m) log PbCl log PbCl2 log PbCl3 [NaClO4](m) [NaCl] (m) 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0568 0.1142 0.1748 0.4168 0.7922 1.4636 2.1827 2.9526 3.7771 4.1944 4.6488 5.5711 5.8209 0.0765 0.1340 0.1917 0.2688 0.3269 0.3851 0.4435 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269 0.1306 0.1881 0.2458 0.3230 0.3810 0.4392 0.4976 0.3837 0.4411 0.5017 0.7437 1.1191 1.7904 2.5096 3.2795 4.1040 4.5213 4.9757 5.8980 6.1478 1.03 0.99 0.96 0.93 0.97 0.95 1.00 0.97 0.96 0.94 0.91 0.92 0.96 1.04 1.15 1.22 1.22 1.29 1.21 1.16 1.43 1.33 1.27 1.22 1.25 1.22 1.32 1.28 1.27 1.26 1.27 1.24 1.34 1.48 1.68 1.88 1.84 2.01 2.05 2.03 1.29 1.23 1.18 1.09 1.10 1.07 1.23 1.14 1.15 1.11 1.10 1.17 1.31 1.52 1.77 2.06 1.99 2.23 2.32 2.33 6.0059 0.3269 6.3328 1.16 2.06 2.38 64 The Pitzer coefficients for PbCO3 determined from the fit of the combined NaCl and NaClO4 data are given in Table 4.3. Including a PbCO3-Na term did not improve the fit, and is assumed to be 0 and excluded from the model. The logKPbCO3 = 6.87 ± 0.09. This is in good agreement with value of 6.789 ± 0.022 determined by Easley and Byrne [2011] and slightly lower than the value of 7.0 estimated by Turner et al. [1981]. Our value and the value of Easley and Byrne [2011] are considerably larger than the value of 6.45 ± 0.72 of Powell et al. [2009], although well within their large estimated error. These results show that our study and Easley and Byrne [2011] have considerably improved the uncertainty in the thermodynamic formation constant of PbCO3. The residuals for the logPbCO3 are shown in Figure 4.4. The standard deviation is 0.13. Interference with Cl- prevented measurements above 3 m, so use of the Pitzer coefficients above this should be done with caution. 0.4 logPbCO 3 0.3 0.2 0.1 0.0 -0.1 -0.2 0 1 2 3 4 5 6 I (m) Figure 4.4: Difference between the measured logPbCO3 and calculated logPbCO3 as a function of ionic strength for NaCl and NaClO4 media. 65 4.3.2 Pb(CO3)Cl- Formation The difference in the PbCO3 formation constants in NaCl and NaClO4 can be interpreted in two different ways. Thermodynamically, the difference is easiest to explain by differences in the activities of the species in the two media. Another interpretation is the formation of the mixed ligand complex Pb(CO3)Cl-. Using this second interpretation the first direct measurements of the Pb(CO3)Cl- can be determined by comparing the PbCO3 in the two different media. This makes several controversial assumptions. It assumes that there are no or insignificant ionic interactions of the perchlorate ion with any of the lead species and that the activities of the species do not vary between the two media. From this the PbCO3 values in NaClO4 determined by Easley and Byrne [2011] are assumed be the same in NaCl media at the same ionic strength. The PbCO3 values determined here in NaCl then include both the PbCO3 and Pb(CO3)Cl- ions. The formation constant of the Pb(CO3)Cl- is then defined as: Pb(CO3)Cl- = [Pb(CO3)Cl-]/([Pb2+][CO32-][Cl-]) (4.26) The ratio of Pb(CO3)Cl- to PbCO3 is: Pb(CO3)Cl-/PbCO3 = *PbCO3/PbCO3-1 (4.27) Where PbCO3 is the value determined by Easley and Byrne [2011] and *PbCO3 is the value in NaCl. The formation of the mixed ligand complex can then be calculated by: Pb(CO3)Cl- = (*PbCO3 - PbCO3)/[Cl-] (4.28) These values are given in Table 4.8 along with the values estimated through statistical methods determined using the equations of Byrne [1980]. The statistical methods appear to under estimate the complex in dilute solutions and overestimate the complex at high ionic strengths. This is in contrast to Byrne and Young [1982] which found that the 66 statistical methods typically under estimate the formation constants. It is important to note that the measured values are very poorly constrained. Table 4.9: Measured and theoretical Pb(CO3)Cl-. Theoretical constants were calculated using the equations of Byrne [1980]. I (m) 0.0501 0.1001 0.1990 0.4017 0.4964 0.5985 0.6980 0.7024 1.0045 2.0555 3.1422 meas. Pb(CO3)Cl‐ St'd Error Theoretical Pb(CO3)Cl‐ 7.65 7.16 6.37 5.97 5.18 5.69 5.15 4.93 4.34 4.86 5.59 0.20 0.21 0.19 0.20 0.20 0.22 0.21 0.21 0.23 0.33 0.37 5.94 5.77 5.58 5.37 5.31 5.25 5.20 5.20 5.10 4.94 4.94 4.3.3 Activity Coefficients and Speciation in Seawater Using these Pitzer coefficients, the activity and formation constants can be calculated in a variety of media including seawater. A comparison of the activity coefficients and stoichiometric constants for the chloride complexes in the various media and in seawater at an ionic strength of 0.723 are given in Table 4.5. The activity coefficient for chloride is held constant at 0.667 [Millero, 1983] so that a valid comparison can be made. Differences in our values and those calculated by Millero and Byrne [1984] are likely a result of the thermodynamic constants used and the method used to fit the data. Millero and Byrne [1984] used a linear fit to determine a single Pitzer virial coefficient (B) for each interaction rather than the extended eqns 4.15-4.17 (0, 1, and C) that we determined. The largest differences tend to be in the neutral PbCl20 67 species. This is most likely due to Millero and Byrne [1984] neglecting all triple ion interactions ( = 0), while we do not. Such extensive comparisons of activity coefficients and formation constants are not currently possible for PbCO3. Only NaCl and NaClO4 can be compared. In 0.723 m the lnPbCO3 is -0.20 and -0.105 in NaClO4 and NaCl respectively; logPbCO3 is 5.45 and 5.48 in NaClO4 and NaCl, respectively. There are currently no measurements of PbCO3 in MgCl2 or CaCl2, so the interactions with Mg2+ and Ca2+ are currently unknown. Our measurements in seawater (S = 35, I = 0.723) and those of Byrne and Yao [2008] give a logPbCO3 = 5.27 ± 0.01 (Figure 4.2). The difference between NaCl and seawater is less than 2 of our fit indicating that magnesium and calcium ion interactions are small, but still measureable. As would be expected, the stability constants in NaCl are close to the values in seawater, though directly measured values in seawater should be used. The speciation of lead in seawater is shown in Table 4.6 as a function of pH on the free scale, at a salinity of 35 (I = 0.723) and total alkalinity of 2300 mol/kg. The [CO32-] was calculated using excel CO2Sys_v2.1 [Pierott et al., 2006], using the constants of Millero et al. [2006]. CO2Sys is used here instead of the MIAMI model because the seawater medium. The formation constants for the Cl- and CO32- complexes were calculated using our Pitzer model. The formation constant for PbOH+ was calculated according to eqn 3.11. The Pb(CO3)22- and Pb(OH)2 complexes are insignificant (contributing a maximum of 1.5% and 0.5% respectively). The only mixed ligand complex found to be significant was Pb(CO3)Cl-, which was estimated using the equation of Byrne [1980]. 0.435 PbCl3‐ 1.24 1.19 log PbCl2 log PbCl3 b a 0.90 1.35 0.88 0.688 1.083 0.734 1.10 1.20 0.86 0.396 0.697 0.641 MB84 0.96 1.12 0.82 0.628 0.898 0.737 This Study NaCl Composition [Na]=0.4967 [Mg]=0.0547 [Ca]=0.0107 [Cl]=0.6275 Cl‐ = 0.667 for all media 0.92 log PbCl 0.853 PbCl2 Constant 0.747 PbCl+ This Study MB84 HCl Speciesa 0.99 1.11 0.87 0.489 0.817 0.599 MB84 0.90 1.37 1.05 0.529 0.811 0.474 This Study MgCl2 0.93 1.09 0.86 0.529 0.817 0.583 MB84 0.92 1.35 1.04 0.509 0.788 0.475 This Study CaCl2 1.06 1.16 0.86 0.428 0.745 0.628 MB84 0.83 1.08 0.80 0.698 0.910 0.671 This Study Seawaterb Table 4.10: Comparison of the activity coefficients and stoichiometric constants in various media and seawater at I=0.723 and 25°C. Values calculated by Millero and Byrne [1984] (MB84) are given for comparison. 68 69 Table 4.11: Speciation of lead as a percent in seawater at 25°C and S=35 (I=0.723), total alkalinity = 2300 mol/kg. pH is on the free scale. pH Pb2+ PbCO3 PbCl+ PbCl2 PbCl3- PbOH+a Pb(CO3)Cl8.1 3.3 50.8 11.9 12.8 4.1 2.3 13.2 8 3.8 47.8 13.5 14.6 4.6 2.1 12.4 7.9 4.2 44.4 15.3 16.4 5.2 1.9 11.5 7.8 4.8 40.8 17.2 18.5 5.9 1.7 10.6 7.7 5.3 36.9 19.1 20.5 6.5 1.5 9.6 7.6 5.8 33.0 21.1 22.7 7.2 1.3 8.6 7.5 6.4 29.1 23.0 24.7 7.9 1.1 7.6 7.4 6.9 25.3 24.9 26.7 8.5 1.0 6.6 a Calculated using eqn. 3.11 There is general agreement between this model and those of Millero et al. (2009) and Easley and Byrne (2011), although some differences do exist. The differences with Millero et al. [2009] can be attributed to the larger constants for the chloride complexes used here and the inclusion of Pb(CO3)Cl- in this model. The differences with the speciation of Easley and Byrne [2011] are a result of the exclusion of other mixed ligand complexes in this model; differences in the constants used are close to the uncertainty of the measurements. 4.4 Conclusion Lead is an environmentally important element because of its known toxicity to organisms. The behavior of lead in the environment, including bioavailability, is dependent upon its speciation, but determination of lead speciation is difficult due to its low solubility in natural waters. An accurate knowledge of formation constants under a 70 wide variety of conditions and in a variety of media is required to fully model speciation in natural waters. Lead chloride speciation has been extensively measured, but lead carbonate measurements are few, leaving values of formation constants uncertain. We use a Pitzer model to combine the best available published formation constants and new measurements of PbCO3 in NaCl to model lead speciation in natural waters. This model allows lead speciation and activity coefficients to be calculated for a wide variety of media relevant to natural waters. It also helps to further constrain the thermodynamic formation constant of PbCO3. Calculations of lead speciation in seawater show a general agreement with previously published estimates. This also represents the first direct measurements of the Pb(CO3)Cl- constants. Chapter 5: The Solubility of Fish-produced High Magnesium Calcite in Seawater5 5.1 Background The oceans play a major role in the earth’s carbon cycle [Millero, 2007]. In order to determine the full impact of humans on the carbon cycle, it is important to fully understand the natural cycle. Until recently, it was thought that marine biogenic production of calcium carbonate was dominated by coccolithophores and foraminifera [Feely et al., 2004]. However, Wilson et al. [2009] showed that teleost fish also contribute to carbonate production by up to 15% or higher of the global carbonate production. These bony fish continually produce a high magnesium calcite (defined as > 4% Mg) as a byproduct of osmoregulation [Grosell, 2011]. The solubility plays an important role in determining the behavior of CaCO3 in seawater. The dissolution of high magnesium calcite occurs according to the following reaction: Ca(1-x)MgxCO3 = (1- x)Ca2+ + xMg2+ + CO32- (5.1) where x is the mole fraction of Mg2+. The stoichiometric solubility product constant (pK*sp) is defined as: pK*sp = - Log ([Ca2+](1-x) [Mg2+]x [CO32-]) 5 (5.2) This chapter was previously published as: Woosley, R. J., F. J. Millero, and M. Grosell (2012), The solubility of fish-produced high magnesium calcite in seawater, J. Geophys. Res., 117, C04018, doi:10.1029/2011JC007599. 71 72 Where brackets denote concentration (mol/kg-sw). By definition, the activity of pure solid CaCO3 is taken as 1 and is thus left out of eqn. 5.2. We assume that the activity of the mixed solid is also 1 for comparison with aragonite, although the increased solubility could be related to variations in the activity of the mixed solid. The saturation state, is: i = [Ca2+](1-x)[Mg2+]x [CO32-] / K*sp (5.3) The subscript i refers to the crystalline form (aragonite, calcite, or fish-produced magnesium calcite). For pure aragonite or calcite eqn. 5.3 simplifies to: i = [Ca2+][CO32-]/K*sp (5.4) Thorstenson and Plummer [1977] showed that this equation can also be applied to high magnesium calcites. The depth at which i = 1 is the saturation horizon for that crystalline form. Surface waters are supersaturated ( > 1) with respect to calcite and aragonite. Saturation state decreases with depth as a result of the effects of pH, temperature and pressure. As biogenic calcium carbonate particles fall through the water column they should begin to dissolve below the depth at which = 1. Since biogenic high Mg calcites with Mg greater than about 10 mol % are known to be more soluble than aragonite [Morse and Mackenzie, 1990; Morse et al., 2007; Morse et al., 2003], this fish-produced CaCO3 was hypothesized to dissolve higher in the water column than other biogenic carbonates and thus play an active role in the carbon cycle in near surface waters [Plummer and Mackenzie, 1974; Bishoff et al., 1987; Wilson et al., 2009]. It has long been held that since the surface ocean is supersaturated with respect to both calcite and aragonite, carbonate dissolution can only occur at great depth [Sverdrup et al,. 1941; Broecker, 1977]. However, there are several lines of evidence that suggest that 50-71% of 73 calcium carbonates exported from the surface is dissolved above the aragonite saturation horizon [Feely et al,. 2002; Milliman et al., 1999; Milliman and Droxler, 1996]. The dissolution of a more soluble form of CaCO3 has been proposed as a possible explanation [Byrne et al., 1984], but no probable source was identified until recently [Wilson et al. 2009]. Shoal water containing biogenic high magnesium calcites (a portion of which is likely fish-produced) can contribute as a source and may be significant locally; this is reviewed in chapter 5 of Morse and Mackenzie [1990]. A higher solubility of fishproduced CaCO3 would mean that surface waters would become under-saturated sooner and would respond quicker to ocean acidification than currently expected based on aragonite solubility. This was demonstrated for high magnesium calcites by Morse et al. [2006]. To test the above hypothesis and to better understand the role of fish in the carbon cycle, we have determined the solubility of carbonates produced by the gulf toadfish (Opsanus beta). 5.2 Methods The carbonates were collected directly from the fish intestines following euthanasia and dissection as detailed previously [Taylor and Grosell, 2006] or from the bottom of the fish tanks (SP = 34, 25°C) after the precipitates have been excreted by the fish. In the latter case, precipitates were collected, using disposable Pasteur pipettes, from the bottom of the holding tanks. The fish were not fed for at least 72 hours prior to collection in order to ensure only carbonates were collected. Following collection, the carbonates were rinsed to remove any organic coatings with milli-Q, or cleaned with 3 sequential treatments of excess sodium hypochlorite (commercial bleach) for ~3 hours (agitated every 10-15 min.), the hypochlorite is then siphoned off after particles have 74 settled by gravity [Gaffey and Bronniman 1993] and finally rinsed 3 times with milli-Q water, to eliminate any microbes that could potentially create microenvironments and influence solubility. After cleaning, the precipitates were filtered through 0.45 m filter and dried. The magnesium and calcium content of the precipitates was determined after acid digestion by flame atomic adsorption spectrometry [Heuer et al., 2012]. In brief, precipitates were sonicated using a rod sonicator in 10 ml deionized water, after which pH was lowered to 4.00 by addition of HCl under continuous gassing with N2. HCl was added continuously until pH remained stable at 4.00 after which the resulting solution was recovered for analysis of Ca2+ and Mg2+ using certified elemental standards. The solubility of the fish-produced high magnesium calcite was determined using the method developed by Garrels et al. [1960] and first applied to high magnesium calcites by Chave et al., [1962] then later by Plummer and Mackenzie [1974], Bischoff et al [1987] and Busenberg and Plummer [1989]. Three main disadvantages of this method should be pointed out. The first is that we assume the solids have a fixed composition and only one component, whereas the solids are actually a series of at least two components. Second, the magnesium calcite phases dissolve incongruently causing the composition of the solid to change as the reaction proceeds. Third, the solubilities are relative since the reaction is not reversible. Extrapolation to infinite time helps to overcome the second and third problem. The problems are discussed in greater detail in Morse and Mackenzie [1990] and references therein. The measurements were made in a closed cell thermostated to 25°C with a Neslab temperature bath using Gulf Stream seawater (Practical Salinity, SP ≈ 36.5) equilibrated with the lab atmosphere. The seawater was filtered through 0.45 m Pall Science Supor® filter before use and again after 75 equilibration to remove any undissolved particles. The pH (on the seawater scale) was monitored as a function of time (t) during the dissolution of fish-produced CaCO3. The pH was determined with a Orion pH meter using Ross glass and Ag,AgCl reference electrodes and recorded every half hour for the duration of the experiment. Measured pH’s were plotted as a function of the inverse of the square root of time (t -0.5 ) and a linear equation was fitted to the linear portion. The pH extrapolated to t -0.5 = 0 equals the equilibrium pH. The experiment was stopped when the measured pH was within 0.1 units of the extrapolated (metastable-equilibrium) pH. The extrapolation assumes that the reaction order is the same as for calcite and aragonite. This analysis takes ~15 days for aragonite and up to 40 days for fish-produced carbonates, depending on the amount of solid used and their surface area. The electrodes were calibrated with TRIS seawater buffers before and after each experiment to account for any drift, which was found to be less than 0.006 pH units over 40 days. The difference between the initial and final total alkalinity (TA) was used to determine the amount of carbonate solid dissolved. The initial and final total alkalinity was measured by potentiometric titration with a ~0.25m HCl solution in an open cell at 25oC [Millero et al., 1993]. The HCl was calibrated using A. Dickson CO2 standards (Scripps, San Diego, CA). The precision was 2 mol kg-1. The changes in TA and equilibrium pH were used to determine the mineral solubility product. The CO2sys program of Pierrot et al. [2006] was used to calculate the [CO32-] from pH and TA using the CO2 constants of Millero et. al., [2006]. The initial Ca2+ concentration was determined from the Practical Salinity (SP) using the ratio of Ca2+ to SP ([Ca2+] = 2.934 x 10-4 * SP). The Practical Salinity was measured with a Guiline Portosal salinometer calibrated with standard seawater. The final Ca2+ concentration for the pure 76 aragonite and calcite can be determined from changes in TA and were found to change the pK*sp by less than 0.003. This is insignificant compared to the precision of the method, and would be even less for the mixed solids. The reliability of the solubility methods were demonstrated by measuring the solubility of aragonite and calcite (both from Alfa Aesar) which are well known [Mucci, 1983, Morse et al., 1980]. Aragonite is shown in Figure 5.1. pH 8.2 8.0 7.8 pK*sp = 6.10 7.6 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 t-0.5 Figure 5.1: Aragonite solubility measurement in seawater. 5.3 Results An example measurement of the aragonite solubility is shown in Figure 5.1. These measurements yield a value of pK*sp = 6.17 ± 0.2 (n = 3), which is in good agreement with the value determined by Morse et al. [1980] for equilibration times in 77 excess of 2 months (pK*sp = 6.18). The single run of the calcite equilibration experiment yielded a value of pK*sp = 6.40, which is in excellent agreement with the result of Morse et al., [1980] (pK*sp = 6.35). The standard deviation for aragonite of 0.2 is assumed to be the precision of the method. Five solubility measurements of the fish-produced calcium carbonate were made. The precipitates were crystalline with elipsoidal morphology similar to those of other marine telosts classified by Perry et al. [2011]. A Scanning Electron Microscope (SEM) picture of the precipitates produced by a gulf toadfish is shown in Figure 5.2. Powder Xray diffraction spectra (XRD) and (SEM) pictures of precipitates produced by another marine teleost, the European flounder, are given in the supplemental material of Wilson et al. [2009]. Perry et al. [2011] give XRD and Energy-dispersion X-Ray (EDX) of 11 different fish species in their supplemental material confirming that it is a high magnesium calcite with a maximum of 48.9 mol%. The magnesium content of the toadfish precipitates analyzed in the present study was found to be 47.9 mol % ± 0.7 (n = 8) [Heuer et al., 2012]. Figure 3 of Perry et al. [2011] shows that fish-produced carbonates with ellipsoidal morphology, similar to the gulf toadfish, had a high Mg content of greater than 40 mol%. Although the high magnesium content approaches, compositionally, that of a protodolomite, the conditions of the experiments are unfavorable for dolomite formation, and the high solubility of our results exclude this possibility (a review of dolomite formation can be found in Morse and Mackenzie [1990]). Results are shown in Table 5.1. The average pK*sp for the fish-produced carbonate is 5.56 ± 0.09. This is 4.17 times more soluble that aragonite (pK*sp = 6.18). An example run of the fish carbonate is shown in Figure 5.3. There does not appear to 78 be a difference in solubility between samples collected from the tank and those collected directly from the intestine, based on a student t-test at a 99% confidence interval. To examine if bacteria on or within the carbonates influences solubility by the creation of microenvironments, two experiments were done with precipitates cleaned using the methods of Gaffey and Bronniman [1993]. The difference between values obtained from cleaned and un-cleaned precipitates was not statistically significant at the 99% confidence interval, as determined by a student t-test, ruling out a role of bacteria in the high solubility of fish-produced CaCO3. It should be noted that a clear inflection occurs in the pH versus t-0.5 graph for the fish carbonates which does not occur for either aragonite or calcite. The cause of the observed inflection for the fish-produced carbonates (Fig 5.3) can only be speculated at this time, but it may be due to changes in the Mg2+ content as the crystals dissolve. Plummer and Mackenzie [1974] showed that during the dissolution of high magnesium calcites there is a stage where the magnesium and calcium dissolve incongruently causing changes in the magnesium content of the crystals over time. Determining the cause is beyond the scope of this current work. However, these observations may indicate more complexity of the fish-produced CaCO3 precipitates and illustrates difficulties in determining their solubility as discussed in the methods (section 5.2) concerning the problems associated with this method. Perry et al. [2011] showed that different species produce carbonates with highly varied morphologies and Mg2+ content. Dissolution rates are highly dependent upon surface area [Morse et al., 2007]. This implies that solubilities and rates of dissolution may vary by fish species and/or environmental factors and clearly additional work is needed. 79 Figure 5.2: Scanning Electron Microscope picture of precipitates produced by the gulf toadfish (Opsanus beta). Table 5.1: Equilibrium [CO32-], [Ca2+], [Mg2+], and pK*sp for individual fish-produced solubility experiments. Run Collection* [CO32‐]mol/kg [Ca2+]mol/kg [Mg2+]mol/kg pK*sp 1 2 3 4 T T I I, C 106 114 131 89 0.0111 0.0126 0.0123 0.0112 0.0574 0.0586 0.0570 0.0540 5.58 5.52 5.47 5.67 5 I,C 145 0.0110 0.0560 5.46 Mean = 5.56 ± 0.09 *T indicates precipitates were collected from the tank in which the fish were held. I indicates precipitates were collected directly from the fish intestines. C indicates precipitates were cleaned by methods of Gaffey and Bronniman [1993] 80 pH 8.2 8.0 7.8 pK*sp = 5.47 7.6 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 -0.5 t Figure 5.3: Fish-produced carbonate solubility measurement in seawater. 5.4 Discussion and Conclusion The solubility of the fish carbonates was, on average, 4.17 times greater than aragonite, and as much as 5.13 times that of aragonite. This has strong implications for the marine carbonate system. These more soluble carbonates will begin to dissolve much higher in the water column than other biogenic carbonates. Sediment trap data have shown that 50-71% of calcium carbonate produced in surface waters dissolves in the upper ocean [Feely et al., 2004] well above the saturation horizon of aragonite (the less stable polymorph of the more commonly recognized carbonate polymorphs) where, thermodynamically, dissolution should begin. Dissolution above the saturation horizon is also supported by total alkalinity profiles (Figure 1.7) which show an increase in 81 normalized total alkalinity (NTA) above the aragonite saturation horizon [Feely et al., 2004]. Many different explanations have been proposed: dissolution in the guts of zooplankton [Langer et al., 2007], dissolution in microenvironments formed by bacterial oxidation of organic matter [Jansen et al., 2002] and dissolution of more soluble forms of CaCO3 such as pteropods or high magnesium calcite [Byrne et al., 1984]. Dissolution in guts of zooplankton or microenvironments was shown to be limited [Langer et al., 2007; Jansen et al., 2002], but a source of more soluble CaCO3 has been lacking. Our results show that fish-produced calcium carbonates are likely a major source of the more soluble CaCO3 that Byrne et al. [1984] originally proposed. This is illustrated in Figure 5.4 which shows plots of TA normalized to a salinity of 35 from the North Pacific, North Atlantic and Southern Ocean along with the saturation horizons for both aragonite and fish-produced CaCO3 (i = 1). The ’s were calculated using the CO2sys program [Pierrot et al., 2006] using the CO2 constants of Millero et al., [2006] from pH and TA at in situ conditions. The saturation horizon for the fish-produced high magnesium calcite is nearly coincident with the depth at which the NTA starts to increase. In some polar regions, such as the Southern Ocean, surface waters are already under-saturated with respect to fish-produced high magnesium calcite. The surface NTA in the Southern Ocean is also higher than in the North Atlantic and North Pacific. This further supports the hypothesis that the fish-produced material is dissolving in the upper ocean causing the increase in normalized total alkalinity. The present study represents the first measurements of fish-produced CaCO3 solubility and provides further support to the hypothesis (Wilson et al. [2009]) that a more soluble form of CaCO3 produced by teleost fish is a likely contributor to carbonate dissolution above the aragonite saturation horizon. 3000 2500 2000 1500 1000 500 2250 0 2300 2350 NTA (mol kg ) -1 2300 Aragonite Saturation Fish CaCO3 Saturation 2400 2200 2400 NTA (mol kg ) -1 North Pacific 2500 2350 2360 2370 NTA (mol kg-1) 2380 Southern Ocean Figure 5.4: Depth profile of the normalized total alkalinity of seawater for the North Atlantic (30°N and 23°E) North Pacific (31°N and 151°W) and Southern Ocean (67°S and 151°W) showing the saturation horizons for aragonite (solid line) and fishproduced (dashed line) calcium carbonates. (Data taken from CLIVAR P16N, A16N, and S4P, http://cdiac.ornl.gov/ oceans/RepeatSections/). No dashed line is given for the Southern Ocean station since the surface waters are under-saturated with respect to fish-produced calcium carbonate. Depth (db) North Atlantic 82 Chapter 6: Effect of Composition on the Density of Seawater 6.1 Background6 Minor and trace components of seawater are highly variable. Changes in the composition of seawater, in both oceanic and estuarial waters, result in variations of the conductance-density relationship [Brewer and Bradshaw, 1975; Conners and Weyl, 1968]. This has implications for neutral density surfaces and ocean circulation. The limitations of the Practical Salinity Scale [UNESCO, 1981a,b] for estuarine systems [Parsons, 1982; Sharp and Culberson, 1982; Gieskes, 1982; Millero, 1984] were thoroughly discussed in earlier publications. The limitations of the conductivity method to determine the salinity or density of seawater have been examined by several workers [Brewer and Bradshaw, 1975; Millero et al., 1976 a,b,c, 1978a; Millero and Kremling, 1976; Poisson et al., 1980,1981; Millero, 2000]. Studies to examine the limitations of the International Equation of State of Seawater [Millero and Poisson, 1981] have also been discussed [Millero, 1975, 1978, 2000; Millero et al., 1976a, b, c, d; Millero and Kremling, 1976; Poisson et al., 1980]. Brewer and Bradshaw [1975] were the first to 6 The background and experimental methods of this chapter is a combination of 3 previously published papers: Millero, F. J., J. Waters, R. Woosley, F. Huang, and M. Chanson (2008), The effect of composition on the density of Indian Ocean waters, Deep-Sea Res. I, 55, 460-470, DOI:10.1016/j.dsr.2008.01.006. Millero, F. J., F. Huang, N. Williams, J. Waters, and R. Woosley (2009), The effect of composition on the density of South Pacific Ocean waters, Mar. Chem., 114, 56-62. DOI:10.1016/j.marchm.2009.04.001. Millero, F. J., F. Huang, R. J. Woosley, R. T. Letscher, and D. A. Hansell (2011), Effect of dissolved organic carbon and alkalinity on the density of Arctic Ocean waters, Aqat. Geochem., 17, 311-326. DOI: 10.1007/s10498-010-9111-2. 83 84 estimate the relationship between changes in the calculated density or sigma-T and changes in the composition of ocean water. Their estimates show changes in salinity of 0.015 could result in changes in σT of 0.012 due to changes in the composition of seawater due to the oxidation of plant material. Poisson et al. [1979] estimated these changes in conductance and density via partial molar conductance and volume changes for the addition of salts to seawater. Brewer and Bradshaw [1975] suggested that the excess density, Δρ = ρ(meas) – ρ(calc), could be estimated by Δρ = 5.37 x 10-4 ΔNTA – 9.6 x 10-5 ΔNTCO2 + 4.2 x 10-5 ΔSiO2 (6.1) All density values are given in units of kg m-3 unless otherwise stated. Where ΔNTA, ΔNTCO2 and ΔSi(OH)4 are, respectively, the differences in normalized total alkalinity, normalized total carbon dioxide and silica (mol kg-1) relative to the estimated values [Millero et al., 2008] for the surface seawater used to determine the equation of state of seawater (NTA = 2332 x 35/S and NTCO2 = 2226 x 35/S mol kg-1 where Sp is the practical (conductivity) salinity). This normalization factor is necessary as TA and TCO2 contribute to salinity as major constituents (HCO3- and CO32). Millero et al. [1976c] modified this equation by using a more reliable partial molar volume for Si(OH)4 and considering the effect of added NO3- as HNO3. They obtained Δρ = 5.37 x 10-4 ΔNTA – 9.6 x 10-5 ΔNTCO2 + 4.5x10-5 ΔSi(OH)4 + 24 ΔNO3 (6.2) This theoretical equation was checked by Millero et al. [1976b] by measuring the density and conductivity of samples of seawater collected during the GEOSECS cruises. All measurements were made relative to Gulf Stream seawater. They reported that the excess densities in deep waters were 0.005 ± 0.0015 kg m-3 in the North Atlantic and 85 0.016 ± 0.0036 kg m-3 in the North Pacific. The differences between the measured and calculated excess densities using eqn. 6.2 were found to be ± 0.0027 kg m-3 in the North Atlantic and ± 0.004 kg m-3 in the North Pacific. Millero et al. [1978] made density measurements on 124 samples collected in the North Pacific along 35° N. The excess densities were 0.0038 ± 0.0030 kg m-3 from 0 490 m, 0.0125 ± 0.0042 kg m-3 from 490 - 1000 m, and 0.0176 ± 0.0026 kg m-3 from 1000-5834 m. The maximum excess density found was 0.021 kg m-3. The values of the excess density calculated from eqn 6.2 agree with the measured value over the entire depth range to 0.0052 kg m-3. Since the densities of rivers, lakes and estuaries have densities that are similar to seawater at the same absolute salinity (SA), Millero et al. [1978] have examined the changes in the densities in the North Pacific due to changes in salinity. The absolute salinity is defined by SA = Sp + ΔSA = Sp + Σ Mi Δni (6.3) where Sp is the Practical salinity and Mi is the molecular weight and Δni is the change in moles of added nutrients and carbonates SA is the change in salinity as a result of the added constituents. It should be pointed out that this equation assumes that the practical salinity is not affected by small changes in the composition. The change in the salinity due to the addition of CaCO3, Si(OH)4 and HNO3 (mol kg-1) can be estimated by [Millero et al., 1978]: ΔS = 50 x 10-6 ΔNTA + 64 x 10-6 ΔSiO2 + 63 x 10-6 ΔNO3 + 82 x 10-6 H3PO4 (6.4) 86 Silica in this equation has been modified from Millero et al., [1978] converting Si(OH)4 to SiO2 since Si entering the oceans is SiO2(s) not Si(OH)4 as used in the earlier studies. This assumption is valid as long as the amounts of added salts are small and the partial molar volume of the salt is similar to sea salt. Since the changes in density are a linear function of salinity near S = 35 (Δρ = 0.757 kg m-3∆S), this leads to the equation [Millero et al., 1978] Δρ = 3.79 x 10-5 ΔNTA + 4.84 x 10-5ΔSiO2 + 4.77 x 10-5ΔNO3 + 6.2 x 10-5 PO4 (6.5) The measured excess densities in the Pacific agreed with those calculated from eqn 6.5 on the average of ± 0.043 kg m-3. This chapter will present new measurements of conductivity and density from a wide range of locations throughout the world’s oceans collected on various CLIVAR and other cruises of opportunity. These measurements expand the excess density measurements into all major oceans. The combination of these measurements with those made in the North Pacific [Millero et al., 1978] provide equations that can be used to examine the effect of nutrients and carbonates on the density of world ocean waters. The potential influence of dissolved organic carbon (DOC) will also be discussed. 6.2 Experimental Methods The samples were collected in 500 cm3 glass bottles similar to those used to collect TA samples or 150 ml HDPE bottles. The HDPE bottle caps were wrapped with parafilm™ to prevent gas exchange. The Practical Salinities were measured with an Autosal salinometer calibrated with standard seawater. The densities were measured on the Anton Paar 500 densimeter at 25oC. The measurements on standard seawater were 87 reproducible to 1 ± 0.003 kg m-3. All of the measurement were made relative to the density of pure water which is based on the equations of Kell [1975] adjusted to the 1990 temperature scale [Spieweck and Bettin, 1992]. Since the density of water in the original equation of state of seawater are based on the less reliable water equations of Bigg [1967], the equation of state of seawater [Millero and Poisson, 1981] was used to determine the differences in the density of seawater and pure water (ρ – ρ0). The measurements on standard seawater of known Practical Salinity yielded densities at 25oC that agreed with the equation of state to ± 3 x 10-6 kg m-3. To examine the effect of the composition of the major components of seawater, densities were made on artificial seawater of known composition. The composition of the artificial seawater is based on the recent analysis of Millero et al. [2008]. The Practical Salinity of this sample was 34.698 and had a measured relative density (ρ – ρ0) = 23.113 kg m-3. This relative density (23.112) was in good agreement with the value calculated from the equation of state. These results indicate that the salinity/density relationship for seawater may not be affected by the dissolved organic carbon in surface waters (~65 μM). Over 1700 measurements have been made. A comprehensive table of the results appears in the appendix table A.1. The DOC analysis for Arctic samples from cruise ARKXXXIII/3 were filtered inline between the Niskin bottles and 60-ml HDPE bottles and then stored frozen until analysis in the laboratory. DOC measurements were taken by high-temperature combustion using the methods of Farmer and Hansell [2007], with a precision of 2 mol kg-1. DOC in standard seawater collected in the North Atlantic was 57.2 ± 2 mol kg-1. The TA measurements for this cruise were measured in the laboratory, and not at sea as 88 with the CLIVAR cruises, but all were done using methods developed by Millero et al., [1993]. The titration system was calibrated using seawater of known TA (provided by Dr. Andrew G. Dickson, UCSD-SIO-Marine Physical Laboratory, San Diego, CA), and had a precision of ± 2 mol kg-1. The surface layer data considered on this cruise exhibited little dilution by sea ice melt, as assessed by 18O measurements and as reported by Letscher et al. [2011]. 6.3 Indian Ocean7 The Indian Ocean data was collected on CLIVAR cruise I9 in 2007. The values of Δρ, as a function of depth, shown in Figure 6.1, appear to be a smooth function of depth with an uncertainty of ~0.005 kg m-3 in the excess density as judged by a linear fit. Part of the scatter is related to changes in the composition of seawater not being directly related to depth. Millero [2000] suggested that the excess densities should be Δρ = a + b ΔNTA + c ΔSiO2 + d ΔNO3 (6.6) This equation can be generalized for each component by: = a + b [i] (6.7) Where [i] is the concentration of the added constituent. The experimental values of ΔNTA, ΔTCO2, ΔSiO2, and ΔNO3, as a function of depth shown in Figure 6.2, are quite similar to the excess densities (Δρ). The values of Δρ, as a function of ΔNTA, ΔTCO2, ΔSiO2, and ΔNO3, are shown in Figure 6.3. The values of the slopes and intercepts are given by (N = 124): 7 This section was previously published as: Millero, F. J., J. Waters, R. Woosley, F. Huang, and M. Chanson (2008), The effect of composition on the density of Indian Ocean waters, Deep-Sea Res. I, 55, 460-470, DOI:10.1016/j.dsr.2008.01.006. The equations and figures have been modified in order to have consistent units through the chapter. 89 Δρ = 1.04 x 10-3 + 8.4 x 10-5ΔNTA (σ = 0.0041 kg m-3) (6.8a) Δρ = 9.0 x 10-4 + 2.7 x 10-5ΔNTCO2 (σ = 0.0048 kg m-3) (6.8b) Δρ = -6.0 x 10-4 + 8.9 x 10-5ΔSiO2 (σ = 0.0041 kg m-3) (6.8c) Δρ = 4.7 x 10-4 + 2.41 x 10-4ΔNO3 (σ = 0.0053 kg m-3) (6.8d) kg m-3) -0.01 0 0.00 0.01 0.02 Depth (m) 2000 4000 6000 Figure 6.1: The measured for the Indian Ocean (28° S - 18° N) as a function of depth (m). The solid line is a linear fit and has a = 0.041 kg m-3. 90 The linear correlations with ΔNTA and ΔSi(OH)4 are slightly better than with ΔNTCO2 and ΔNO3. The intercept is close to zero except for TA and TCO2, which is due to the difference in the surface values. The excess densities as a function of ΔNTA, ΔSi(OH)4 and ΔNO3 (eqn 6.6) were also examined. The values of a and c were not needed and the value of b = 8.9 x 10-5 gave calculated values of the excess density that had a standard error of 0.0041 kg m-3. This indicates that only changes in Si(OH)4 are needed to estimate the excess density of seawater. The individual slopes are larger than the theoretical values because they include changes due to all the constituents in the solution. The experimentally derived equations for waters in the Indian and Pacific oceans can be used to estimate the changes in density of deep waters due to the oxidation of plant material. Density changes for estuarine waters may be different due to influences from terrestrial inputs [Poisson et al., 1980, 1981; Millero, 1984]. Changes in density for both the North Pacific [Millero, 2000] and the Indian Ocean can be accurately estimated using the total salinity equation, eqn 6.3, and using SA in the equation of state within an error of 0.0041 kg m-3 for the combined North Pacific and Indian Ocean data. Empirical equations of measured excess densities in the North Pacific and Indian Ocean, as a function of changes in TA, SiO2 and NO3, indicate that changes in SiO2 are only needed to represent the results (4.1 x 10-6 g cm3). Estimates of excess density from the equation of state using an input of SA also give estimates that are a good as correlations of changes in SiO2. 91 NTA (mol/kg) 0 0 20 40 60 80 NTCO2 (mol/kg) 100 120 140 0 100 4000 6000 30 40 (mol/kg) 0 20 40 60 80 100 120 140 0 0 10 20 2000 Depth (m) Depth (m) 6000 400 6000 2000 4000 300 4000 SiO2 (mol/kg) 0 200 2000 Depth (m) Depth (m) 2000 0 4000 6000 Figure 6.2: Profiles of the changes in normalized total alkalinity (NTA), normalized total carbon (NTCO2), silicate (Si(OH)4), and nitrate (NO3) for the Indian Ocean stations. 92 NTA 0 100 150 200 0.015 0.015 0.010 0.010 0.020 0.005 0.000 -0.005 -0.005 -0.010 -0.010 SiO2 20 40 60 80 100 120 140 160 0.025 0.020 0.020 0.015 0.015 0.010 0.010 0.005 100 200 300 400 500 0.005 0.000 0 0 0.025 0.020 0.025 50 0.025 NTCO2 NO3 0 10 20 30 40 0.005 0.000 0.000 -0.005 -0.005 -0.010 -0.010 Figure 6.3: The excess density due to changes in normalized total alkalinity (NTA), normalized total carbon (NTCO2), silicate (SiO2), and nitrate (NO3) for the Indian Ocean 93 6.4 South Pacific8 The samples in this section were collected on CLIVAR cruise P18 in 2007/2008. The measured values of Δρ along with accompanying metadata and nutrient data are given in Table A.1. The values of Δρ as a function of depth (db) are show in Figure 6.4. The surface values show a scatter of ± 0.005 kg m-3 and the deep waters have an average of ~0.011 kg m-3. Part of the scatter is related to changes in the composition of seawater not being directly related to depth. The values of Δρ as a function of SiO2, NO3, PO4 and ΔNTA (μmol kg-1) are shown as a function of Δρ in Figure 6.5. The results have been fitted to eqn 6.7. The values of a and b from eqn 6.7 are given in Table 6.1 along with the standard error of the fits. The intercepts are close to zero except for NO3 and PO4. As shown in earlier studies (section 6.3) the results as a function of Si(OH)4 or ΔNTA give the best fit. Since the values of Si(OH)4 are more readily available, the equation for silicate is suggested as the best to use for the South Pacific Δρ = -0.0027 + 7.66 x 10-5 ΔSiO2 (1σ = 0.0027 kg m-3) (6.9) The excess densities calculated at the absolute salinity using eqn 6.4 were also examined. This is shown, along with Indian Ocean data from Section 6.3 in Figure 6.6. The differences between the measured and calculated values using this equation yielded standard error in the differences of ±0.0041 kg m-3. 8 This section was previously published as: Millero, F. J., F. Huang, N. Williams, J. Waters, and R. Woosley (2009), The effect of composition on the density of South Pacific Ocean waters, Mar. Chem., 114, 56-62. DOI:10.1016/j.marchm.2009.04.001. 94 -3 kg m ) -0.010 -0.005 0 0.000 0.005 0.010 0.015 0.020 DEPTH (m) 1000 2000 3000 4000 5000 Figure 6.4: Measured for the South Pacific (28° S-18° N) from CLIVAR cruise P18, as a function of depth. 0.020 0.020 0.015 0.015 0.010 0.010 (kg m-3) (kg m-3) 95 0.005 0.005 0.000 0.000 -0.005 -0.005 -0.010 0 20 40 60 80 -0.010 100 120 140 160 180 0 10 -1 0.015 0.015 0.010 0.010 (kg m-3) (kg m-3) 0.020 0.005 0.000 -0.005 -0.005 -0.010 100 50 0.005 0.000 50 40 -1 NO3 (mol kg ) 0.020 0 30 - SiO2 (mol kg ) -0.010 20 150 200 0 1 2 3 PO43- (mol kg-1) NTA( mol kg-1) Figure 6.5: Measured for samples collected on CLIVAR cruise P18 as a function of SiO2, NO3-, NTA, and PO43-, all in mol kg-1. Table 6.1: Values of a and b from eqn. 6.7 for CLIVAR P18 samples. Parameter Intercept Si(OH)4 NO3 PO4 NTA -0.0025 -0.0049 -0.0049 -0.0027 Slope Number Stdev 0.000077 0.000277 0.003804 0.000093 331 331 331 320 0.0025 0.0037 0.0039 0.0027 96 0.04 = 0.0041 kg m-3 0.03 (g kg-1) 0.02 A 0.01 S 0.00 -0.01 -0.02 North Pacific Indian Ocean South Pacific 0 50 100 150 200 -1 SiO2 (mol kg ) Figure 6.6: The values of SA determined from density measurements plotted as a function on SiO2. 6.5 Arctic Ocean9 Another potential contributor to excess density that has not been determined in detail is dissolved organic carbon (DOC). Salinity (SP), TA, DOC and excess density (Δρ = ρMeas - ρCalc) were determined for all the Arctic seawaters collected aboard the German icebreaker FS Polarstern during cruise ARKXXIII/3 (Aug. 12 to Oct. 17, 2008) and returned to the laboratory. The hydrographic data and the laboratory measurements as a function of location and depth are tabulated in Table A.1. NTA results are shown as a 9 This section was previously published as: Millero, F. J., F. Huang, R. J. Woosley, R. T. Letscher, and D. A. Hansell (2011), Effect of dissolved organic carbon and alkalinity on the density of Arctic Ocean waters, Aqat. Geochem., 17, 311-326. DOI: 10.1007/s10498-010-9111-2. 97 function of depth in Figure 6.7. All of the deep waters have NTA of 2305 ± 6 μmol kg-1, similar to the values for Standard Seawater of 2306 ± 3 μmol kg-1 collected in the North Atlantic. The surface values increase to concentrations as high as 2650 μmol kg-1. Dissolved organic carbon (DOC) concentrations are shown as a function of depth in Figure 6.8. The deep waters below 150 m have values between 44 (the deep Arctic basin waters) and 51 μM (the Atlantic water layer), which are lower by 6 to 13 μmol kg-1 than the values in North Atlantic Standard Seawater (57.2 ± 2 μmol kg-1). The surface water concentrations of DOC are as high as 130 μmol kg-1, much higher than surface waters in the other oceans (commonly <80 μmol kg-1; Hansell et al., [2009]). The surface distributions of NTA and DOC at 10 m depth are shown in Figures 6.9 and 6.10. The high values of NTA and DOC originate from Arctic rivers [Anderson et al., 2004; Letscher et al., 2011]. The measured excess densities Δρ = ρmeas - ρcalc are shown as a function of depth in Figure 6.11. The deep waters have values of Δρ = -0.004 ± 0.002 kg m-3, while the surface waters have values as high as Δρ = 0.008 ± 0.002 kg m-3. Unlike other oceans, the deep waters of the Arctic have values of Δρ that are negative. Most deep ocean waters have values of Δρ that are positive due to the addition of nutrients and calcium carbonate. Determinations of nutrients in Arctic deep water are sparse and concentrations very low compared to most other deep ocean waters. The silicate concentrations, for example, have maximum values in deep water of ~15 μmol kg-1 [Middag et al., 2009]. Based upon our work in other oceans (Sections 6.3 and 6.4) this Si concentration will increase the density by ~0.001 kg m-3, which is within the experimental error of our measurements. 98 NTA (mol kg-1) 2200 0 2300 2400 2500 2600 2700 1000 Depth (db) 2000 3000 4000 5000 Figure 6.7: Normalized total alkalinity as a function of depth in the Arctic Ocean from cruise ARKXXIII/3. 99 DOC (mol kg-1) 20 0 40 60 80 100 120 140 1000 Depth (db) 2000 3000 4000 5000 Figure 6.8: Dissolved organic carbon as a function of depth in the Arctic Ocean (cruise ARKXXIII/3). 100 Figure 6.9: Distribution of normalized total alkalinity (NTA) for surface waters in the Arctic Ocean (cruise ARKXXIII/3). Figure 6.10: Distribution of dissolved organic carbon (DOC) for surface waters in the Arctic Ocean (cruise ARKXXIII/3). 101 (kg m-3) -0.008 0 -0.006 -0.004 -0.002 0.000 0.002 0.004 0.006 0.008 1000 Depth (db) 2000 3000 4000 5000 Figure 6.11: Values of as a function of depth in the Arctic Ocean (cruise ARKXXIII/3). 102 Since the values of NTA are the same as for Standard Seawater, the decrease cannot be attributed to lower values of TA. It appears that the decrease in density of the deep Arctic may be caused by the slightly lower concentrations of DOC (44 to 51 μmol kg-1) below 150 m compared to the values of standard seawater of 57 ± 2 μmol kg-1. Since the maximum changes in DOC from the surface to depth in the open ocean are ~30 μmol kg-1 [Hansell et al., 2009], one might estimate that the effect of DOC in the world ocean waters may be as much 0.012 kg m-3. This is unfortunately very difficult to prove at the present time. The Δρ values for most of the surface waters have positive values. These elevated densities can be attributed to the higher concentrations of NTA and DOC from the input of river waters to the Arctic [Anderson et al., 2004; Hansell et al., 2004]. Evidence for this is shown in plots of all measured surface NTA as a function of salinity in Figure 6.12. As shown elsewhere [Amon, 2004; Letscher et al., 2011], DOC shows a linear behavior as a function of salinity near the major river inputs (Figure 6.13). Figures 6.12 and 6.13 also give previously reported values of NTA [Bates et al., 2009] and DOC [Hansell et al., 2004] for surface waters in the western Arctic Ocean. At a given salinity, the values of NTA are lower and DOC higher in the eastern sector of the Arctic compared to the western sector. The differences in NTA are due to the differences in NTA concentrations between eastern and western Arctic rivers [Cooper et al., 2008], while the differences in DOC are due both to differences in riverine concentrations [Cooper et al., 2008] and in the greater DOC removal in the western sector [Hansell et al., 2004; Letscher et al., 2011]. As shown in Figure 6.14 the values of DOC and NTA in this region correlate very well with one another. At an NTA around 2300 μmol kg-1 the 103 values of DOC are near 60 μmol kg-1, similar to the values in Standard Seawater from the North Atlantic. At the present time, it is not possible to determine how much of the NTA from the rivers is due to organic compounds that can accept a proton. An over determination of the Arctic estuaries of pCO2 or pH with TA and TCO2 may allow one to estimate the contribution of increases in TA due to organic compounds. This is also true of other estuarine systems that contribute alkalinity to the world oceans. 2800 Eastern Basin Western Basin -1 NTA (mol kg ) 2700 2600 2500 2400 2300 2200 24 26 28 30 32 34 Practical Salinity (Sp) Figure 6.12: Normalized total alkalinity (NTA) as a function of salinity for surface waters in the eastern and western Arctic Ocean. 104 140 Eastern Basin Western Basin -1 DOC (mol kg ) 120 100 80 60 40 26 27 28 29 30 31 32 33 34 Practical Salinity (Sp) Figure 6.13: DOC as a function of salinity for surface waters in the eastern and western Arctic Ocean. 140 -1 DOC (mol kg ) 120 Eastern Basin Western Basin 100 80 60 40 2300 2350 2400 2450 2500 2550 2600 2650 NTA (mol kg-1) Figure 6.14: Correlation of the values of DOC and NTA for waters in the eastern and western Arctic Ocean. 105 6.6 Global Oceans A total of 1,750 density measurements have been made on 9 different cruises covering the Atlantic, Pacific, Indian, Arctic, and Southern Ocean. A comprehensive table consisting of all measurements and all available accompanying metadata, nutrient, and carbon data are given in Table A.1. A plot of the data versus depth is given in Figure 6.15 broken down by ocean. Plots of versus silicate and NTA are given in Figure 6.16. A plot of nitrate is not shown, but the data is given in Table A.1. The older measurements in the North Pacific [Millero et al., 1978] were done using the older equation of state of Millero et al. [1976b]. The data has been recalculated to use the equation of state of Millero and Poisson [1981]. The difference (0.003-0.004 kg m-3) is close to experimental error but caused the values in the North Pacific to be offset from the rest of the data. The global dataset was fit according to eqn. 6.7, the results are given in Table 6.2. As was found in other oceans, silica provides the best fit of the data. There is a clear split in the NTA data in the Arctic Ocean compared to the other oceans (Figure 6.16). This is probably a result of DOC and the insignificant silicate concentrations (see Section 6.5). Excluding this data from the fit provides a slightly better fit of the changes in alkalinity. More work is needed to determine the exact influence of DOC on the density-conductivity relationship. Since the changes in density are a result of both silica and TA an equation using both is theoretically more correct. The combined equation is: = -0.002 + 6.67 x 10-5 SiO2 + 8.71 x 10 -6 NTA (6.9) The standard error is 0.0037 kg m-3 and is not significantly different than the individual fits. 106 -3 (kg m ) -0.015-0.010-0.005 0.000 0.005 0.010 0.015 0.020 0.025 0 Depth (db) 2000 4000 6000 Southern Ocean Pacific Arctic Indian Atlantic Figure 6.15: All available density measurements versus depth broken down by ocean. 107 0.025 0.020 -3 (kg m ) 0.015 0.010 0.005 0.000 -0.005 -0.010 -0.015 0 20 40 60 80 100 120 140 160 180 200 Silicate (mol kg-1) Southern Ocean Pacific Arctic Indian Atlantic 0.025 0.020 -3 (kg m ) 0.015 0.010 0.005 0.000 -0.005 -0.010 -0.015 -50 0 50 100 150 200 250 300 NTA Figure 6.16: All Available density data versus silicate (top) and NTA (bottom) by ocean. 108 Table 6.2: Slope and intercept of global density dataset fit to eqn 6.7. NTA is fit with and without Arctic data because of divergence at high NTA in the Arctic compared to the other oceans. Parameter Intercept SiO2 NO3 NTA NTA (exclude Arctic) NTA (only Arctic) -0.002 -0.003 -0.001 -0.002 -0.003 Slope Number Stdev 0.000073 0.000209 0.000051 0.000071 0.000037 1454 1541 1454 1273 268 0.0036 0.0046 0.0043 0.0041 0.0022 6.7 Effect of Ocean Acidification The continued burning of fossil fuels will result in the continued increase of pCO2. This increase will result in an increase in SA and in the density of seawater. Estimates have been made of the pCO2 up until the year 3000 [Millero, 2007]. Based on these estimates SA and densities are calculated. These predicted changes in salinity (S) are shown in Figure 6.17 as a function of time and TCO2. The deltas are relative to a pCO2 of 333, the atmospheric concentration when the original equation of state was determined. The maximum SA is 0.017 and the maximum predicted increase in the density is 0.014 kg m-3. The effect, if any, this increase of pCO2 will have on conductivity is unknown and needs to be examined. 109 0.020 0.015 S 0.010 0.005 0.000 -0.005 1600 1700 1800 1900 2000 2100 2200 2300 2400 Year 0.020 0.015 S 0.010 0.005 0.000 -0.005 1900 2000 2100 2200 2300 TCO2 Figure 6.17: Predicted changes in salinity as a result of increased TCO2 from the burning of fossil fuels as a function of time (top) and TCO2 (bottom). 110 6.8 Conclusions The experimentally derived equations for the global oceans can be used to estimate the changes in density and absolute salinity of deep waters due to the oxidation of plant material and dissolution of SiO2 and CaCO3. These density equations may or may not be valid for estuarine waters to due to the input of terrestrial organic material [Poisson et al., 1980, 1981; Millero, 1984]. Empirical equations of measured excess density as a function of changes in NTA, SiO2, and NO3 indicate that SiO2 adequately represents the results ( = 0.0036 kg m-3). It is recommended that the absolute salinity or silicate empirical equations be used to estimate the changes in the density of seawater due to the addition of nutrients and carbonate. The effect of DOC is still uncertain. Currently measurements are limited to the Arctic Ocean, more measurements from the remaining oceans will be essential in determining the effect. The increase in pCO2 (and TCO2) as a result of the oceanic uptake of anthropogenic CO2 will increase the absolute salinity by 0.017 and the density by 0.014 by the year 2300. The effect this will have on the conductivity-density relationship is currently unknown, and should be determined. Chapter 7: Conclusions Many basic physical chemical properties of trace and minor components of natural waters aren’t currently well understood. This is particularly true for trace metals since it is only over the last 3 to 4 decades that methods and techniques were developed to measure them at the low concentrations that they are present at in seawater and other natural waters. The explosion of research into these components has mainly focused on distribution and geochemical cycling with very little focus on basic physical chemical properties. This is mainly because measurements are difficult and time consuming due to the low solubility of these components and the vast number of components. This dissertation helps to fill in some of the gaps in a variety of these physical chemical properties. The major findings are briefly outlined below. One method of estimating physical chemical properties is through correlations with known properties. Although less desirable than actual measurements, correlations allow for quick reasonable estimates of unknown properties. This was done for the hydrolysis constants of nearly all +2, +3, and +4 metals relevant to natural waters in NaCl. The hydrolysis of aluminum in NaCl is well known for a wide range of temperatures and ionic strengths. These constants were found to be linearly related to the hydrolysis constants of a wide variety of metals that appears to be independent of temperature and ionic strength. This provides estimates of nearly all trace metal hydrolysis constants over a wide range of conditions applicable to many natural waters, particularly brines. 111 112 Speciation is an extremely important physical chemical property. It determines the behavior and fate of an element in the environment. This is relevant to organisms since it is typically the free form of a metal that is bioavailable. Lead is known to be toxic to organisms but the low solubility makes speciation measurements difficult so correlations are often used. Combining the best available published formation constants of lead chloro and lead carbonate complexes along with new measurements of lead carbonate in NaCl a full Pitzer model was created for lead in NaCl solutions. Chloride complexes can be fully modeled in seawater, but magnesium and calcium interactions with the carbonate complex is currently unknown, although they will be small. The speciation of lead in seawater was estimated using this model, and is in reasonable agreement with previous estimates. The first direct measurements of the mixed ligand complex Pb(CO3)Cl- were also determined, although there is still large uncertainty in the values. Calcium carbonate has been well studied in seawater, but there are still some gaps. It was recently discovered that boney fish produce a high magnesium calcite as a byproduct of osmoregulation. High magnesium calcite is known to be more soluble than aragonite or calcite and could therefore play a role in carbon cycling in the upper ocean. The solubility of this material in seawater was determined and found to be approximately four times as soluble as aragonite. This means that it likely dissolves higher in the water column than calcite or aragonite and could potentially at least partially explain the increase in normalized total alkalinity above the aragonite saturation horizon. This form of calcium carbonate will also likely respond sooner to ocean acidification than the other 113 crystalline forms. The kinetics of this dissolution is likely complex and currently unknown. Kinetics will play an important role and should be studied in the future. Minor components of seawater, mainly nutrients and CO2 as a result of organic matter decomposition, can cause variations in the conductivity-density relationship causing the equation of state to underestimate the density of seawater and the absolute salinity. This effect was examined using 1750 conductive and density measurements from samples collected from all of the major oceans. Empirical relationships for this excess density were determined for the three main added components, silicate, nitrate, and total alkalinity. Silicate was found to provide the best fit of the data due to the high concentrations in deep water and because it is mainly in a neutral form and likely has little effect on the conductivity. These empirical relationships can be used to estimate the excess density and SA of seawater. The effect of dissolved organic carbon and increased pCO2 due to uptake of anthropogenic emissions of CO2 are still not understood. Appendix This section includes an extensive table A.1 listing all the available density measurements made to date. The purpose is to provide the 1750 measurements in one place so that it is available for future use and refinement as more data becomes available. It combines all published and unpublished measurements into one table, which would not be possible in a journal due to the large size. The best was done to put all data into the same format and to be as complete as possible, but due to the different sources that isn’t always possible. Where available as much metadata and ancillary data is included. The published values of Millero et al. [1978] were corrected to the equation of state of Millero and Poisson [1981]. The difference is within experimental error but caused a slight offset in this data from the other data. 114 Stn 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 44 44 44 44 44 44 Cruise S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P depth 4.5 19.1 91.1 117.5 140.3 191 215.7 285.5 334.6 434.6 565 764.7 963.2 1164.8 1365.1 1665.2 2735.9 2883.9 4.6 19.9 39.5 64.9 88.3 134.5 170.657 170.657 170.657 170.657 170.657 170.657 170.657 170.657 170.657 170.657 170.657 170.657 170.657 170.657 170.657 170.657 170.657 170.657 -151.14 -151.14 -151.14 -151.14 -151.14 -151.14 -69.238 -67 -67 -67 -67 -67 -67 -69.238 -69.238 -69.238 -69.238 -69.238 -69.238 -69.238 -69.238 -69.238 -69.238 -69.238 -69.238 -69.238 -69.238 -69.238 -69.238 -69.238 Lat (N) Long (E) 69.66 59.16 54.89 45.45 43.61 43.37 98.26 98.47 119.1 119.34 118.97 114.48 109.41 104.39 98.05 92.95 88.07 71.31 70.69 69.74 69.97 68.71 69.21 68.29 Si 30.76 28.84 27.64 22.54 22.32 22.11 32.09 32.22 32.72 32.91 33.01 32.81 32.72 32.63 32.72 32.54 32.32 30.93 30.95 30.65 30.62 28.89 28.99 28.91 NO3 2306.50 2.07 2317.40 2302.00 2 2.13 2285.80 2285.40 2284.50 2347.10 2353.10 2355.00 2355.50 2355.40 2353.70 2353.20 2349.20 2344.70 2342.70 2335.30 2320.70 2321.00 2317.90 2316.60 2296.20 2291.80 2291.20 TA 1.62 1.59 1.56 2.22 2.21 2.22 2.22 2.23 2.2 2.2 2.21 2.22 2.17 2.16 2.05 2.05 2.04 2.03 1.91 1.88 1.91 PO4 2341.08 2362.46 2361.30 2369.41 2364.16 2369.74 2355.45 2371.46 2369.01 2373.54 2363.03 2370.63 2366.72 2367.94 2365.04 2357.59 2322.82 2358.16 2363.68 2360.11 2358.51 2353.15 2361.71 2351.12 NTA 34.646 34.171 34.121 33.765 33.834 33.741 34.876 34.729 34.793 34.734 34.887 34.75 34.8 34.723 34.699 34.779 35.188 34.444 34.368 34.374 34.378 34.153 33.964 34.108 Sp 1023.07 1022.71 1022.67 1022.4 1022.45 1022.39 1023.25 1023.13 1023.19 1023.14 1023.26 1023.16 1023.19 1023.13 1023.12 1023.18 1023.48 1022.92 1022.86 1022.87 1022.87 1022.7 1022.56 1022.66 26.031 25.671 25.63 25.36 25.408 25.346 26.2 26.089 26.143 26.099 26.212 26.11 26.147 26.088 26.073 26.132 26.436 25.876 25.819 25.821 25.821 25.656 25.51 25.617 Meas 26.028 25.669 25.631 25.362 25.414 25.344 26.202 26.090 26.139 26.094 26.210 26.106 26.144 26.086 26.068 26.128 26.437 25.875 25.818 25.822 25.825 25.655 25.512 25.621 Calc Table A.1: All available density measurements. All nutrients are in units of mol kg-1, density is in kg m-3. Cruise M78 is Millero et al. [1978a] 0.003 0.002 -0.001 -0.002 -0.006 0.002 -0.002 -0.001 0.004 0.005 0.002 0.004 0.003 0.002 0.005 0.004 -0.001 0.001 0.001 -0.001 -0.004 0.001 -0.002 -0.004 115 Stn 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 64 64 64 Cruise S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P Table A.1 cont. -75.607 -75.607 -75.607 -66.9998 -66.9998 -66.9998 -66.9998 -66.9998 -66.9998 -66.9998 -66.9998 -66.9998 -66.9998 -66.9998 -66.9998 -66.9998 -66.9998 -66.9998 -66.9998 -66.9998 -66.9998 -66.9998 -66.9998 Lat (N) -66.9998 depth 183.8 234.5 284.4 335.2 384.3 464.4 563.3 764.7 963.5 1164 1264.1 1365.4 1563.4 2164.6 2663.1 3199.7 3799.7 4099.4 4399.6 4445.5 4494.8 2.1 35 59.8 Long (E) -151.1435 -151.1435 -151.1435 -151.1435 -151.1435 -151.1435 -151.1435 -151.1435 -151.1435 -151.1435 -151.1435 -151.1435 -151.1435 -151.1435 -151.1435 -151.1435 -151.1435 -151.1435 -151.1435 -151.1435 -151.1435 -150.0134 -150.0134 -150.0134 67.89 64.15 60.92 126.91 127.26 128.95 126.06 125.36 132.42 132.12 127.98 123.87 121.62 120.15 118.41 114.6 110.61 106.79 104.09 100.8 97.48 94.8 90.35 84.33 Si 24.75 23.76 23.13 31.75 31.82 31.83 31.84 31.82 31.92 31.94 31.97 31.98 32.08 32.07 32.03 31.95 32.17 32.27 32.21 32.07 31.99 32.06 32.37 32.4 NO3 1.73 1.62 1.54 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.23 2.23 2.23 2.24 2.24 2.24 2.22 2.24 2.24 2.23 PO4 2277.50 2274.00 2273.60 2355.80 2356.40 2356.20 2356.50 2355.60 2358.60 2358.60 2357.70 2358.30 2357.60 2357.40 2356.50 2353.30 2352.60 2350.50 2349.40 2350.50 2346.80 2342.80 2333.30 TA 2371.62 2374.19 2373.56 2374.11 2376.70 2372.40 2376.80 2322.82 2371.61 2378.37 2375.00 2349.31 2376.75 2377.30 2375.03 2371.60 2354.21 2369.05 2362.43 2368.84 2365.66 2364.01 2361.50 NTA 33.611 33.523 33.526 34.73 34.701 34.761 34.701 35.494 34.808 34.709 34.745 35.134 34.718 34.725 34.707 34.727 34.73 34.976 34.726 34.807 34.729 34.721 34.686 34.582 Sp 1022.289 1022.227 1022.225 1023.139 1023.119 1023.165 1023.12 1023.732 1023.2 1023.123 1023.149 1023.447 1023.134 1023.134 1023.128 1023.137 1023.141 1023.325 1023.141 1023.2 1023.143 1023.136 1023.106 1023.032 25.246 25.184 25.182 26.094 26.076 26.122 26.077 26.689 26.157 26.08 26.106 26.404 26.091 26.091 26.085 26.094 26.098 26.282 26.098 26.157 26.1 26.093 26.063 25.987 Meas 25.246 25.179 25.182 26.091 26.069 26.114 26.069 26.669 26.150 26.075 26.102 26.397 26.082 26.087 26.074 26.089 26.091 26.277 26.088 26.149 26.090 26.084 26.058 25.979 Calc 0.000 0.005 0.000 0.003 0.007 0.008 0.008 0.020 0.007 0.005 0.004 0.007 0.009 0.004 0.011 0.005 0.007 0.005 0.010 0.008 0.010 0.009 0.005 0.008 116 Stn 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 66 66 66 66 66 66 66 Cruise S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P Table A.1 cont. -75.7506 -75.7506 -75.7506 -75.7506 -75.7506 -75.7506 -75.7506 -75.607 -75.607 -75.607 -75.607 -75.607 -75.607 -75.607 -75.607 -75.607 -75.607 -75.607 -75.607 -75.607 -75.607 -75.607 -75.607 Lat (N) -75.607 depth 84.8 110.1 160.5 209.6 265.1 314.6 364.4 415.1 534.9 634.7 834.7 1034.9 1234.5 1434.5 1535.2 1620 1677.2 2.2 24.7 49.8 75 100.1 125.1 150.1 Long (E) -150.0134 -150.0134 -150.0134 -150.0134 -150.0134 -150.0134 -150.0134 -150.0134 -150.0134 -150.0134 -150.0134 -150.0134 -150.0134 -150.0134 -150.0134 -150.0134 -150.0134 -149.9689 -149.9689 -149.9689 -149.9689 -149.9689 -149.9689 -149.9689 81.33 80.93 80.02 72.6 64.58 61.96 58.25 120.57 119.42 117.84 116.32 114.15 109.75 104.29 95.05 87.76 82.61 83.51 83.15 82.42 82.43 82.66 81.06 75.57 Si 29 28.88 28.62 25.91 23.1 22.67 21.88 32.06 31.86 31.82 31.89 31.88 31.91 31.83 31.78 32.32 31.47 30.94 30.64 30.61 30.23 30.05 29.15 27.16 NO3 2.1 2.09 2.1 1.95 1.63 1.58 1.51 2.24 2.25 2.25 2.24 2.24 2.23 2.22 2.21 2.24 2.18 2.14 2.12 2.12 2.1 2.1 2.06 1.93 PO4 2304.50 2303.30 2301.70 2285.60 2245.00 2271.20 2269.50 2358.80 2357.90 2358.50 2357.30 2357.30 2355.70 2353.30 2347.90 2341.60 2314.60 2310.70 2309.30 2308.00 2304.90 2301.10 2296.40 2288.50 TA 2361.72 2342.93 2368.42 2370.60 2342.86 2373.25 2371.97 2378.17 2336.01 2377.79 2368.13 2290.67 2374.08 2371.39 2346.43 2354.65 2364.80 2366.48 2364.15 2363.99 2366.84 2366.83 2369.03 2371.71 NTA 34.152 34.408 34.014 33.745 33.538 33.495 33.488 34.715 35.328 34.716 34.84 36.018 34.729 34.733 35.022 34.806 34.257 34.175 34.188 34.171 34.084 34.028 33.927 33.772 Sp 1022.701 1022.896 1022.598 1022.398 1022.236 1022.203 1022.199 1023.132 1023.6 1023.132 1023.227 1024.115 1023.142 1023.146 1023.366 1023.2 1022.78 1022.72 1022.73 1022.717 1022.654 1022.609 1022.532 1022.414 25.655 25.85 25.552 25.352 25.19 25.157 25.153 26.086 26.557 26.086 26.184 27.072 26.096 26.103 26.32 26.154 25.734 25.674 25.687 25.671 25.608 25.563 25.489 25.368 Meas 25.655 25.848 25.550 25.347 25.191 25.158 25.153 26.080 26.543 26.080 26.174 27.065 26.044 26.093 26.312 26.149 25.734 25.672 25.682 25.669 25.603 25.561 25.485 25.367 Calc 0.000 0.002 0.002 0.005 -0.001 -0.001 0.000 0.006 0.014 0.006 0.010 0.007 0.010 0.008 0.005 0.000 0.002 0.005 0.002 0.005 0.002 0.004 0.001 117 Stn 66 66 66 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 Cruise S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P Table A.1 cont. -72.3893 -72.3893 -72.3893 -72.3893 -72.3893 -72.3893 -72.3893 -72.3893 -72.3893 -72.3893 -72.3893 -72.3893 -72.3893 -72.3893 -72.3893 -72.3893 -72.3893 -72.3893 -72.3893 -72.3893 -72.3893 -75.7506 -75.7506 Lat (N) -75.7506 depth 179.8 209 235.5 5.5 25 49.1 75.3 98.7 125.3 149.4 200.7 250.3 299.7 350.2 399 450.5 499.7 700 899.5 1199.9 1501.3 1799.5 2248.6 2748.7 Long (E) -149.9689 -149.9689 -149.9689 -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 130.4 125.84 122.41 117.69 112.29 106.48 101.48 95.37 93.51 91.45 89.83 87.82 85.84 81.59 74.5 68.35 62.67 58.36 53.98 49.9 49.84 83.63 82.19 81.88 Si 32.26 32.09 32.09 31.92 31.91 32.02 32.04 32.06 32 32.15 32.3 32.64 32.84 32.86 32.24 31.58 30.82 29.53 26.53 23.64 23.62 29.9 29.6 29.4 NO3 2.26 2.24 2.24 2.23 2.23 2.22 2.21 2.2 2.19 2.2 2.21 2.24 2.25 2.26 2.23 2.18 2.14 2.09 1.92 1.73 1.72 2.12 2.1 2.1 PO4 2358.30 2357.50 2357.40 2356.80 2358.20 2352.80 2351.50 2348.50 2347.40 2345.60 2344.50 2341.70 2339.20 2332.10 2321.40 2315.20 2311.00 2307.20 2297.70 2291.20 2290.40 2308.30 2306.90 2305.90 TA 2365.33 2376.65 2376.96 2345.54 2375.64 2356.71 2369.58 2366.08 2354.13 2363.97 2352.70 2361.88 2347.11 2359.61 2351.43 2360.11 2358.16 2351.06 2365.00 2368.97 2368.21 2366.79 2367.30 2367.04 NTA 34.896 34.718 34.712 35.168 34.743 34.942 34.733 34.74 34.9 34.728 34.878 34.701 34.882 34.592 34.553 34.334 34.3 34.347 34.004 33.851 33.85 34.135 34.107 34.096 Sp 1023.268 1023.133 1023.128 1023.422 1023.148 1023.299 1023.144 1023.147 1023.267 1023.139 1023.253 1023.117 1023.256 1023.035 1023.005 1022.838 1022.81 1022.846 1022.587 1022.468 1022.473 1022.69 1022.671 1022.66 26.222 26.087 26.082 26.376 26.102 26.253 26.098 26.101 26.221 26.093 26.207 26.071 26.21 25.989 25.959 25.792 25.764 25.8 25.541 25.422 25.427 25.644 25.625 25.614 Meas 26.217 26.082 26.078 26.422 26.101 26.251 26.093 26.099 26.220 26.090 26.203 26.069 26.206 25.987 25.957 25.792 25.766 25.802 25.543 25.427 25.426 25.642 25.621 25.612 Calc 0.005 0.005 0.004 0.001 0.002 0.005 0.002 0.001 0.003 0.004 0.002 0.004 0.002 0.002 0.000 -0.002 -0.002 -0.002 -0.005 0.001 0.002 0.004 0.002 118 Stn 89 89 89 89 89 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 Cruise S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P Table A.1 cont. -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 -72.3893 -72.3893 -72.3893 -72.3893 Lat (N) -72.3893 depth 3300.4 3601.3 3899.4 3976.1 4022.6 4.6 23.8 48.9 74.1 100 149.2 199.8 251.5 300.1 349.1 401.1 448 500.3 702 900.3 1099.8 1298.4 1498.5 1799.3 Long (E) -169.9999 -169.9999 -169.9999 -169.9999 -169.9999 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 118.28 113.15 107.57 102.82 98.07 91.59 86.6 85.52 84.45 83.34 81.92 80.34 78.27 71.39 57 49.25 36.14 26.6 26.45 127.31 127.04 125.28 135.02 134.47 Si 32.04 31.78 31.49 31.56 31.44 31.44 31.92 31.97 32.27 32.75 33.28 33.69 34.16 33.95 31.66 30.14 26.07 23.32 23.34 32.61 32.59 32.4 32.54 32.42 NO3 2.23 2.22 2.21 2.19 2.17 2.17 2.2 2.21 2.21 2.23 2.25 2.28 2.32 2.31 2.16 2.09 1.84 1.6 1.6 2.27 2.27 2.26 2.26 2.26 PO4 2358.70 2357.60 2359.60 2352.70 2352.50 2349.40 2344.00 2342.80 2342.30 2339.20 2337.90 2335.90 2335.60 2320.70 2303.00 2293.20 2275.80 2263.90 2264.00 2356.20 2356.00 2359.10 2358.50 2358.70 TA 2372.46 2376.07 2378.08 2299.48 2359.38 2367.46 2361.14 2350.86 2320.68 2359.83 2356.01 2353.99 2362.19 2356.38 2356.87 2357.60 2313.75 2363.29 2363.26 2352.17 2363.70 2375.53 2375.88 2359.44 NTA 34.797 34.728 34.728 35.81 34.898 34.733 34.746 34.88 35.326 34.694 34.731 34.731 34.606 34.47 34.2 34.044 34.426 33.528 33.53 35.06 34.886 34.758 34.744 34.989 Sp 1023.191 1023.145 1023.14 1024.009 1023.268 1023.141 1023.152 1023.255 1023.59 1023.114 1023.139 1023.14 1023.046 1022.941 1022.736 1022.618 1022.898 1022.226 1022.227 1023.39 1023.262 1023.175 1023.151 1023.342 26.144 26.098 26.094 26.962 26.221 26.095 26.106 26.209 26.543 26.067 26.092 26.093 25.999 25.894 25.689 25.571 25.851 25.179 25.18 26.344 26.216 26.129 26.105 26.296 Meas 26.142 26.090 26.090 26.908 26.218 26.093 26.103 26.205 26.542 26.064 26.092 26.092 25.998 25.895 25.691 25.573 25.861 25.183 25.185 26.341 26.209 26.112 26.102 26.287 Calc 0.002 0.008 0.004 0.003 0.002 0.003 0.004 0.001 0.003 0.000 0.001 0.001 -0.001 -0.002 -0.002 -0.010 -0.004 -0.005 0.003 0.007 0.017 0.003 0.009 119 Stn 101 101 101 101 101 101 101 101 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 Cruise S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P Table A.1 cont. -67.0002 -67.0002 -67.0002 -67.0002 -67.0002 -67.0002 -67.0002 -67.0002 -67.0002 -67.0002 -67.0002 -67.0002 -67.0002 -67.0002 -67.0002 -67.0002 -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 -67.0011 Lat (N) -67.0011 depth 2248.2 2747.8 3299.8 3600 3899.2 4200 4476.1 4528.1 3.8 24.2 49.7 74.2 99.4 123.7 149.5 199.2 250.2 300 350.1 400.3 449.8 498.5 699 899.6 Long (E) -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -138.4961 -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 91.66 87.14 83.37 81.88 81.07 79.66 78.46 77.08 74.85 66.5 60.57 52.16 45.56 28.98 28.61 28.71 123.19 123.34 124.06 127.7 132.93 132.17 127.35 123.49 Si 31.38 31.67 32.43 32.7 32.95 33.37 33.88 34.31 34.65 34.22 33.14 31.78 29.86 25.67 25.27 25.28 32.55 32.6 32.43 32.46 32.96 32.64 32.56 32.24 NO3 2.17 2.18 2.23 2.24 2.26 2.28 2.31 2.34 2.36 2.32 2.25 2.16 2.06 1.74 1.73 1.73 2.24 2.24 2.23 2.25 2.26 2.26 2.25 2.24 PO4 2350.00 2346.80 2342.60 2341.60 2338.00 2337.30 2335.60 2332.70 2329.20 2314.20 2311.70 2300.20 2292.00 2271.80 2271.70 2271.20 2355.30 2356.20 2355.70 2356.40 2363.10 2359.40 2362.70 2360.30 TA 2368.13 2365.11 2357.35 2362.66 2358.89 2360.43 2360.55 2359.74 2355.51 2350.53 2356.95 2358.28 2360.11 2362.03 2364.38 2363.51 2375.53 2366.07 2374.42 2374.45 2383.26 2379.46 2373.01 2380.02 NTA 34.732 34.729 34.781 34.688 34.69 34.657 34.63 34.599 34.609 34.459 34.328 34.138 33.99 33.663 33.628 33.633 34.702 34.854 34.724 34.734 34.704 34.705 34.848 34.71 Sp 1023.144 1023.14 1023.181 1023.108 1023.11 1023.084 1023.063 1023.041 1023.044 1022.933 1022.835 1022.688 1022.578 1022.329 1022.304 1022.307 1023.123 1023.235 1023.139 1023.145 1023.123 1023.125 1023.233 1023.126 26.096 26.092 26.133 26.061 26.062 26.036 26.015 25.993 25.997 25.885 25.787 25.641 25.531 25.281 25.257 25.259 26.076 26.189 26.092 26.098 26.077 26.078 26.186 26.079 Meas 26.093 26.090 26.130 26.059 26.061 26.036 26.016 25.992 26.000 25.886 25.787 25.644 25.532 25.285 25.259 25.262 26.070 26.185 26.087 26.094 26.072 26.072 26.180 26.076 Calc 0.003 0.002 0.003 0.002 0.001 0.000 -0.001 0.001 -0.003 -0.001 0.000 -0.003 -0.001 -0.004 -0.002 -0.003 0.006 0.004 0.005 0.004 0.005 0.006 0.006 0.003 120 Stn 109 109 109 109 109 109 109 109 109 109 114 114 114 114 114 114 114 114 114 114 114 114 114 114 Cruise S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P Table A.1 cont. -67.0004 -67.0004 -67.0004 -67.0004 -67.0004 -67.0004 -67.0004 -67.0004 -67.0004 -67.0004 -67.0004 -67.0004 -67.0004 -67.0004 -67.0002 -67.0002 -67.0002 -67.0002 -67.0002 -67.0002 -67.0002 -67.0002 -67.0002 Lat (N) -67.0002 depth 1099 1301.2 1500.1 1798.3 2250.1 2749.8 3600.4 3900.4 4151.1 4273.8 4.2 19.2 39.9 65 90.2 133.7 184.9 235.3 284.3 334.6 383.4 465.5 564.7 663.4 Long (E) -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 -125.0647 -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 82.09 80.39 77.96 75.5 72.91 69.33 64.72 55.3 46.91 40.89 20.26 13.8 13.8 13.86 142.46 139.52 136.91 134.59 125.99 120.2 113.04 107.15 102.09 96.76 Si 32.51 32.96 33.53 33.92 34.28 34.27 34 32.43 30.76 29.3 24.78 23.59 23.63 23.64 32.95 32.96 32.87 32.78 32.41 32.21 32.07 31.69 31.36 31.25 NO3 2.26 2.3 2.34 2.37 2.39 2.4 2.37 2.27 2.15 2.1 1.78 1.65 1.62 1.63 2.25 2.24 2.24 2.25 2.24 2.24 2.22 2.21 2.19 2.17 PO4 2339.10 2337.80 2334.20 2331.10 2328.10 2321.50 2312.20 2303.20 2293.00 2285.50 2261.70 2256.90 2258.70 2255.30 2359.30 2360.30 2361.30 2360.50 2361.20 2360.60 2360.90 2357.20 2354.50 2352.80 TA 2360.14 2360.12 2359.28 2358.46 2359.04 2356.17 2352.46 2345.35 2353.17 2356.67 2345.68 2357.53 2356.60 2340.15 2379.56 2380.29 2366.71 2380.63 2381.00 2380.12 2379.94 2361.32 2372.67 2370.75 NTA 34.688 34.669 34.628 34.594 34.541 34.485 34.401 34.371 34.105 33.943 33.747 33.506 33.546 33.731 34.702 34.706 34.92 34.704 34.709 34.713 34.72 34.939 34.732 34.735 Sp 1023.109 1023.095 1023.066 1023.036 1022.999 1022.956 1022.893 1022.867 1022.665 1022.543 1022.395 1022.215 1022.242 1022.381 1023.122 1023.128 1023.289 1023.126 1023.127 1023.129 1023.136 1023.302 1023.145 1023.148 26.062 26.048 26.019 25.988 25.951 25.909 25.846 25.82 25.618 25.496 25.347 25.168 25.194 25.334 26.075 26.08 26.242 26.078 26.079 26.082 26.088 26.254 26.097 26.1 Meas 26.059 26.045 26.014 25.988 25.948 25.906 25.843 25.820 25.619 25.497 25.349 25.167 25.197 25.336 26.070 26.073 26.235 26.072 26.075 26.078 26.084 26.249 26.093 26.095 Calc 0.003 0.003 0.005 0.000 0.003 0.003 0.003 0.000 -0.001 -0.001 -0.002 0.001 -0.003 -0.002 0.005 0.007 0.007 0.006 0.004 0.004 0.004 0.005 0.004 0.005 121 Stn 114 114 114 114 114 114 114 114 114 114 114 114 120 120 120 120 120 120 120 120 120 120 120 120 Cruise S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P Table A.1 cont. -67.0001 -67.0001 -67.0001 -67.0001 -67.0001 -67.0001 -67.0001 -67.0001 -67.0001 -67.0001 -67.0001 -67.0001 -67.0004 -67.0004 -67.0004 -67.0004 -67.0004 -67.0004 -67.0004 -67.0004 -67.0004 -67.0004 -67.0004 Lat (N) -67.0004 depth 865.6 1063.6 1264.6 1464.4 1934.3 2414.9 2914.8 3498.8 4100.7 4401.9 4600.6 4721.7 2.6 34.8 59.5 85 114.6 164.5 214.5 265.5 315 364.2 434.8 634.3 Long (E) -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 -112.2678 -99.4874 -99.4874 -99.4874 -99.4874 -99.4874 -99.4874 -99.4874 -99.4874 -99.4874 -99.4874 -99.4874 -99.4874 78.43 74.37 71.81 68.89 62.64 54.43 47.76 42.89 38.89 35.55 17.78 17.98 142.69 141.79 137.43 135 130.13 124.27 119.03 110.01 100 95.35 90.17 85.78 Si 33 34.22 34.49 34.57 33.91 32.46 30.93 30.2 29.05 27.82 23.97 23.95 32.71 32.74 32.64 32.6 32.58 32.39 32.15 31.9 31.61 31.32 31.43 31.8 NO3 2.29 2.38 2.4 2.41 2.36 2.25 2.16 2.11 2.07 2.07 1.64 1.64 2.27 2.26 2.26 2.26 2.26 2.25 2.24 2.23 2.21 2.2 2.2 2.22 PO4 2331.10 2324.80 2315.90 2306.20 2300.10 2290.90 2289.10 2286.40 2259.20 2259.80 2358.40 2359.10 2358.70 2357.60 2357.70 2358.10 2356.50 2356.10 2349.90 2350.20 2348.20 2343.40 TA 2359.55 2360.13 2350.14 2352.17 2348.82 2357.17 2353.04 2354.76 2362.40 2358.10 2375.91 2375.25 2376.28 2377.91 2365.47 2377.87 2375.91 2374.90 2367.83 2368.20 2364.48 2357.34 NTA 34.661 34.578 34.528 34.476 34.49 34.316 34.274 34.016 34.049 33.984 33.471 33.541 34.742 34.762 34.741 34.701 34.885 34.709 34.714 34.723 34.735 34.734 34.759 34.793 Sp 1023.091 1023.03 1022.984 1022.945 1022.955 1022.827 1022.789 1022.601 1022.624 1022.566 1022.18 1022.239 1023.153 1023.167 1023.154 1023.123 1023.265 1023.127 1023.134 1023.139 1023.149 1023.146 1023.164 1023.188 26.044 25.983 25.938 25.899 25.909 25.78 25.743 25.554 25.577 25.52 25.134 25.192 26.106 26.12 26.107 26.076 26.218 26.079 26.086 26.092 26.101 26.098 26.116 26.14 Meas 26.039 25.976 25.939 25.899 25.910 25.778 25.747 25.552 25.577 25.528 25.140 25.193 26.100 26.115 26.099 26.069 26.208 26.075 26.079 26.086 26.095 26.094 26.113 26.139 Calc 0.005 0.007 -0.001 0.000 -0.001 0.002 -0.004 0.002 0.000 -0.008 -0.006 -0.001 0.006 0.005 0.008 0.007 0.010 0.004 0.007 0.006 0.006 0.004 0.003 0.001 122 Stn 120 120 120 120 120 120 120 120 120 120 120 120 120 127 127 127 127 127 127 127 127 127 127 127 Cruise S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P Table A.1 cont. -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67.0001 -67.0001 -67.0001 -67.0001 -67.0001 -67.0001 -67.0001 -67.0001 -67.0001 -67.0001 -67.0001 -67.0001 Lat (N) -67.0001 depth 834.9 1035.1 1235.1 1434.3 1664.8 2084.9 2585.3 3100.8 3698.6 4300 4599.9 4699.6 4779.2 3.3 19.7 39.1 64.9 89.7 115.4 140.4 184.9 235 285 334.1 Long (E) -99.4874 -99.4874 -99.4874 -99.4874 -99.4874 -99.4874 -99.4874 -99.4874 -99.4874 -99.4874 -99.4874 -99.4874 -99.4874 -81.633 -81.633 -81.633 -81.633 -81.633 -81.633 -81.633 -81.633 -81.633 -81.633 -81.633 74.97 73.31 70.5 66 56.63 52.4 46.48 20.63 21.06 20.05 19.48 144.86 143.27 140.24 134.88 127.74 123.01 116.25 106.32 101.64 94.97 90.08 85.34 82.3 Si 34.23 34.69 34.76 34.76 33.39 31.48 30.01 24.04 23.52 23.26 23.14 32.7 32.68 32.56 32.43 32.43 32.32 32.1 31.74 31.5 31.44 31.45 31.5 32.14 NO3 2.35 2.38 2.38 2.37 2.28 2.17 2.13 1.64 1.57 1.55 1.52 2.24 2.24 2.24 2.24 2.24 2.23 2.2 2.19 2.18 2.18 2.18 2.19 2.23 PO4 2332.20 2327.20 2325.60 2318.20 2304.60 2295.70 2289.30 2273.80 2269.10 2266.80 2267.50 2361.10 2360.50 2360.20 2358.00 2355.80 2351.80 2350.20 2349.10 TA 2360.32 2358.53 2356.85 2340.54 2352.32 2349.47 2358.85 2362.92 2363.15 2359.63 2362.75 2379.94 2380.77 2378.14 2347.54 2362.48 2370.08 2358.62 2304.33 NTA 34.583 34.535 34.536 34.666 34.29 34.199 33.968 33.68 33.607 33.623 33.589 34.723 34.701 34.702 34.879 35.306 34.736 34.719 35.156 34.901 34.862 34.73 34.875 35.68 Sp 1023.027 1022.991 1022.994 1023.093 1022.805 1022.732 1022.559 1022.338 1022.283 1022.295 1022.27 1023.141 1023.125 1023.128 1023.254 1023.583 1023.149 1023.138 1023.461 1023.269 1023.245 1023.139 1023.252 1023.865 25.984 25.948 25.951 26.047 25.759 25.686 25.513 25.295 25.24 25.252 25.224 26.094 26.078 26.081 26.208 26.536 26.102 26.091 26.415 26.223 26.198 26.093 26.205 26.818 Meas 25.980 25.944 25.945 26.043 25.759 25.690 25.515 25.298 25.243 25.255 25.229 26.086 26.069 26.070 26.204 26.526 26.096 26.083 26.413 26.220 26.191 26.091 26.201 26.809 Calc 0.004 0.004 0.006 0.004 0.000 -0.004 -0.002 -0.003 -0.003 -0.003 -0.005 0.008 0.009 0.011 0.004 0.010 0.006 0.008 0.002 0.003 0.007 0.002 0.004 0.009 123 Stn 127 127 127 127 127 127 127 127 127 127 127 127 127 138 138 138 138 138 138 138 138 138 138 138 Cruise S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P Table A.1 cont. -66.9989 -66.9989 -66.9989 -66.9989 -66.9989 -66.9989 -66.9989 -66.9989 -66.9989 -66.9989 -66.9989 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 Lat (N) -67 depth 385.6 434.4 485.5 665.4 964.5 1265 1565.1 2165.3 2915 3499.7 3799.6 4100 4218.3 5.7 24.6 64.8 88.8 99.7 125.6 175.2 225.5 301 449.6 900.6 Long (E) -81.633 -81.633 -81.633 -81.633 -81.633 -81.633 -81.633 -81.633 -81.633 -81.633 -81.633 -81.633 -81.633 -73.0125 -73.0125 -73.0125 -73.0125 -73.0125 -73.0125 -73.0125 -73.0125 -73.0125 -73.0125 -73.0125 103.45 91.78 93.4 94.38 89.14 78.93 73.73 44.31 39.93 35.07 34.58 146.12 141.93 135.36 131.83 124.71 113.79 102.53 95.83 89.06 83.16 79.04 77.82 76.92 Si 31.64 31.5 32.84 33.52 33.19 31.31 28.95 23.12 21.85 22.55 22.54 32.79 32.68 32.46 32.31 32.21 31.77 31.31 31.26 31.52 32.32 33.14 33.5 33.85 NO3 2.18 2.18 2.28 2.34 2.31 2.19 2.08 1.62 1.5 1.54 1.52 2.25 2.25 2.24 2.24 2.24 2.22 2.19 2.19 2.2 2.24 2.28 2.3 2.32 PO4 2354.90 2349.20 2346.90 2333.40 2322.60 2307.10 2301.50 2299.60 2295.80 2298.50 2362.90 2361.90 2359.50 2358.60 2356.10 2351.00 2347.10 2342.50 2338.10 2336.00 2333.30 TA 2366.80 2358.77 2369.58 2365.02 2363.39 2365.08 2366.75 2361.96 2372.95 2375.89 2383.12 2382.11 2378.53 2377.62 2356.64 2369.21 2361.95 2356.10 2361.38 2360.62 2354.15 NTA 34.824 34.858 34.665 34.532 34.396 34.142 34.035 34.076 33.855 33.862 33.86 34.703 34.705 34.703 34.704 34.72 34.72 34.992 34.731 34.78 34.798 34.655 34.635 34.69 Sp 1023.21 1023.236 1023.09 1022.989 1022.881 1022.692 1022.613 1022.639 1022.476 1022.475 1022.477 1023.122 1023.123 1023.123 1023.121 1023.136 1023.133 1023.338 1023.14 1023.176 1023.192 1023.083 1023.069 1023.108 26.167 26.193 26.047 25.946 25.838 25.649 25.57 25.596 25.433 25.432 25.434 26.079 26.077 26.077 26.075 26.09 26.09 26.295 26.097 26.133 26.149 26.037 26.023 26.062 Meas 26.162 26.188 26.042 25.942 25.839 25.647 25.566 25.597 25.430 25.435 25.434 26.071 26.072 26.071 26.072 26.084 26.084 26.289 26.092 26.129 26.143 26.035 26.019 26.061 Calc 0.005 0.005 0.005 0.004 -0.001 0.002 0.004 -0.001 0.003 -0.003 0.000 0.008 0.005 0.006 0.003 0.006 0.006 0.006 0.005 0.004 0.006 0.002 0.004 0.001 124 Stn 138 138 138 140 140 140 140 140 140 140 140 140 2 2 2 2 2 2 2 2 2 2 2 2 Cruise S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P S4P P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 Table A.1 cont. 22.799 22.799 22.799 22.799 22.799 22.799 22.799 22.799 22.799 22.799 22.799 22.799 -67.0008 -67.0008 -67.0008 -67.0008 -67.0008 -67.0008 -67.0008 -67.0008 -67.0008 -66.9989 -66.9989 Lat (N) -66.9989 depth 1199.9 1518.8 1641.4 4.4 60.1 84.5 110 158.8 209.7 313.4 349.4 371.7 10.4 24.9 48.4 93.5 149.7 200.5 249.6 324.4 400.6 501.3 600.2 700.6 Long (E) -73.0125 -73.0125 -73.0125 -72.6794 -72.6794 -72.6794 -72.6794 -72.6794 -72.6794 -72.6794 -72.6794 -72.6794 -110.0015 -110.0015 -110.0015 -110.0015 -110.0015 -110.0015 -110.0015 -110.0015 -110.0015 -110.0015 -110.0015 -110.0015 84.5 77.3 63.6 51.6 44 42.4 38.6 32 27.4 3.8 3.3 2.9 97.72 102.6 104.67 95.72 88.22 74.06 40.5 36.01 30.62 115.83 114.16 109.86 Si 38.65 36.6 32.8 28.89 26.55 26.06 25.67 25.28 21.57 1.07 0.88 0.49 32.03 32.79 33.53 34.2 33.55 30.17 23 22.64 22.16 32.18 31.95 31.79 NO3 3.1 3.05 2.92 2.79 2.67 2.62 2.55 2.41 2.16 0.68 0.59 0.53 2.23 2.31 2.4 2.4 2.37 2.23 1.67 1.63 1.5 2.2 2.2 2.19 PO4 2343.70 2336.00 2324.80 2313.50 2312.80 2297.60 2297.70 2297.70 2319.50 2353.50 2349.70 2342.70 2351.70 2336.50 2320.40 2304.00 2298.00 2295.90 2360.90 2358.90 TA 2376.91 2368.83 2355.97 2340.79 2337.04 2316.33 2314.43 2320.78 2333.37 2342.92 2341.27 2336.62 2369.64 2347.70 2350.62 2360.17 2375.65 2374.11 2368.55 2377.79 NTA 34.511 34.515 34.537 34.592 34.637 34.717 34.747 34.652 34.792 35.158 35.126 35.091 34.735 34.753 34.691 34.833 34.55 34.167 34.168 33.856 33.847 34.887 34.718 34.722 Sp 1023.144 1023.158 1023.11 1023.22 1023.002 1022.712 1022.711 1022.48 1022.468 1023.259 1023.132 1023.135 26.101 26.115 26.067 26.177 25.959 25.669 25.668 25.437 25.425 26.216 26.089 26.092 Meas 25.926 25.929 25.945 25.987 26.021 26.081 26.104 26.032 26.138 26.415 26.390 26.364 26.095 26.109 26.062 26.169 25.955 25.666 25.667 25.431 25.424 26.210 26.082 26.085 Calc 0.004 0.002 0.003 0.000 0.001 0.002 0.000 0.000 -0.002 0.002 -0.002 -0.008 0.006 0.006 0.005 0.008 0.004 0.003 0.001 0.006 0.001 0.006 0.007 0.007 125 Stn 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 17 17 17 17 Cruise P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 Table A.1 cont. 15 15 15 15.583 20.2488 20.2488 20.2488 20.2488 20.2488 20.2488 20.2488 20.2488 20.2488 20.2488 20.2488 20.2488 20.2488 20.2488 20.2488 20.2488 20.2488 20.2488 22.799 Lat (N) 22.799 depth 799.3 855.4 5.3 19.8 40.9 91.3 116 182.8 249.5 399.1 475 568.1 700.4 849.3 1150.9 1333.1 1861.7 2667.2 3066.5 3285.8 5.2 13.7 28.2 47.9 Long (E) -110.0015 -110.0015 -109.9988 -109.9988 -109.9988 -109.9988 -109.9988 -109.9988 -109.9988 -109.9988 -109.9988 -109.9988 -109.9988 -109.9988 -109.9988 -109.9988 -109.9988 -109.9988 -109.9988 -109.9988 -110.0002 -110.0005 -110.0005 -110.0005 9.1 1.4 1.2 1.1 169.9 169.7 166.9 156.1 132.6 122.3 96.1 84.1 73.1 62 51.9 37.7 33.8 26.8 19.2 2.4 1.7 1.6 96.6 94.2 Si 14.54 0.29 0.1 0 38.63 38.73 38.92 41.17 43.71 44.2 43.03 40.29 36.2 32.68 30.54 23.31 24.48 24.68 20.88 0.1 0 0 41.19 40.7 NO3 1.36 0.16 0.14 0.12 2.57 2.59 2.6 2.85 3.13 3.23 3.24 3.16 3.06 2.95 2.81 2.57 2.51 2.31 1.83 0.34 0.18 0.15 3.17 3.16 PO4 2281.60 2244.90 2242.80 2430.80 2434.30 2433.00 2429.80 2422.10 2390.90 2362.70 2337.10 2331.70 2331.70 2319.90 2314.20 2304.40 2297.80 2271.50 2271.00 2303.70 2303.70 2298.40 2354.60 2351.80 TA 2319.64 2319.45 2318.38 2513.09 2457.54 2456.23 2453.28 2447.98 2420.22 2393.33 2369.05 2364.88 2364.12 2350.25 2343.26 2323.99 2314.93 2299.22 2317.62 2320.34 2328.99 2324.17 2387.82 2385.12 NTA 34.426 33.875 33.859 33.854 34.669 34.669 34.665 34.63 34.576 34.552 34.528 34.509 34.52 34.548 34.566 34.705 34.741 34.578 34.296 34.749 34.62 34.612 34.513 34.511 Sp Meas 25.861 25.445 25.433 25.429 26.045 26.045 26.042 26.015 25.975 25.957 25.938 25.924 25.932 25.954 25.967 26.072 26.099 25.976 25.763 26.105 26.008 26.002 25.927 25.926 Calc 0.002 -0.005 0.002 0.001 0.014 0.012 0.011 0.012 0.009 0.009 0.008 0.006 0.005 0.001 0.003 0.002 0.000 -0.007 0.000 0.002 0.001 0.000 0.004 0.005 126 Stn 17 17 17 17 17 17 17 17 17 17 17 17 17 17 26 26 26 26 26 26 26 26 26 26 Cruise P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 Table A.1 cont. 9.7517 9.7517 9.7517 9.7517 9.7517 9.7517 9.7517 9.7517 9.7517 9.7517 15 15 15 15 15 15 15 15 15 15 15 15 15 Lat (N) 15 depth 67.6 88.2 108.7 134.1 183.3 267.5 317.1 633.7 833.7 1033 1467.8 2665.9 3580.3 3757.5 4.9 12.4 27.1 46.7 66.9 86.3 107.1 133.2 183.6 267.2 Long (E) -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0007 -110.0007 -110.0007 -110.0007 -110.0007 -110.0007 -110.0007 -110.0007 -110.0007 -110.0007 33.4 29.2 27.2 25.7 22 9.7 2.9 1.2 1.1 1.1 163.5 163.8 164.3 135.6 106.8 92.6 75.2 38.1 35.3 32 28.5 26.6 24.9 19.9 Si 32.31 32.6 31.72 30.94 28.99 14.84 3.22 0.1 0 0 37.37 37.28 38.74 43.23 44.79 43.62 38.65 28.59 26.44 24.98 24.69 25.76 25.76 25.27 NO3 2.54 2.4 2.42 2.41 2.36 1.25 0.4 0.13 0.14 0.09 2.45 2.43 2.58 3.05 3.25 3.24 3.13 2.59 2.53 2.47 2.42 2.39 2.36 2.23 PO4 2323.80 2298.00 2309.30 2298.20 2271.40 2190.40 2190.40 2190.00 2175.50 2430.50 2430.50 2402.90 2371.60 2338.50 2304.60 2303.30 2303.40 2301.50 2295.20 2295.20 2291.50 TA 2342.00 2313.20 2322.91 2315.47 2298.99 2241.64 2320.55 2321.39 2306.86 2452.86 2452.79 2430.89 2402.28 2369.10 2326.74 2322.81 2319.77 2316.46 2309.92 2311.78 2315.58 NTA 34.728 34.77 34.793 34.795 34.739 34.58 34.2 33.037 33.019 33.007 34.681 34.682 34.668 34.597 34.553 34.542 34.548 34.667 34.706 34.753 34.774 34.777 34.749 34.636 Sp Meas 26.090 26.121 26.139 26.140 26.098 25.978 25.691 24.812 24.799 24.790 26.054 26.055 26.044 25.991 25.957 25.949 25.954 26.043 26.073 26.108 26.124 26.127 26.105 26.020 Calc -0.002 -0.003 -0.002 -0.001 0.000 -0.002 0.000 -0.001 0.000 -0.003 0.012 0.013 0.008 0.005 0.002 0.005 0.005 -0.003 -0.001 0.002 0.001 0.000 -0.005 0.002 127 Stn 26 26 26 26 26 26 26 26 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 Cruise P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 Table A.1 cont. 5.0345 5.0345 5.0345 5.0345 5.0345 5.0345 5.0345 5.0345 5.0345 5.0345 5.0345 5.0345 5.0345 5.0345 5.0345 5.0345 9.7517 9.7517 9.7517 9.7517 9.7517 9.7517 9.7517 Lat (N) 9.7517 depth 317.3 632.8 1033.3 1467.6 2667.5 3034.5 3583.8 3694.1 4.8 9.8 25.4 49.8 73.9 99.7 123.6 150.3 200.7 300.6 351 701.9 1095.9 1606 2798.1 3249.7 Long (E) -110.0007 -110.0007 -110.0007 -110.0007 -110.0007 -110.0007 -110.0007 -110.0007 -109.9905 -109.9905 -109.9905 -109.9905 -109.9905 -109.9905 -109.9905 -109.9905 -109.9905 -109.9905 -109.9905 -109.9905 -109.9905 -109.9905 -109.9905 -109.9905 160.3 162.4 137 100.9 68.4 34.4 35.1 28 23.8 16 10.6 6.4 3 2.7 2.6 2.5 161.1 161.2 162.6 162.3 131.4 108 72.3 37.4 Si 37.19 38.46 40.9 41.78 42.76 34.06 34.26 30.74 28.01 23.13 14.93 8.59 2.93 2.34 2.34 2.25 36.99 36.99 37.77 38.36 41.39 43.63 40.7 31.23 NO3 2.52 2.64 2.93 3.03 3.16 2.36 2.5 2.11 1.99 1.57 1.09 0.63 0.29 0.24 0.23 0.22 2.52 2.5 2.61 2.66 3 3.24 3.27 2.69 PO4 2434.80 2434.50 2393.20 2364.80 2321.60 2302.90 2299.30 2300.30 2288.10 2297.00 2016.80 2243.60 2237.70 2237.70 2237.70 2239.30 2454.40 2454.40 2455.80 2395.70 2326.80 TA 2456.98 2457.46 2419.54 2394.21 2350.89 2323.01 2318.38 2316.72 2308.95 2303.98 2034.12 2279.62 2302.57 2305.62 2305.68 2307.54 2476.76 2476.83 2478.82 2423.19 2347.32 NTA 34.684 34.673 34.619 34.57 34.564 34.697 34.712 34.752 34.684 34.894 34.702 34.447 34.014 33.969 33.968 33.965 34.684 34.683 34.675 34.671 34.603 34.568 34.565 34.694 Sp Meas 26.056 26.048 26.007 25.970 25.966 26.066 26.077 26.108 26.056 26.215 26.070 25.877 25.550 25.516 25.515 25.513 26.056 26.056 26.049 26.046 25.995 25.969 25.966 26.064 Calc 0.007 0.006 0.004 -0.001 -0.003 0.000 -0.005 -0.007 -0.005 -0.007 -0.005 -0.003 -0.005 0.008 0.007 0.007 0.007 0.004 0.006 0.001 -0.002 128 Stn 34 34 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 55 55 55 55 Cruise P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 Table A.1 cont. -5.0125 -5.0125 -5.0125 -5.0125 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.4998 5.0345 Lat (N) 5.0345 depth 3749.2 4005.2 5.6 12.9 26 55.3 68.2 89.7 107.4 130.2 183 266.7 317.7 629 1032.7 1467.5 2665.4 3067.5 3586.1 3857.4 5 13 26.8 46.4 Long (E) -109.9905 -109.9905 -110.004 -109.9775 -109.9775 -109.9775 -109.9775 -109.9775 -109.9775 -109.9775 -109.9775 -109.9775 -109.9775 -109.9775 -109.9775 -109.9775 -109.9775 -109.9775 -109.9775 -109.9775 -110.0005 -110.0005 -110.0005 -110.0005 6.3 6.1 6.2 6.2 154.4 155.8 154.6 154 119.7 84.9 50.8 25.8 24.2 20.7 17.9 17.1 16.3 17.8 18.3 10.2 3.8 3.7 158.9 158.4 Si 12.01 11.82 11.82 11.82 36.04 36.23 37.11 37.89 40.04 39.75 39.17 30.66 29.1 25 21.78 20.41 19.72 20.99 22.46 13.97 4.3 4.2 36.31 36.41 NO3 0.89 0.85 0.84 0.84 2.45 2.42 2.52 2.64 2.86 2.82 2.73 2.1 1.99 1.71 1.49 1.4 1.35 1.43 1.51 1.02 0.42 0.41 2.42 2.42 PO4 2309.80 2312.30 2312.30 2309.70 2427.30 2430.90 2426.30 2417.70 2388.40 2342.60 2310.80 2291.00 2306.00 2307.60 2305.30 2305.40 2303.60 2303.60 2304.50 2244.20 2244.20 2435.00 2438.50 2435.50 TA 2308.35 2311.24 2311.77 2309.24 2448.64 2452.48 2448.83 2440.92 2416.15 2372.70 2338.46 2299.87 2314.13 2314.54 2310.12 2310.09 2306.96 2309.87 2310.71 2271.65 2311.02 2508.17 2460.22 2457.19 NTA 35.022 35.016 35.008 35.007 34.695 34.692 34.678 34.667 34.598 34.556 34.586 34.865 34.877 34.895 34.927 34.929 34.949 34.905 34.906 34.577 33.988 33.979 34.691 34.691 Sp Meas 26.312 26.307 26.301 26.300 26.065 26.062 26.052 26.043 25.991 25.960 25.982 26.193 26.202 26.216 26.240 26.241 26.257 26.223 26.224 25.975 25.530 25.524 26.062 26.062 Calc -0.002 -0.006 -0.008 -0.001 0.004 0.005 0.007 0.007 0.008 0.001 -0.008 -0.008 0.002 -0.003 -0.006 -0.006 -0.005 -0.005 -0.002 -0.003 0.005 129 Stn 55 55 55 55 55 55 55 55 55 55 55 55 55 55 67 67 67 67 67 67 67 67 67 67 Cruise P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 Table A.1 cont. -5.833 -5.833 -5.833 -5.833 -5.833 -5.833 -5.833 -5.833 -5.833 -5.833 -5.0125 -5.0125 -5.0125 -5.0125 -5.0125 -5.0125 -5.0125 -5.0125 -5.0125 -5.0125 -5.0125 -5.0125 -5.0125 Lat (N) -5.0125 depth 66.9 86.2 107.8 133.5 182.9 266.3 317.5 632.4 1033.6 1431.6 2466.6 2832.9 3299.3 3589.6 7.1 14.7 33.3 59.1 80.6 107.4 133.6 157.1 216.7 317.2 Long (E) -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -110.0005 -108.84 -108.84 -108.84 -108.84 -108.84 -108.84 -108.84 -108.84 -108.84 -108.84 31.9 23.8 11.5 3.8 1.5 1.7 2.4 1.5 1.3 1.3 151.3 151.2 150.6 149.5 117.8 84.9 54.6 28.4 27 23.5 18.8 12.4 9.6 7.5 Si 35.07 28.42 21.39 12.3 2.54 2.83 6.54 7.52 7.52 7.52 36.15 36.15 36.83 37.91 39.67 38.99 42.99 32.73 32.82 31.94 29.21 22.76 18.46 12.4 NO3 2.54 2.5 1.99 1.08 0.52 0.53 0.71 0.64 0.64 0.6 2.49 2.45 2.52 2.64 2.82 2.75 2.98 2.4 2.36 2.22 2.03 1.79 1.54 1.05 PO4 2374.60 2374.60 2374.60 2374.60 2374.60 2374.60 2374.60 2374.60 2374.60 2374.60 2431.10 2429.20 2423.40 2420.00 2376.50 2351.00 2317.20 2301.20 2299.00 2300.80 2306.30 2312.60 2314.00 2309.80 TA 2391.34 2387.42 2366.96 2323.03 2319.85 2328.63 2333.33 2333.53 2333.40 2452.83 2450.98 2445.76 2443.25 2404.18 2381.48 2345.62 2311.04 2306.64 2305.41 2304.59 2306.41 2302.88 2304.53 NTA 34.755 34.812 35.113 35.777 35.826 35.691 35.619 35.616 35.618 34.69 34.689 34.68 34.667 34.597 34.552 34.576 34.851 34.884 34.93 35.026 35.094 35.169 35.08 Sp Meas 26.110 26.153 26.381 26.882 26.920 26.817 26.763 26.761 26.762 26.061 26.060 26.053 26.043 25.991 25.957 25.975 26.182 26.207 26.242 26.315 26.366 26.423 26.356 Calc 0.001 0.001 0.004 -0.008 -0.006 -0.006 -0.007 -0.003 -0.004 -0.007 0.013 0.007 0.011 0.008 0.009 0.006 0.001 -0.001 0.001 -0.003 -0.004 -0.005 -0.003 -0.008 130 Stn 67 67 67 67 67 67 67 67 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 Cruise P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 Table A.1 cont. -15.2498 -15.2498 -15.2498 -15.2498 -15.2498 -15.2498 -15.2498 -15.2498 -15.2498 -15.2498 -15.2498 -15.2498 -15.2498 -15.2498 -15.2498 -15.2498 -10.0002 -10.0002 -10.0002 -10.0002 -10.0002 -10.0002 -5.833 Lat (N) -5.833 depth 362.8 731.6 1265 2066.8 3234.2 3833.4 4332.1 4622.3 5.3 15 32.8 57.9 83.2 108.4 132.9 157.8 217.4 315.9 366.8 732.4 1132.3 1666.3 2867 3332.6 Long (E) -108.84 -108.84 -103.0003 -103.0003 -103.0003 -103.0003 -103.0003 -103.0003 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 145.5 138.8 123.9 93.4 56.4 28.2 24.8 2.7 0.9 1 0.8 0.9 0.8 1.1 1.5 1.5 153.3 153.2 153.3 152.5 142.3 105.3 61.3 34.4 Si 36.73 36.44 39.66 42.01 43.28 34.97 29.6 10.25 1.37 1.37 0.78 0.68 0.1 2.15 4.68 4.68 37.02 37.02 37.12 37.22 38.49 40.54 43.96 36.92 NO3 2.53 2.51 2.81 3.01 3.04 2.72 2.67 0.96 0.49 0.49 0.42 0.41 0.34 0.41 0.54 0.54 2.46 2.46 2.47 2.51 2.65 2.87 3.06 2.65 PO4 2425.00 2414.50 2337.90 2298.50 2363.20 2364.00 2368.70 2378.00 2378.70 2375.00 2364.10 2364.10 2366.80 2431.10 2374.60 2374.60 TA 2447.31 2436.85 2368.35 2321.99 2364.21 2315.12 2315.19 2320.06 2317.78 2310.57 2300.16 2308.63 2310.36 2453.39 2406.29 2394.03 NTA 34.681 34.679 34.616 34.55 34.509 34.646 34.662 34.985 35.739 35.809 35.874 35.92 35.976 35.973 35.841 35.855 34.682 34.681 34.679 34.68 34.651 34.577 34.539 34.716 Sp Meas 26.054 26.053 26.005 25.955 25.924 26.028 26.040 26.284 26.854 26.907 26.956 26.991 27.033 27.031 26.931 26.941 26.055 26.054 26.053 26.053 26.031 25.975 25.947 26.080 Calc 0.010 0.007 0.008 0.006 0.002 -0.001 -0.001 -0.005 -0.006 -0.002 0.002 -0.005 -0.002 0.002 -0.004 -0.004 0.011 0.007 0.012 0.008 0.008 0.004 0.002 0.000 131 Stn 76 76 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 110 110 110 110 Cruise P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 Table A.1 cont. -35.0842 -35.0842 -35.0842 -35.0842 -19.9153 -19.9153 -19.9153 -19.9153 -19.9153 -19.9153 -19.9153 -19.9153 -19.9153 -19.9153 -19.9153 -19.9153 -19.9153 -19.9153 -19.9153 -19.9153 -19.9153 -19.3323 -15.2498 Lat (N) -15.2498 depth 3832.6 4066.7 4.8 12.7 20 41 66.3 92.7 116.3 142.6 189.9 280.4 332.6 665.8 1065.9 1733.9 2931.9 3416.6 3904.9 4181.4 5.2 46.3 86.2 132.6 Long (E) -103.0002 -103.0002 -103.0007 -103.001 -103.001 -103.001 -103.001 -103.001 -103.001 -103.001 -103.001 -103.001 -103.001 -103.001 -103.001 -103.001 -103.001 -103.001 -103.001 -103.001 -103.0005 -103.0005 -103.0005 -103.0005 0.9 0.7 0.6 0.5 137.2 137 136.2 132.8 117.7 73.2 29.9 10.6 2.7 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 152.1 151.2 Si 5.22 1.77 0.46 1.18 36.03 35.84 35.84 35.93 38.87 40.24 34.77 20.61 11.03 0.68 0.29 0.2 0.2 0.2 0.2 0.2 0.2 0.2 37.31 37.02 NO3 0.46 0.23 0.14 0.18 2.46 2.44 2.45 2.45 2.71 2.79 2.36 1.77 0.93 0.3 0.27 0.25 0.24 0.24 0.25 0.25 0.25 0.25 2.56 2.54 PO4 2276.40 2279.30 2281.70 2420.00 2406.80 2407.80 2402.50 2385.40 2334.40 2289.10 2276.00 2284.00 2362.30 2362.60 2366.30 2366.30 2375.40 2377.10 2377.10 2323.40 2316.09 2316.98 2441.56 2428.03 2429.39 2424.53 2412.28 2367.61 2331.81 2313.88 2310.34 2316.30 2310.84 2312.58 2312.07 2320.76 2316.54 2315.77 2316.32 2355.48 2418.00 2377.80 2452.72 NTA 2430.30 TA 34.292 34.444 34.467 34.517 34.691 34.694 34.689 34.682 34.61 34.509 34.359 34.427 34.601 35.695 35.784 35.813 35.821 35.824 35.915 35.927 35.929 35.929 34.68 34.68 Sp Meas 25.760 25.875 25.892 25.930 26.062 26.064 26.060 26.055 26.000 25.924 25.811 25.862 25.994 26.820 26.888 26.910 26.916 26.918 26.987 26.996 26.997 26.997 26.053 26.053 Calc -0.004 -0.006 -0.003 -0.004 0.005 0.008 0.009 0.008 0.009 0.006 0.001 0.003 -0.001 0.001 0.003 -0.001 0.004 -0.003 -0.001 -0.006 -0.004 -0.003 0.010 0.010 132 Stn 110 110 110 110 110 110 110 110 110 110 110 110 110 110 120 120 120 120 120 120 120 120 120 120 Cruise P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 Table A.1 cont. -40.9155 -40.9155 -40.9155 -40.9155 -40.9155 -40.9155 -40.9155 -40.9155 -40.9155 -40.9155 -35.0842 -35.0842 -35.0842 -35.0842 -35.0842 -35.0842 -35.0842 -35.0842 -35.0842 -35.0842 -35.0842 -35.0842 -35.0842 Lat (N) -35.0842 depth 183.1 267.4 367.2 533.6 732.8 933.8 1132.8 1332 1665.9 2066.8 2466.9 2865.7 3332.1 3593.6 5.5 41.2 92.3 190.6 282.3 384.2 467.8 566.4 665.7 867.9 Long (E) -103.0005 -103.0005 -103.0005 -103.0005 -103.0005 -103.0005 -103.0005 -103.0005 -103.0005 -103.0005 -103.0005 -103.0005 -103.0005 -103.0005 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 22.4 12 9.9 8.6 7.8 6.4 3.4 1.4 1.2 1.2 123.6 124 123.2 119.8 111.7 98.7 77.8 53.8 27.2 13.1 8.8 6.4 3.6 1.4 Si 28.9 25 23.53 22.95 22.36 21.97 19.04 11.82 9.77 10.26 34.23 34.2 34.24 34.28 35.05 36.55 37.56 35.39 30.56 26 23.38 22.26 17.9 10.6 NO3 1.87 1.58 1.49 1.44 1.4 1.38 1.2 0.8 0.66 0.68 2.26 2.25 2.27 2.28 2.34 2.47 2.54 2.36 1.99 1.65 1.47 1.41 1.15 0.72 PO4 2286.20 2277.70 2281.30 2281.30 2282.10 2265.40 2267.20 2258.50 2303.70 2238.60 2283.20 2334.56 2326.22 2329.42 2327.52 2327.72 2327.10 2331.41 2330.68 2344.84 2285.02 2331.56 2314.97 2318.54 2272.50 2269.40 2315.80 NTA 2271.80 TA 34.275 34.27 34.277 34.305 34.314 34.294 34.21 34.072 34.036 33.916 34.691 34.691 34.687 34.679 34.643 34.578 34.489 34.386 34.289 34.274 34.311 34.305 34.335 34.331 Sp Meas 25.747 25.744 25.749 25.770 25.777 25.762 25.698 25.594 25.567 25.476 26.062 26.062 26.059 26.053 26.025 25.976 25.909 25.831 25.758 25.747 25.774 25.770 25.793 25.790 Calc 0.001 -0.005 -0.003 0.000 -0.003 0.000 0.000 0.000 -0.001 -0.003 0.009 0.009 0.008 0.006 0.006 0.005 0.002 0.001 0.000 -0.002 -0.002 -0.001 -0.003 -0.004 133 Stn 120 120 120 120 120 120 120 120 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 Cruise P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 Table A.1 cont. -45.5842 -45.5842 -45.5842 -45.5842 -45.5842 -45.5842 -45.5842 -45.5842 -45.5842 -45.5842 -45.5842 -45.5842 -45.5842 -45.5842 -45.5842 -45.5842 -40.9155 -40.9155 -40.9155 -40.9155 -40.9155 -40.9155 -40.9155 Lat (N) -40.9155 depth 1067.1 1332.5 1732.1 2134.3 2535 2933.9 3417.2 4182.4 9.2 58.6 107.8 157.9 216.9 316.8 432.4 632.6 833.2 1032.8 1233.7 1466.9 1867.6 2266.4 2666.2 3082.6 Long (E) -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -103.0002 -102.9998 -102.9998 -102.9998 -102.9998 -102.9998 -102.9998 -102.9998 -102.9998 -102.9998 -102.9998 -102.9998 -102.9998 -102.9998 -102.9998 -102.9998 -102.9998 117.4 112.5 102.8 92.2 72.7 52.8 34.3 19.8 10.6 8.1 7 5.5 3.5 1.9 1.3 0.9 131.4 125.3 118.3 115.8 101.2 93.4 72 40.3 Si 33.28 33.58 33.87 34.85 35.63 34.27 31.73 28.22 24.31 22.46 21.77 20.89 18.84 15.43 14.16 13.67 32.9 33.19 33.39 33.68 33.78 35.54 36.71 32.61 NO3 2.31 2.33 2.36 2.43 2.48 2.38 2.19 1.94 1.68 1.56 1.51 1.46 1.35 1.17 1.07 1.03 2.16 2.18 2.2 2.23 2.22 2.37 2.47 2.14 PO4 2387.20 2374.80 2357.80 2353.00 2338.10 2312.30 2298.50 2285.30 2281.60 2281.70 2274.30 2272.70 2268.10 2269.60 2267.80 2260.60 2384.10 2386.50 2387.50 2365.70 2300.30 TA 2407.49 2395.40 2379.90 2379.65 2372.67 2353.66 2343.09 2334.46 2330.13 2327.99 2319.84 2320.98 2321.15 2327.39 2328.13 2325.24 2403.95 2406.92 2408.77 2388.77 2345.13 NTA 34.705 34.699 34.675 34.608 34.49 34.385 34.334 34.263 34.271 34.304 34.313 34.272 34.2 34.131 34.093 34.027 34.711 34.707 34.703 34.691 34.662 34.58 34.469 34.331 Sp Meas 26.072 26.068 26.049 25.999 25.910 25.830 25.792 25.738 25.744 25.769 25.776 25.745 25.691 25.638 25.610 25.560 26.077 26.074 26.071 26.062 26.040 25.978 25.894 25.790 Calc 0.008 0.007 0.007 0.007 0.006 0.007 0.000 0.000 0.001 0.001 -0.003 -0.002 -0.003 -0.007 -0.001 -0.003 0.007 0.010 0.008 0.008 0.009 0.008 0.004 0.001 134 Stn 128 128 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 140 140 140 140 Cruise P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 Table A.1 cont. -52.582 -52.582 -52.582 -51.9997 -48.9405 -48.9405 -48.9405 -48.9405 -48.9405 -48.9405 -48.9405 -48.9405 -48.9405 -48.9405 -48.9405 -48.9405 -48.9405 -48.9405 -48.9405 -48.9405 -48.9405 -48.9405 -45.5842 Lat (N) -45.5842 -102.9987 -102.9987 -102.9987 -103.0005 -103.0658 -103.0658 -103.0658 -103.0658 -103.0658 -103.0658 -103.0658 -103.0658 -103.0658 -103.0658 -103.0658 -103.0658 -103.0658 -103.0658 -103.0658 -103.0658 -103.0658 -103.0658 108.5 57.9 32.9 5 4153.1 3943.5 3734.8 3332.9 2935.3 2532.7 2132.4 1732.1 1398.5 1165.3 999.7 701.1 433 273.5 140.3 81.6 33.3 4.6 3926.3 3583 -102.9998 -102.9998 depth Long (E) 3.7 1.1 1.3 1.3 136.8 133.3 128.4 117.8 114.9 107.6 95.6 81.4 64.3 47.4 34.5 14.6 7.5 6.4 2.9 2.2 1.9 1.9 129.1 125.5 Si 18.45 16.49 16.69 16.69 32.99 32.89 32.99 32.79 33.28 33.28 33.48 34.16 34.46 33.09 31.24 25.77 21.57 20.6 17.28 16.01 15.72 15.72 33.09 33.19 NO3 1.36 1.19 1.18 1.18 2.29 2.29 2.29 2.3 2.33 2.34 2.36 2.41 2.41 2.3 2.18 1.8 1.53 1.46 1.3 1.21 1.18 1.18 2.3 2.29 PO4 2273.70 2276.70 2274.70 2379.20 2386.00 2386.00 2370.70 2373.50 2374.40 2365.70 2365.70 2326.90 2311.20 2311.20 2300.40 2283.00 2286.20 2276.30 2274.70 2275.50 2275.60 2271.50 2401.40 TA 2328.59 2332.14 2331.18 2438.20 2405.93 2405.80 2390.23 2393.05 2394.24 2386.08 2388.08 2354.69 2347.69 2354.32 2346.53 2331.84 2333.06 2321.60 2329.14 2331.73 2333.33 2329.13 2421.53 NTA 34.175 34.168 34.152 34.153 34.71 34.712 34.714 34.714 34.71 34.701 34.672 34.587 34.456 34.359 34.312 34.267 34.297 34.317 34.182 34.156 34.134 34.134 34.709 34.708 Sp Meas 0.004 0.007 0.002 -0.002 -0.003 0.000 -0.002 0.000 -0.001 0.001 0.003 0.004 0.006 0.007 0.008 0.007 0.008 0.010 0.008 0.008 -0.003 -0.001 -0.002 -0.001 Calc 26.074 26.075 25.641 25.641 25.657 25.677 25.779 25.764 25.741 25.775 25.811 25.884 25.983 26.047 26.069 26.076 26.079 26.079 26.077 26.076 25.655 25.654 25.666 25.672 135 Stn 140 140 140 140 140 140 140 140 140 140 140 140 140 149 149 149 149 149 149 149 149 149 149 149 Cruise P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 Table A.1 cont. -57.7502 -57.7502 -57.7502 -57.7502 -57.7502 -57.7502 -57.7502 -57.7502 -57.7502 -57.7502 -57.7502 -52.582 -52.582 -52.582 -52.582 -52.582 -52.582 -52.582 -52.582 -52.582 -52.582 -52.582 -52.582 Lat (N) -52.582 depth 142.6 195.5 348.2 550.1 1167.9 1396.9 1732 2531.2 2934.3 3330.1 3732.1 4133.2 4400.6 5.3 32.8 82.7 132.1 217.4 317 433 630.5 832.4 1066.9 1466.5 Long (E) -102.9987 -102.9987 -102.9987 -102.9987 -102.9987 -102.9987 -102.9987 -102.9987 -102.9987 -102.9987 -102.9987 -102.9987 -102.9987 -102.9995 -102.9995 -102.9995 -102.9995 -102.9995 -102.9995 -102.9995 -102.9995 -102.9995 -102.9995 -102.9995 81.1 67.8 52.8 37.3 23.8 15 11.4 7.9 3.5 3.4 3.4 138.4 135.9 125.9 114.7 113.8 105.4 81.9 65.8 49.8 10.8 7.4 4.9 4.5 Si 33.75 34.53 33.76 31.81 29.08 26.44 24.79 22.35 20.3 20.3 20.4 33.27 33.27 33.17 32.88 33.37 33.46 34.64 34.84 33.67 24.2 21.86 20.11 19.23 NO3 2.32 2.39 2.33 2.19 1.99 1.83 1.72 1.64 1.46 1.45 1.45 2.28 2.27 2.26 2.25 2.3 2.3 2.39 2.39 2.31 1.67 1.52 1.42 1.4 PO4 2337.10 2328.30 2306.40 2266.70 2289.10 2278.40 2276.80 2276.50 2275.10 2281.70 2275.30 2379.50 2376.10 2373.50 2373.50 2374.30 2354.10 2325.30 2310.90 2310.90 2281.00 2279.40 2269.70 2269.70 TA 2362.00 2363.07 2349.15 2315.52 2341.76 2338.74 2336.62 2339.60 2338.71 2346.39 2339.67 2399.52 2395.95 2393.12 2392.64 2394.14 2374.04 2352.79 2346.70 2353.46 2331.97 2328.29 2322.79 2322.93 NTA 34.631 34.485 34.363 34.262 34.213 34.097 34.104 34.056 34.048 34.035 34.037 34.708 34.71 34.713 34.72 34.71 34.706 34.591 34.466 34.367 34.235 34.265 34.2 34.198 Sp Meas 26.016 25.906 25.814 25.737 25.700 25.613 25.618 25.582 25.576 25.566 25.567 26.074 26.076 26.078 26.084 26.076 26.073 25.986 25.892 25.817 25.717 25.740 25.691 25.689 Calc 0.002 0.002 0.002 0.001 0.002 0.002 -0.002 -0.002 -0.002 0.001 -0.002 0.011 0.010 0.011 0.009 0.009 0.008 0.008 0.006 0.005 0.001 0.001 -0.001 0.000 136 Stn 149 149 149 149 149 149 149 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 157 Cruise P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 Table A.1 cont. -61.7503 -61.7503 -61.7503 -61.7503 -61.7503 -61.7503 -61.7503 -61.7503 -61.7503 -61.7503 -61.7503 -61.7503 -61.7503 -61.7503 -61.7503 -61.7503 -61.7503 -57.7502 -57.7502 -57.7502 -57.7502 -57.7502 -57.7502 Lat (N) -57.7502 depth 1867.3 2267 2666.8 3082.3 3582.7 4081.7 4725.6 5.1 23.9 72.4 100.4 147.7 300.9 399.5 647.2 800.2 1100.4 1299.7 1598.8 2400 3399.7 3899.7 4399.3 4898.2 Long (E) -102.9995 -102.9995 -102.9995 -102.9995 -102.9995 -102.9995 -102.9995 -103.0003 -103.0003 -103.0003 -103.0003 -103.0003 -103.0003 -103.0003 -103.0003 -103.0003 -103.0003 -103.0003 -103.0003 -103.0003 -103.0003 -103.0003 -103.0003 -103.0003 144.5 138.9 133 128.4 111.5 91.9 86.2 82.7 75.2 67.6 44.8 34.5 21.9 19 14.5 5.3 5.2 139.8 135 125.9 115.7 102 100.1 89.5 Si 32.9 32.8 32.7 32.51 32.02 31.82 32.51 33.39 34.66 34.86 32.62 30.86 28.52 26.86 25.59 24.22 24.22 32.87 32.68 32.48 32.19 0.005 31.99 32.38 NO3 2.25 2.25 2.24 2.23 2.2 2.18 2.23 2.28 2.37 2.38 2.23 2.12 1.97 1.94 1.89 1.59 1.59 2.26 2.26 2.24 2.22 2.22 2.23 PO4 2363.90 2362.40 2362.40 2362.50 2360.10 2351.60 2348.10 2344.00 2334.10 2313.10 2301.80 2292.50 2281.90 2281.90 2283.40 2280.60 2280.60 2365.10 2365.30 2368.60 2365.90 2366.30 2356.00 2351.10 TA 2384.34 2382.69 2382.55 2382.38 2378.72 2370.15 2368.54 2367.13 2364.23 2349.01 2354.75 2353.07 2350.12 2351.78 2353.74 2352.52 2352.80 2385.27 2385.20 2388.05 2384.77 2385.11 2374.59 2370.95 NTA 34.7 34.702 34.704 34.708 34.726 34.726 34.698 34.658 34.554 34.465 34.213 34.099 33.984 33.96 33.954 33.93 33.926 34.704 34.708 34.715 34.723 34.724 34.726 34.707 Sp Meas 26.068 26.070 26.071 26.074 26.088 26.088 26.067 26.037 25.958 25.891 25.700 25.614 25.527 25.509 25.505 25.487 25.484 26.071 26.074 26.080 26.086 26.087 26.088 26.074 Calc 0.010 0.010 0.009 0.008 0.005 0.006 0.005 0.009 0.006 0.008 0.003 0.001 0.001 0.002 -0.001 -0.002 0.000 0.006 0.005 0.004 0.004 0.008 0.005 137 Stn 157 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 173 173 173 173 173 Cruise P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 Table A.1 cont. -67.0005 -67.0005 -67.0005 -67.0005 -67.0005 -65.7492 -65.7492 -65.7492 -65.7492 -65.7492 -65.7492 -65.7492 -65.7492 -65.7492 -65.7492 -65.7492 -65.7492 -65.7492 -65.7492 -65.7492 -65.7492 -65.7492 -65.2488 Lat (N) -61.7503 depth 4977.7 4.1 19.2 41.9 66.8 92.2 131.7 275.6 466.7 750.9 1050.3 1500.4 2266.6 2734.6 3232.9 3732.7 4232.1 4733.1 4945.6 33.4 57.6 83.5 116.3 173.1 Long (E) -103.0003 -102.9987 -103.0008 -103.0008 -103.0008 -103.0008 -103.0008 -103.0008 -103.0008 -103.0008 -103.0008 -103.0008 -103.0008 -103.0008 -103.0008 -103.0008 -103.0008 -103.0008 -103.0008 -107.2502 -107.2502 -107.2502 -107.2502 -107.2502 46.6 36.8 29.1 9.8 7.6 150 143.4 138.9 133.8 128.5 121.2 113 95.2 85.6 80 68.7 50.6 27.2 23 5.3 4.6 4.2 4.2 144.8 Si 31.83 29.78 27.05 24.8 24.51 32.89 32.89 32.79 32.69 32.6 32.3 32.01 31.62 32.5 33.87 34.85 33.29 28.71 26.85 24.31 24.02 23.93 23.93 32.9 NO3 2.17 2.06 2 1.57 1.51 2.26 2.25 2.25 2.24 2.24 2.22 2.2 2.17 2.23 2.33 2.38 2.27 2.04 1.99 1.55 1.49 1.48 1.46 2.26 PO4 2285.60 2285.60 2281.20 2283.80 2283.80 2361.80 2359.80 2359.10 2358.60 2358.60 2357.50 2356.10 2348.90 2343.40 2337.10 2315.80 2301.50 2284.20 2284.20 2276.30 2279.80 2279.60 2364.40 2363.70 TA 2343.24 2351.30 2351.96 2357.91 2357.98 2382.08 2380.06 2379.15 2378.58 2378.31 2376.58 2374.62 2367.02 2363.93 2362.89 2351.54 2351.90 2352.28 2354.36 2352.94 2357.60 2357.81 2445.52 2384.07 NTA 34.139 34.022 33.947 33.9 33.899 34.702 34.702 34.705 34.706 34.71 34.719 34.727 34.732 34.696 34.618 34.468 34.25 33.987 33.957 33.86 33.845 33.839 33.839 34.701 Sp Meas 25.645 25.556 25.500 25.464 25.463 26.070 26.070 26.072 26.073 26.076 26.083 26.089 26.093 26.065 26.006 25.893 25.728 25.530 25.507 25.434 25.422 25.418 25.418 26.069 Calc 0.003 0.003 0.000 0.001 -0.002 0.011 0.011 0.007 0.008 0.010 0.007 0.006 0.006 0.006 0.006 0.004 0.004 0.005 0.004 0.002 0.001 0.001 0.002 0.008 138 Stn 173 173 173 173 173 173 173 173 173 173 173 173 173 8 8 8 8 8 8 8 8 8 8 8 Cruise P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P18 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 Table A.1 cont. -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -67.0005 -67.0005 -67.0005 -67.0005 -67.0005 -67.0005 -67.0005 -67.0005 -67.0005 -67.0005 -67.0005 -67.0005 Lat (N) -67.0005 depth 332.2 549.1 699.3 850 1000.1 1166.9 1733.1 2531.8 3331.9 3765.5 4266.4 4701.7 4723.1 3.6 26.5 46.9 73 97.6 124.2 149.3 199.5 250 300.6 351.5 Long (E) -107.2502 -107.2502 -107.2502 -107.2502 -107.2502 -107.2502 -107.2502 -107.2502 -107.2502 -107.2502 -107.2502 -107.2502 -107.2502 154 154 154 154 154 154 154 154 154 154 154 3.79 3.21 2.83 2.04 1.67 1.08 0.71 1.38 0 0.01 0.26 145.1 144.7 141.2 135.7 131.4 121.4 105.1 91.7 87.7 84.6 82.3 78.7 68.1 Si 11.52 9.73 8.4 6.29 4.7 2.84 2.07 3.77 0.07 0 0 34.06 32.98 32.89 32.89 32.69 32.4 31.91 31.91 32.1 32.69 33.18 34.06 34.84 NO3 0.94 0.83 0.74 0.61 0.51 0.39 0.34 0.43 0.16 0.12 0.13 2.25 2.24 2.24 2.23 2.23 2.21 2.17 2.16 2.19 2.22 2.25 2.31 2.37 PO4 2311.40 2315.00 2319.30 2324.20 2328.40 2333.70 2329.80 2323.20 2325.00 2323.40 2321.50 2357.70 2281.20 2281.20 2355.60 2355.10 2356.00 2354.50 2333.30 2341.10 2336.70 2336.70 2330.30 2323.20 TA 2297.55 2296.95 2294.45 2293.98 2287.23 2297.27 2288.48 2289.06 2279.03 2291.97 2289.64 2377.81 2300.72 2300.72 2375.62 2374.78 2375.27 2372.74 2351.58 2360.46 2357.45 2359.49 2356.90 2360.22 NTA 35.211 35.275 35.379 35.461 35.63 35.555 35.632 35.522 35.706 35.48 35.487 34.704 34.703 34.703 34.705 34.71 34.716 34.731 34.728 34.713 34.692 34.662 34.605 34.451 Sp 1023.496 1023.544 1023.622 1023.684 1023.811 1023.758 1023.816 1023.733 1023.871 1023.701 1023.705 26.451 26.499 26.577 26.639 26.766 26.713 26.771 26.688 26.826 26.654 26.658 Meas 26.455 26.503 26.582 26.644 26.771 26.715 26.773 26.690 26.829 26.658 26.663 26.071 26.071 26.071 26.072 26.076 26.080 26.092 26.090 26.078 26.062 26.040 25.997 25.880 Calc -0.004 -0.004 -0.005 -0.005 -0.005 -0.002 -0.002 -0.002 -0.003 -0.004 -0.005 0.009 0.009 0.007 0.008 0.006 0.008 0.006 0.006 0.005 0.005 0.001 0.002 139 Stn 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 Cruise P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 Table A.1 cont. -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 -30.08 Lat (N) -30.08 depth 401.7 453.7 503.8 605.6 706.7 808.7 910 1011.4 1114 1215.3 1317.8 1418.9 1519.2 1620.4 1823.6 2016.9 2269.3 2523.9 2780.6 3038.1 3345.3 3649.9 3957.9 4213.1 Long (E) 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 119.45 118.83 116.71 114.58 109.44 103.85 100.01 96.82 93.42 93.89 93.5 90.53 83.91 77.08 65.77 56.42 43.28 32.3 24.32 17.2 11.58 7.64 6.42 5.43 Si 33.66 33.58 33.51 33.43 33.2 33.13 33.1 33.43 34.03 34.93 35.68 35.76 35.48 34.94 33.89 32.88 31.36 29.57 27.74 25.49 22.52 18.93 17.04 14.79 NO3 2.33 2.32 2.31 2.31 2.29 2.29 2.31 2.33 2.37 2.43 2.48 2.49 2.47 2.45 2.37 2.29 2.18 2.06 1.95 1.8 1.61 1.39 1.28 1.14 PO4 2380.80 2378.10 2381.30 2377.90 2370.10 2366.30 2362.20 2394.60 2366.40 2364.70 2362.90 2361.20 2247.20 2350.20 2339.40 2328.10 2314.50 2301.30 2298.40 2295.00 2291.70 2292.30 2295.60 2301.10 TA 2399.45 2396.86 2400.02 2394.52 2388.11 2375.19 2378.17 2414.05 2387.00 2387.21 2388.63 2388.57 2275.35 2380.95 2371.59 2362.39 2350.56 2334.45 2326.05 2325.77 2318.66 2308.53 2302.24 2302.22 NTA 34.728 34.726 34.727 34.757 34.736 34.869 34.765 34.718 34.698 34.67 34.623 34.599 34.567 34.548 34.525 34.492 34.463 34.503 34.584 34.537 34.593 34.754 34.899 34.983 Sp 1023.132 1023.133 1023.131 1023.156 1023.138 1023.241 1023.164 1023.125 1023.11 1023.088 1023.056 1023.035 1023.011 1022.998 1022.982 1022.953 1022.931 1022.96 1023.023 1022.985 1023.03 1023.152 1023.26 1023.321 26.09 26.091 26.089 26.114 26.096 26.199 26.122 26.083 26.068 26.046 26.011 25.99 25.966 25.953 25.937 25.908 25.886 25.915 25.978 25.94 25.985 26.107 26.215 26.276 Meas 26.090 26.088 26.089 26.112 26.096 26.196 26.118 26.082 26.067 26.046 26.010 25.992 25.968 25.954 25.936 25.911 25.889 25.920 25.981 25.945 25.988 26.109 26.219 26.282 Calc 0.000 0.003 0.000 0.002 0.000 0.003 0.004 0.001 0.001 0.000 0.001 -0.002 -0.002 -0.001 0.001 -0.003 -0.003 -0.005 -0.003 -0.005 -0.003 -0.002 -0.004 -0.006 140 Stn 8 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 Cruise P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 Table A.1 cont. -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 Lat (N) -30.08 depth 4503 4.8 20.7 41.3 65.6 91.4 116.9 141.6 185.8 236.6 287.1 337 386.6 436.8 487.1 568.1 669.2 770.5 871.8 971 1073.2 1175.1 1275.2 1375.9 Long (E) 154 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 71.06 59.23 47.25 31.9 22.47 16.69 12.31 9.13 6.96 5.78 4.6 4.42 3.24 2.67 2.28 1.5 0.92 0.94 0.56 0.37 0.38 0.4 0.41 120.49 Si 33.39 32.79 31.85 29.7 27.69 25.93 24.13 22.29 19.92 17.84 15.99 13.67 9.88 8.66 7.3 5.1 3.32 2.59 1.19 0 0 0 0 33.69 NO3 2.34 2.29 2.22 2.06 1.92 1.8 1.68 1.55 1.41 1.27 1.16 1 0.77 0.7 0.62 0.48 0.36 0.32 0.23 0.11 0.09 0.1 0.11 2.33 PO4 2346.50 2329.70 2317.50 2302.30 2294.60 2292.60 2287.70 2287.30 2287.70 2297.00 2295.20 2304.90 2311.00 2315.40 2320.20 2328.70 2330.80 2334.30 2332.10 2335.60 2334.70 2333.60 2331.70 2386.70 TA 2377.89 2365.66 2353.27 2341.64 2335.71 2332.45 2325.64 2320.18 2306.15 2304.24 2309.85 2304.31 2298.65 2296.89 2293.98 2294.54 2285.42 2296.12 2291.76 2295.72 2292.45 2290.86 2290.99 2396.90 NTA 34.538 34.468 34.468 34.412 34.384 34.402 34.429 34.504 34.72 34.89 34.778 35.009 35.188 35.282 35.4 35.521 35.695 35.582 35.616 35.608 35.645 35.653 35.622 34.851 Sp 1022.993 1022.939 1022.937 1022.892 1022.871 1022.884 1022.906 1022.961 1023.128 1023.252 1023.167 1023.342 1023.478 1023.549 1023.638 1023.728 1023.86 1023.777 1023.802 1023.798 1023.824 1023.829 1023.805 1023.224 25.946 25.892 25.892 25.847 25.826 25.839 25.86 25.915 26.082 26.206 26.121 26.296 26.432 26.503 26.592 26.682 26.814 26.731 26.756 26.752 26.778 26.783 26.759 26.182 Meas 25.946 25.893 25.893 25.851 25.830 25.843 25.864 25.920 26.084 26.212 26.127 26.302 26.437 26.508 26.597 26.689 26.821 26.735 26.761 26.755 26.783 26.789 26.765 26.183 Calc 0.000 -0.001 -0.001 -0.004 -0.004 -0.004 -0.004 -0.005 -0.002 -0.006 -0.006 -0.006 -0.005 -0.005 -0.005 -0.007 -0.007 -0.004 -0.005 -0.003 -0.005 -0.006 -0.006 -0.001 141 Stn 58 58 58 58 58 58 58 58 58 58 58 58 58 78 78 78 78 78 78 78 78 78 78 78 Cruise P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 Table A.1 cont. -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 -30.0806 Lat (N) -30.0806 depth 1478.6 1578.8 1680.9 1780.2 1952.4 2187.5 2442.7 2696.8 2950.4 3241.2 3547.9 3754.7 3948.3 3.6 35.8 61.2 86.1 117.2 164.7 216.3 265.9 316.7 367.3 436.3 Long (E) 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 175.0001 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 6.02 5.29 4.75 3.84 2.55 2.96 2.04 1.51 0.98 0.81 1.03 126.29 126.31 125.92 125.11 123.88 122.03 119.15 114.41 109.05 103.27 98.55 91.56 82.73 Si 17.83 15.51 13.7 11.55 7.26 8.43 4.84 2.02 0 0 0.03 35.05 35.05 34.95 34.85 34.84 34.89 34.94 34.84 34.64 34.38 34.29 34.03 33.79 NO3 1.3 1.15 1.05 0.92 0.67 0.73 0.52 0.36 0.15 0.14 0.15 2.46 2.46 2.46 2.46 2.46 2.46 2.46 2.45 2.44 2.43 2.42 2.4 2.37 PO4 2292.30 2296.80 2303.40 2307.60 2313.30 2316.80 2322.90 2323.90 2325.40 2329.10 2338.80 2410.70 2409.10 2410.60 2404.40 2403.70 2402.00 2397.50 2391.70 2385.10 2380.00 2375.30 2368.20 2356.70 TA 2312.45 2307.28 2306.96 2303.78 2300.09 2300.70 2297.82 2296.47 2295.49 2296.68 2302.03 2430.77 2430.49 2427.59 2425.82 2425.88 2424.23 2420.32 2408.35 2410.10 2406.19 2402.48 2396.96 2387.12 NTA 34.695 34.841 34.946 35.058 35.201 35.245 35.382 35.418 35.456 35.494 35.559 34.711 34.692 34.755 34.691 34.68 34.679 34.67 34.758 34.637 34.619 34.604 34.58 34.554 Sp 1023.101 1023.213 1023.295 1023.375 1023.487 1023.519 1023.621 1023.651 1023.679 1023.707 1023.759 1023.129 1023.113 1023.159 1023.113 1023.103 1023.105 1023.095 1023.157 1023.067 1023.052 1023.047 1023.028 1023.003 26.059 26.171 26.253 26.333 26.445 26.477 26.579 26.609 26.637 26.665 26.717 26.082 26.066 26.112 26.066 26.056 26.058 26.048 26.11 26.02 26.005 26 25.981 25.956 Meas 26.065 26.175 26.254 26.339 26.447 26.480 26.584 26.611 26.640 26.669 26.718 26.077 26.062 26.110 26.062 26.053 26.053 26.046 26.112 26.021 26.007 25.996 25.978 25.958 Calc -0.006 -0.004 -0.001 -0.006 -0.002 -0.003 -0.005 -0.002 -0.003 -0.004 -0.001 0.005 0.004 0.002 0.004 0.003 0.005 0.002 -0.002 -0.001 -0.002 0.004 0.003 -0.002 142 Stn 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 Cruise P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 Table A.1 cont. -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 Lat (N) -32.4999 depth 537.8 639.6 740.7 842.8 944.3 1046.4 1248.3 1450 1648.9 1854.5 2055.3 2309.2 2577.8 2935 3239.8 3549.2 3855.1 4161.9 4472.4 4782.2 5092.5 5401.2 5705.9 6025.3 Long (E) -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 -177.6698 121.56 121.58 121.4 121.43 120.85 120.08 118.32 115.19 109.7 105.98 107.58 120.58 113.91 108.03 101.57 91.4 72.3 49.86 31.08 22.15 14.79 10.08 8.79 6.75 Si 31.81 31.62 31.51 31.54 31.53 31.57 31.46 31.3 31.24 31.52 32.41 35.05 34.79 34.65 34.44 33.85 33.51 32.04 29.2 27.41 25.14 23.4 21.99 19.96 NO3 2.23 2.23 2.23 2.23 2.23 2.22 2.22 2.21 2.21 2.22 2.3 2.49 2.47 2.46 2.44 2.4 2.37 2.26 2.05 1.93 1.78 1.64 1.56 1.43 PO4 2367.80 2366.50 2366.10 2368.40 2367.50 2365.80 2364.90 2365.30 2364.50 2365.60 2373.90 2400.00 2391.60 2388.90 2380.70 2369.20 2346.20 2320.10 2306.20 2295.80 2290.70 2286.20 2286.00 2287.80 TA 2386.83 2385.86 2385.39 2385.37 2386.25 2384.95 2379.79 2383.89 2382.81 2384.06 2393.46 2423.05 2400.65 2414.21 2406.97 2397.14 2367.58 2357.76 2346.15 2336.86 2330.99 2324.66 2319.20 2318.07 NTA 34.721 34.716 34.717 34.751 34.725 34.719 34.781 34.727 34.731 34.729 34.714 34.667 34.868 34.633 34.618 34.592 34.684 34.441 34.404 34.385 34.395 34.421 34.499 34.543 Sp 1023.133 1023.129 1023.129 1023.157 1023.136 1023.131 1023.175 1023.136 1023.139 1023.135 1023.126 1023.091 1023.243 1023.063 1023.055 1023.035 1023.1 1022.918 1022.888 1022.874 1022.877 1022.894 1022.954 1022.986 26.088 26.084 26.084 26.112 26.091 26.086 26.13 26.091 26.094 26.09 26.081 26.046 26.198 26.018 26.01 25.99 26.055 25.873 25.843 25.829 25.835 25.852 25.912 25.944 Meas 26.084 26.081 26.081 26.107 26.087 26.083 26.130 26.089 26.092 26.090 26.079 26.044 26.195 26.018 26.007 25.987 26.056 25.873 25.845 25.831 25.838 25.858 25.917 25.950 Calc 0.004 0.003 0.003 0.005 0.004 0.003 0.000 0.002 0.002 0.000 0.002 0.002 0.003 0.000 0.003 0.003 -0.001 0.000 -0.002 -0.002 -0.003 -0.006 -0.005 -0.006 143 Stn 78 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 Cruise P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 Table A.1 cont. -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 Lat (N) -32.4999 depth 6128.5 4.5 19.2 39.7 64.6 87.6 134.3 184.8 235.7 286.2 336.1 387.8 469 571.5 667.3 769.6 870.9 973.2 1069.2 1172.1 1274.1 1375.8 1478.1 1581 Long (E) -177.6698 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 79.55 71.15 60.9 50.68 38.64 28.94 21.13 14.99 10.72 7.68 6.27 5.29 4.3 3.71 3.13 2.75 2.17 1.39 1.01 0.62 0.46 0.49 0.52 121.95 Si 34.03 33.74 33.42 32.72 31.51 30.01 28.25 26.22 24.33 22.46 21.13 19.03 16.28 13.8 11.14 10.3 8.18 4.79 3.48 0 0 0 0 31.74 NO3 2.4 2.38 2.36 2.31 2.21 2.1 1.97 1.83 1.69 1.56 1.48 1.34 1.16 1.01 0.83 0.78 0.65 0.43 0.34 0.13 0.09 0.08 0.08 2.23 PO4 2350.90 2341.70 2327.20 2321.20 2309.60 2300.80 2293.30 2289.00 2287.50 2295.00 2282.10 2287.20 2287.70 2303.40 2310.20 2308.60 2317.50 2324.70 2330.90 2333.70 2333.40 2334.90 2333.00 2369.90 TA 2379.04 2365.22 2346.17 2360.45 2351.93 2344.82 2338.67 2333.33 2329.50 2334.69 2318.33 2315.65 2302.77 2309.93 2305.13 2299.86 2299.76 2295.51 2296.39 2298.37 2292.98 2298.07 2295.94 2385.85 NTA 34.586 34.652 34.717 34.418 34.37 34.343 34.321 34.335 34.369 34.405 34.453 34.57 34.771 34.901 35.077 35.133 35.27 35.445 35.526 35.538 35.617 35.561 35.565 34.766 Sp 1023.028 1023.075 1023.126 1022.898 1022.862 1022.844 1022.826 1022.834 1022.859 1022.886 1022.922 1023.01 1023.166 1023.262 1023.395 1023.437 1023.54 1023.672 1023.736 1023.745 1023.803 1023.759 1023.767 1023.169 25.982 26.029 26.08 25.852 25.816 25.798 25.78 25.788 25.813 25.84 25.876 25.964 26.12 26.216 26.349 26.391 26.494 26.626 26.69 26.699 26.757 26.713 26.721 26.124 Meas 25.982 26.032 26.081 25.855 25.819 25.799 25.782 25.793 25.818 25.846 25.882 25.970 26.122 26.220 26.353 26.396 26.499 26.632 26.693 26.702 26.762 26.719 26.722 26.118 Calc 0.000 -0.003 -0.001 -0.003 -0.003 -0.001 -0.002 -0.005 -0.005 -0.006 -0.006 -0.006 -0.002 -0.004 -0.004 -0.005 -0.005 -0.006 -0.003 -0.003 -0.005 -0.006 -0.001 0.006 144 Stn 100 100 100 100 100 100 100 100 100 100 100 100 100 122 122 122 122 122 122 122 122 122 122 122 Cruise P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 Table A.1 cont. -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 Lat (N) -32.5 depth 1749.5 1954 2183.9 2440.4 2698.1 2950.1 3237.5 3548.7 3858.6 4165 4474 4578.6 4774.8 5.7 25 51.2 75.2 101.2 150.7 196.9 249.3 298.4 348.8 401.6 Long (E) -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -166.3721 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 3.83 3.08 2.34 1.58 0.84 0.1 -0.05 0.02 0.08 0.14 0.2 119.49 119.08 118.26 114.87 111.07 115.55 126.44 129.44 127.33 122.89 115.88 106.35 93.45 Si 18.19 16.18 13.4 10.11 5.76 1.23 0 0 0 0 0 31.55 31.5 31.55 31.41 31.51 32.64 34.28 34.99 35.24 35.24 35.05 34.72 34.4 NO3 1.32 1.2 1.04 0.82 0.55 0.26 0.14 0.11 0.1 0.1 0.1 2.22 2.21 2.22 2.21 2.22 2.31 2.43 2.49 2.51 2.51 2.5 2.47 2.44 PO4 2284.40 2287.80 2291.60 2308.60 2310.40 2312.10 2316.40 2316.80 2319.10 2316.90 2321.10 2367.40 2364.30 2365.70 2365.30 2366.90 2385.70 2403.90 2410.40 2410.00 2404.60 2396.10 2381.70 2370.20 TA 2318.72 2316.52 2311.28 2315.55 2301.98 2297.27 2300.82 2297.70 2294.84 2301.45 2299.48 2386.90 2378.37 2370.31 2358.76 2382.21 2383.79 2425.45 2432.99 2433.22 2428.47 2419.74 2407.36 2391.52 NTA 34.482 34.566 34.702 34.895 35.128 35.226 35.237 35.291 35.37 35.235 35.329 34.714 34.793 34.932 35.097 34.775 35.028 34.689 34.675 34.666 34.656 34.658 34.627 34.688 Sp 1022.944 1023.007 1023.11 1023.259 1023.436 1023.507 1023.516 1023.558 1023.615 1023.512 1023.584 1023.126 1023.187 1023.293 1023.415 1023.175 1023.361 1023.109 1023.1 1023.092 1023.081 1023.086 1023.064 1023.108 25.9 25.963 26.066 26.215 26.392 26.463 26.472 26.514 26.571 26.468 26.54 26.08 26.141 26.247 26.369 26.129 26.315 26.063 26.054 26.046 26.035 26.04 26.018 26.062 Meas 25.904 25.967 26.070 26.216 26.392 26.466 26.474 26.515 26.575 26.473 26.544 26.079 26.139 26.244 26.369 26.125 26.316 26.060 26.050 26.043 26.035 26.037 26.013 26.059 Calc -0.004 -0.004 -0.004 -0.001 0.000 -0.003 -0.002 -0.001 -0.004 -0.005 -0.004 0.001 0.002 0.003 0.000 0.004 -0.001 0.003 0.004 0.003 0.000 0.003 0.005 0.003 145 Stn 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 Cruise P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 Table A.1 cont. -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 Lat (N) -32.4999 depth 502.3 605.2 700.7 802.6 904 1006.3 1108.1 1204.2 1310.3 1413.8 1616.9 1815.4 2019.6 2270.8 2529.5 2784.7 3038 3340.3 3651.8 3956.7 4260.8 4570.9 4883.2 5191.1 Long (E) -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 -149.3 118.03 118.09 117.73 119.02 119.49 120.99 123.74 126.28 126.33 123.9 118.35 110.13 100.48 87.57 68.75 58.17 47.21 37.7 27.18 18.31 12.29 8.5 6.74 5.18 Si 31.97 32.02 32.22 32.58 32.94 33.5 34.27 34.93 35.29 35.5 35.4 35.05 35.01 34.71 34.26 33.86 33.01 31.91 30.01 27.62 25.4 23.29 21.93 20.42 NO3 2.25 2.25 2.27 2.3 2.32 2.36 2.42 2.47 2.5 2.51 2.51 2.49 2.48 2.45 2.42 2.38 2.32 2.23 2.1 1.94 1.78 1.64 1.56 1.47 PO4 2370.60 2375.10 2373.30 2378.90 2385.50 2388.90 2394.40 2402.40 2389.30 2402.10 2396.80 2391.90 2378.60 2363.20 2339.70 2327.60 2317.10 2306.50 2299.70 2288.40 2285.90 2283.80 2282.90 2283.60 TA 2389.99 2394.53 2383.52 2398.71 2390.42 2407.82 2411.70 2424.36 2400.62 2423.01 2420.52 2416.62 2403.39 2391.83 2368.05 2365.04 2357.86 2350.01 2344.38 2329.80 2330.99 2317.57 2315.58 2321.27 NTA 34.716 34.716 34.85 34.711 34.928 34.725 34.749 34.683 34.835 34.698 34.657 34.642 34.639 34.581 34.581 34.446 34.395 34.352 34.333 34.378 34.323 34.49 34.506 34.432 Sp 1023.127 1023.127 1023.229 1023.126 1023.29 1023.136 1023.154 1023.104 1023.219 1023.116 1023.086 1023.073 1023.069 1023.025 1023.023 1022.919 1022.882 1022.849 1022.834 1022.867 1022.825 1022.952 1022.963 1022.908 26.081 26.081 26.183 26.08 26.244 26.09 26.108 26.058 26.173 26.07 26.04 26.027 26.023 25.979 25.977 25.873 25.836 25.803 25.788 25.821 25.779 25.906 25.917 25.864 Meas 26.081 26.081 26.182 26.077 26.241 26.087 26.106 26.056 26.171 26.067 26.036 26.025 26.022 25.979 25.979 25.877 25.838 25.806 25.791 25.825 25.784 25.910 25.922 25.866 Calc 0.000 0.000 0.001 0.003 0.003 0.003 0.002 0.002 0.002 0.003 0.004 0.002 0.001 0.000 -0.002 -0.004 -0.002 -0.003 -0.003 -0.004 -0.005 -0.004 -0.005 -0.002 146 Stn 122 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 Cruise P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 Table A.1 cont. -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 Lat (N) -32.4999 depth 5671.6 3.2 25.9 49.8 74.4 101.3 151.4 200.8 252.1 301.8 352.1 403.7 451.4 503.9 602.5 705.3 807.9 907.9 1010.8 1111.9 1213.9 1312.6 1411.5 1516.1 Long (E) -149.3 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 76.04 65.66 55.91 47.8 39.93 30.26 37.34 14.43 10.45 7.88 6.31 5.73 4.96 3.98 2.61 1.63 0.86 0.29 0.31 0.33 0.35 0.18 0.39 118.19 Si 34.26 34.1 33.6 32.94 32.08 30.82 30.66 26.39 24.35 22.77 21.61 20.87 20.03 18.42 14.51 10.21 5.54 1.36 0 0 0 0 0 31.91 NO3 2.41 2.39 2.35 2.3 2.23 2.13 2.13 1.82 1.68 1.58 1.5 1.46 1.41 1.31 1.07 0.8 0.52 0.27 0.14 0.13 0.12 0.11 0.11 2.25 PO4 2347.20 2316.40 2287.40 2282.80 2282.90 2283.80 2294.50 2311.00 2312.10 2313.50 2376.90 TA 2379.29 2357.08 2331.77 2326.47 2323.53 2320.13 2309.74 2304.55 2302.10 2300.75 2385.69 NTA 34.528 34.492 34.434 34.396 34.361 34.329 34.369 34.334 34.317 34.343 34.371 34.388 34.404 34.452 34.601 34.769 34.913 34.977 35.098 35.13 35.152 35.194 35.194 34.871 Sp 1022.986 1022.957 1022.912 1022.883 1022.855 1022.831 1022.861 1022.834 1022.821 1022.841 1022.863 1022.875 1022.886 1022.923 1023.034 1023.16 1023.268 1023.319 1023.411 1023.435 1023.448 1023.48 1023.483 1023.247 25.939 25.91 25.865 25.836 25.808 25.784 25.814 25.787 25.774 25.794 25.816 25.831 25.842 25.879 25.99 26.116 26.224 26.275 26.367 26.391 26.404 26.436 26.439 26.201 Meas 25.939 25.911 25.868 25.839 25.812 25.788 25.818 25.792 25.779 25.799 25.820 25.833 25.845 25.881 25.994 26.121 26.229 26.278 26.369 26.393 26.410 26.442 26.442 26.198 Calc 0.000 -0.001 -0.003 -0.003 -0.004 -0.004 -0.004 -0.005 -0.005 -0.005 -0.004 -0.002 -0.003 -0.002 -0.004 -0.005 -0.005 -0.003 -0.002 -0.002 -0.006 -0.006 -0.003 0.003 147 Stn 143 143 143 143 143 143 143 143 143 143 143 143 143 184 184 184 184 184 184 184 184 184 184 184 Cruise P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 Table A.1 cont. -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 Lat (N) -32.4999 depth 1615.2 1817.6 2023.1 2275.6 2531 2786.2 3040.2 3346 3654.4 3961.7 4267.3 4421.9 4544.3 8.5 20 39.5 64.3 90.5 113.7 139.2 164.3 190.8 215.6 239.8 Long (E) -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -136.9567 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 1.15 0.81 0.47 0.33 0.39 0.24 0.3 0.36 0.41 0.47 0.53 118.98 118.79 118.6 120.26 122.33 122.96 123.17 122.78 121.57 117.49 110.14 99.11 84.19 Si 9.49 6.38 4.06 0.96 0.39 0.03 0.03 0.02 0.02 0.02 0.02 32.56 32.56 32.67 33.06 33.76 34.09 34.42 34.76 34.92 35.14 34.97 34.81 34.59 NO3 0.81 0.63 0.5 0.31 0.25 0.19 0.14 0.13 0.13 0.13 0.13 2.26 2.27 2.27 2.31 2.37 2.39 2.42 2.44 2.47 2.47 2.46 2.45 2.43 PO4 2289.90 2290.50 2306.90 2314.30 2326.50 2345.20 2387.50 2399.30 2398.70 2396.10 2389.20 TA 2316.77 2316.64 2311.92 2310.14 2309.61 2364.45 2407.79 2421.23 2421.60 2420.23 2414.03 NTA 34.535 34.616 34.594 34.621 34.605 34.762 34.924 35.078 35.063 35.16 35.256 34.715 34.714 34.705 34.705 34.696 34.689 34.683 34.678 34.669 34.651 34.64 34.618 34.563 Sp 1022.987 1023.047 1023.03 1023.053 1023.039 1023.156 1023.279 1023.395 1023.384 1023.457 1023.531 1023.128 1023.128 1023.121 1023.121 1023.116 1023.109 1023.103 1023.101 1023.094 1023.081 1023.072 1023.054 1023.012 25.94 26 25.983 26.006 25.992 26.109 26.232 26.348 26.337 26.41 26.484 26.083 26.083 26.076 26.076 26.071 26.064 26.058 26.056 26.049 26.034 26.025 26.007 25.965 Meas 25.944 26.005 25.988 26.009 25.997 26.115 26.238 26.354 26.343 26.416 26.489 26.080 26.079 26.072 26.072 26.066 26.060 26.056 26.052 26.045 26.031 26.023 26.007 25.965 Calc -0.004 -0.005 -0.005 -0.003 -0.005 -0.006 -0.006 -0.006 -0.006 -0.006 -0.005 0.003 0.004 0.004 0.004 0.005 0.004 0.002 0.004 0.004 0.003 0.002 0.000 0.000 148 Stn 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 Cruise P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 Table A.1 cont. -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 -32.4985 Lat (N) -32.4985 depth 286.2 336.4 386.8 436.6 488.1 567.3 668.8 770.9 870.6 973.6 1072.4 1173.2 1276.8 1376 1478.9 1580 1680.8 1781.5 1885.2 1986.2 2158.3 2361.9 2565.4 2708.1 Long (E) -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 -109.9707 119.81 119.65 118.43 114.93 108.5 103.35 96.32 91.8 87.49 83.18 77.65 67.18 57.78 44.54 30.59 20.37 13.82 10.09 8.15 7.61 6.67 5.14 3.61 2.08 Si 35.17 35.23 35.28 35.39 35.34 35.29 35.24 35.35 35.86 36.59 37.15 37.04 36.65 35.09 32.8 29.49 27.24 25.24 24.04 23.93 23.29 21.62 18.76 14.46 NO3 2.43 2.44 2.44 2.45 2.45 2.44 2.45 2.46 2.49 2.54 2.58 2.57 2.53 2.42 2.26 2.03 1.87 1.74 1.66 1.66 1.62 1.54 1.36 1.1 PO4 2399.10 2386.00 2368.80 2352.60 2332.40 2303.80 2289.10 2285.20 2280.60 2281.60 TA 2421.24 2410.03 2396.12 2385.04 2370.81 2349.65 2337.18 2331.84 2326.26 2320.65 NTA 34.683 34.675 34.68 34.669 34.651 34.638 34.624 34.601 34.588 34.551 34.524 34.481 34.433 34.376 34.317 34.289 34.28 34.269 34.3 34.332 34.31 34.313 34.34 34.411 Sp 1023.105 1023.099 1023.101 1023.094 1023.081 1023.075 1023.063 1023.047 1023.035 1023.008 1022.987 1022.954 1022.916 1022.874 1022.825 1022.804 1022.797 1022.789 1022.81 1022.836 1022.818 1022.82 1022.84 1022.895 26.061 26.055 26.057 26.05 26.037 26.027 26.015 25.999 25.987 25.96 25.939 25.906 25.868 25.826 25.779 25.758 25.751 25.743 25.764 25.79 25.772 25.774 25.794 25.848 Meas 26.056 26.050 26.053 26.045 26.031 26.022 26.011 25.994 25.984 25.956 25.935 25.903 25.867 25.824 25.779 25.758 25.751 25.743 25.766 25.790 25.774 25.776 25.797 25.850 Calc 0.005 0.005 0.004 0.005 0.006 0.005 0.004 0.005 0.003 0.004 0.004 0.003 0.001 0.002 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 -0.002 -0.003 -0.002 149 Stn 184 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 199 Cruise P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 Table A.1 cont. -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 Lat (N) -32.4985 depth 2845.5 5 21.6 39.4 63.5 88.7 113.5 138.8 184.8 235.9 286.4 335.4 386.7 437.9 486.2 569.8 669.4 769.9 871.4 970.7 1072 1172.8 1276.9 1375.5 Long (E) -109.9707 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 78.32 71.04 56.87 41.99 28.22 18.34 11.89 8.41 7.11 6.01 5.69 3.81 1.54 0.63 0 0 0 0 0 0 0 0 0.16 120.18 Si 37.95 37.85 36.9 34.8 31.72 29.11 26.57 24.48 23.57 22.83 22.89 20.56 15.33 10.47 6.18 2.06 0 0 0 0 0 0 0 35.16 NO3 2.71 2.7 2.62 2.45 2.22 2.02 1.84 1.69 1.64 1.6 1.63 1.49 1.15 0.85 0.59 0.36 0.2 0.18 0.18 0.17 0.17 0.16 0.16 2.43 PO4 2304.00 2402.70 TA 2310.27 2424.80 NTA 34.519 34.509 34.428 34.377 34.305 34.27 34.323 34.281 34.312 34.335 34.297 34.297 34.355 34.491 34.563 34.728 34.929 34.956 35.021 35.04 35.014 34.862 34.905 34.681 Sp 1022.976 1022.968 1022.907 1022.867 1022.813 1022.786 1022.826 1022.795 1022.819 1022.838 1022.808 1022.808 1022.851 1022.955 1023.006 1023.133 1023.283 1023.306 1023.355 1023.367 1023.35 1023.232 1023.266 1023.103 25.93 25.922 25.861 25.821 25.767 25.74 25.78 25.749 25.773 25.792 25.763 25.763 25.806 25.91 25.961 26.088 26.238 26.261 26.31 26.322 26.305 26.187 26.221 26.059 Meas 25.932 25.924 25.863 25.824 25.770 25.744 25.784 25.752 25.775 25.793 25.764 25.764 25.808 25.911 25.965 26.090 26.242 26.262 26.311 26.325 26.306 26.191 26.223 26.054 Calc -0.002 -0.002 -0.002 -0.003 -0.003 -0.004 -0.004 -0.003 -0.002 -0.001 -0.001 -0.001 -0.002 -0.001 -0.004 -0.002 -0.004 -0.001 -0.001 -0.003 -0.001 -0.004 -0.002 0.005 150 Stn 199 199 199 199 199 199 199 199 199 199 199 199 199 228 228 228 228 228 228 228 228 228 228 228 Cruise P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 Table A.1 cont. -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 -32.5007 Lat (N) -32.5007 depth 1478.7 1579.7 1680.9 1780.9 1954.5 2188.6 2442.1 2695.7 2951.1 3203.4 3462.7 3617.4 3751.1 3.5 34.8 60.9 87.4 111.1 135.9 166.5 215.3 266.1 316.8 367.6 Long (E) -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -99.8901 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 15.02 11.5 4.84 0.74 0.19 0.02 0 0 0 0 0 117.26 117.12 117 116.86 116.72 114.94 111.72 107.66 100.73 95.46 92.04 88.42 83.98 Si 30.96 26.53 20.59 12.52 7.02 4.39 2.89 2.06 0.17 0 0 34.04 33.92 34.03 33.92 33.98 33.97 34.19 34.63 35.35 35.96 36.46 36.73 37.56 NO3 2.41 2.17 1.63 0.99 0.67 0.58 0.49 0.38 0.23 0.24 0.25 2.38 2.39 2.39 2.39 2.4 2.39 2.4 2.44 2.5 2.55 2.59 2.62 2.68 PO4 2280.10 2276.00 2265.60 2265.40 2271.90 2281.80 2310.30 2309.80 2399.90 TA 2320.61 2319.61 2319.07 2320.16 2326.13 2325.18 2326.12 2325.55 2421.14 NTA 34.389 34.342 34.193 34.174 34.184 34.231 34.32 34.347 34.401 34.762 34.763 34.693 34.697 34.696 34.698 34.693 34.69 34.677 34.658 34.622 34.596 34.58 34.564 34.543 Sp 1022.88 1022.844 1022.731 1022.711 1022.719 1022.755 1022.821 1022.842 1022.883 1023.156 1023.158 1023.112 1023.115 1023.113 1023.115 1023.11 1023.109 1023.101 1023.086 1023.057 1023.038 1023.027 1023.015 1022.995 25.831 25.795 25.682 25.667 25.675 25.711 25.777 25.798 25.839 26.112 26.114 26.065 26.068 26.066 26.068 26.063 26.062 26.055 26.04 26.011 25.992 25.981 25.969 25.949 Meas 25.833 25.798 25.685 25.671 25.679 25.714 25.781 25.802 25.843 26.115 26.116 26.063 26.066 26.066 26.067 26.063 26.061 26.051 26.037 26.010 25.990 25.978 25.966 25.950 Calc -0.002 -0.003 -0.003 -0.004 -0.004 -0.003 -0.004 -0.004 -0.004 -0.003 -0.002 0.002 0.002 0.000 0.001 0.000 0.001 0.004 0.003 0.001 0.002 0.003 0.003 -0.001 151 Stn 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 Cruise P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 Table A.1 cont. -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 -32.5 Lat (N) -32.5 depth 416.4 466.2 537.5 638.4 738.6 839.1 939.9 1042.2 1144.9 1245.4 1345.5 1448.5 1551 1644.3 1753.2 1885.8 2106.7 2361 2616 2872.3 3127.5 3382.5 3635.5 3806.9 Long (E) -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 -81.5501 122.88 122.29 122.52 122.75 121.54 120.33 118.29 114.81 109.68 106.2 102.33 99.06 93.74 88.23 82.11 72.94 60.75 47.42 32.97 21.83 14.92 12.77 14.17 15.19 Si 34.49 34.54 34.76 35.03 35.2 35.47 35.85 36.46 36.96 37.4 37.79 38.01 38.34 38.61 38.78 38.56 37.71 36.36 33.64 30.99 28.85 28.52 30.64 31.85 NO3 2.44 2.45 2.47 2.5 2.52 2.54 2.58 2.63 2.68 2.72 2.75 2.77 2.79 2.83 2.82 2.8 2.72 2.62 2.4 2.21 2.04 2.04 2.22 2.35 PO4 2409.30 2408.20 2406.20 2406.70 2404.50 2404.30 2401.90 2396.90 2390.90 2385.40 2382.40 2379.00 2372.60 2365.80 2357.50 2336.60 2319.30 2304.40 2294.30 2282.80 2286.20 2284.40 2281.10 TA 2429.50 2429.02 2426.79 2428.42 2426.55 2426.42 2425.53 2421.46 2416.86 2412.21 2410.01 2407.41 2402.11 2396.47 2389.52 2374.32 2360.44 2349.44 2341.46 2330.68 2332.59 2328.10 2323.05 NTA 34.709 34.7 34.703 34.687 34.682 34.681 34.659 34.645 34.624 34.611 34.599 34.587 34.57 34.552 34.531 34.495 34.444 34.39 34.329 34.295 34.281 34.304 34.343 34.368 Sp 1023.127 1023.12 1023.121 1023.111 1023.106 1023.105 1023.086 1023.077 1023.062 1023.052 1023.043 1023.034 1023.019 1023.008 1022.991 1022.963 1022.925 1022.883 1022.836 1022.81 1022.798 1022.815 1022.846 1022.865 26.079 26.072 26.073 26.063 26.058 26.057 26.038 26.029 26.013 26.003 25.994 25.985 25.97 25.959 25.942 25.914 25.876 25.834 25.787 25.761 25.749 25.766 25.797 25.816 Meas 26.075 26.069 26.071 26.059 26.055 26.054 26.038 26.027 26.011 26.001 25.992 25.983 25.970 25.957 25.941 25.914 25.875 25.834 25.788 25.763 25.752 25.769 25.799 25.818 Calc 0.004 0.003 0.002 0.004 0.003 0.003 0.000 0.002 0.002 0.002 0.002 0.002 0.000 0.002 0.001 0.000 0.001 0.000 -0.001 -0.002 -0.003 -0.003 -0.002 -0.002 152 Stn 228 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 243 Cruise P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 Table A.1 cont. -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 Lat (N) -32.5 depth 3967.7 4.4 33.8 60.3 84.7 115.8 165.8 215.2 265.5 314.6 367.4 439 539.5 635.4 739.2 842.4 941 1042.1 1143.8 1245.5 1346 1480.4 1682.6 1884.8 Long (E) -81.5501 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 108.98 101.47 91.93 85.47 76.81 68.16 59.33 48.51 36.31 28.55 21.2 25.03 27.47 27.31 27.16 27 27.44 28.08 27.93 27.37 25.42 22.27 2.61 123.06 Si 37.69 38.58 39.14 39.47 39.69 39.51 39.11 38.16 36.37 35.75 33.38 36.57 35.34 31.4 29.45 27.68 25.19 23.87 22.87 23.07 23.07 22.32 7.65 34.22 NO3 2.73 2.79 2.83 2.85 2.86 2.85 2.81 2.74 2.61 2.56 2.39 2.74 2.91 2.88 2.87 2.86 2.85 2.86 2.88 2.92 2.9 2.79 1.3 2.44 PO4 2392.70 2382.80 2370.90 2363.30 2353.20 2343.90 2333.90 2321.80 2307.20 2300.80 2293.50 2296.00 2299.70 2301.30 2302.00 2302.00 2304.80 2302.20 2296.50 2415.80 TA 2418.82 2411.25 2400.74 2394.57 2386.75 2379.73 2371.51 2361.68 2349.01 2342.63 2335.81 2330.90 2326.29 2324.08 2322.97 2321.50 2321.98 2321.17 2335.81 2436.62 NTA 34.622 34.587 34.565 34.543 34.508 34.473 34.445 34.409 34.377 34.375 34.366 34.476 34.6 34.657 34.684 34.706 34.741 34.747 34.748 34.737 34.714 34.668 34.411 34.701 Sp 1023.057 1023.029 1023.011 1022.992 1022.964 1022.938 1022.918 1022.891 1022.866 1022.864 1022.856 1022.938 1023.035 1023.078 1023.098 1023.115 1023.141 1023.146 1023.147 1023.14 1023.123 1023.088 1022.892 1023.121 26.011 25.983 25.965 25.948 25.92 25.894 25.874 25.847 25.822 25.82 25.812 25.894 25.989 26.032 26.052 26.069 26.095 26.1 26.101 26.094 26.077 26.042 25.846 26.073 Meas 26.010 25.983 25.966 25.950 25.923 25.897 25.876 25.849 25.824 25.823 25.816 25.899 25.993 26.036 26.056 26.073 26.099 26.104 26.105 26.096 26.079 26.044 25.850 26.069 Calc 0.001 0.000 -0.001 -0.002 -0.003 -0.003 -0.002 -0.002 -0.002 -0.003 -0.004 -0.005 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.002 -0.002 -0.002 -0.004 0.004 153 Stn 243 243 243 243 243 243 243 243 243 243 243 243 243 5 5 5 9 9 9 9 9 9 9 11 Cruise P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 Table A.1 cont. 35.02 35 35 35 35 35 35 35 35.012 35.012 35.012 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 -32.4999 Lat (N) -32.4999 depth 2107.9 2363.3 2616.6 2869.4 3141.1 3449.8 3788.9 4201.5 4613.6 5017.8 5433.9 5776.8 6117.1 1 1060 1445 5 126 302 900 3873 4169 4412 0 Long (E) -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -72.6828 -126.017 -126.017 -126.017 -130.023 -130.023 -130.023 -130.023 -130.023 -130.023 -130.023 -132.05 3 163 165 168 117 36 3 3 152 130 4 124.95 124.57 124.8 124.63 124.46 124.08 124.52 127.02 129.31 127.49 124.44 121.6 117.13 Si 0 37 37 37 44 25 0 0 44 44 0 34.55 34.6 34.65 34.76 34.81 34.96 35.18 35.5 35.94 35.88 35.87 36.25 36.81 NO3 2.45 2.45 2.46 2.46 2.46 2.47 2.48 2.51 2.55 2.55 2.56 2.6 2.65 PO4 2328.00 2447.00 2446.00 2448.00 2393.00 2329.00 2319.00 2315.00 2417.00 2406.00 2333.00 2408.50 2408.80 2410.10 2412.60 2411.70 2412.30 2413.30 2417.10 2420.40 2416.60 2412.30 2408.30 2401.50 TA 2431.66 2468.51 2467.00 2470.02 2434.53 2400.32 2436.58 2424.23 2448.27 2441.51 2458.38 2429.39 2430.05 2430.52 2433.67 2432.76 2433.30 2434.66 2438.84 2442.38 2438.90 2434.56 2431.71 2425.41 NTA 33.508 34.695 34.702 34.688 34.403 33.96 33.311 33.423 34.553 34.491 33.215 34.699 34.694 34.706 34.697 34.697 34.698 34.693 34.688 34.685 34.68 34.68 34.663 34.655 Sp 1023.116 1023.111 1023.121 1023.114 1023.114 1023.114 1023.109 1023.106 1023.103 1023.101 1023.101 1023.089 1023.082 25.165 26.076 26.082 26.074 25.850 25.510 25.018 25.098 25.974 25.924 24.949 26.073 26.068 26.078 26.071 26.071 26.071 26.066 26.063 26.06 26.055 26.055 26.043 26.036 Meas 25.168 26.065 26.070 26.059 25.844 25.509 25.019 25.104 25.957 25.910 24.947 26.068 26.064 26.073 26.066 26.066 26.067 26.063 26.059 26.057 26.053 26.053 26.041 26.034 Calc -0.003 0.011 0.012 0.014 0.005 0.001 -0.002 -0.006 0.016 0.013 0.002 0.005 0.004 0.005 0.005 0.005 0.004 0.003 0.004 0.003 0.002 0.002 0.002 0.002 154 Stn 17 17 17 17 21 21 21 21 21 21 23 25 25 25 25 25 25 25 25 25 29 33 37 41 Cruise M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 Table A.1 cont. 35.023 34.992 34.998 34.993 34.993 34.993 34.993 34.993 34.993 34.993 34.993 34.993 34.993 35.007 35.967 35.967 35.967 35.967 35.967 35.967 35.005 35.005 35.005 Lat (N) 35.005 depth 1124 1618 4080 5083 1 31 101 152 495 1184 0 0 50 151 175 200 496 594 791 1186 0 0 0 0 Long (E) -137.983 -137.983 -137.983 -137.983 -142.002 -142.002 -142.002 -142.002 -142.002 -142.002 -144.013 -146.008 -146.008 -146.008 -146.008 -146.008 -146.008 -146.008 -146.008 -146.008 -149.992 -153.998 158.068 -161.998 7 6 5 4 142 110 75 50 10 8 6 4 4 6 143 56 7 5 6 6 159 167 163 139 Si 0 0 0 0 46 44 37 29 9 7 2 0 0 0 46 32 1 0 0 0 37 37 44 46 NO3 PO4 2298.00 2294.00 2300.00 2302.00 2428.00 2383.00 2357.00 2347.00 2300.00 2298.00 2304.00 2303.00 2300.00 2306.00 2422.00 2348.00 2323.00 2306.00 2314.00 2311.00 2443.00 2444.00 2433.00 2416.00 TA 2350.93 2343.07 2358.01 2348.84 2466.33 2439.38 2428.82 2417.10 2355.80 2360.38 2374.56 2351.65 2347.62 2364.57 2459.38 2419.34 2412.61 2370.06 2383.11 2380.79 2458.03 2465.41 2462.91 2450.02 NTA 34.212 34.267 34.139 34.302 34.456 34.191 33.965 33.985 34.171 34.075 33.96 34.276 34.29 34.133 34.468 33.968 33.7 34.054 33.985 33.974 34.786 34.696 34.575 34.514 Sp 25.704 25.734 25.645 25.774 25.897 25.688 25.522 25.525 25.677 25.590 25.504 25.749 25.761 25.633 25.911 25.529 25.311 25.576 25.527 25.517 26.146 26.075 25.986 25.927 Meas 25.700 25.741 25.645 25.768 25.884 25.684 25.513 25.528 25.669 25.596 25.509 25.748 25.759 25.640 25.893 25.515 25.313 25.580 25.528 25.520 26.133 26.065 25.974 25.928 Calc 0.004 -0.007 0.001 0.006 0.012 0.004 0.009 -0.003 0.008 -0.006 -0.005 0.000 0.002 -0.007 0.017 0.014 -0.002 -0.004 -0.001 -0.003 0.012 0.009 0.012 -0.001 155 Stn 41 41 41 41 41 41 41 41 43 43 43 43 43 43 43 43 43 53 53 53 53 53 53 53 Cruise M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 Table A.1 cont. 35.01 35.01 35.01 35.01 35.01 35.01 35.01 35 35 35 35 35 35 35 35 35 35.023 35.023 35.023 35.023 35.023 35.023 35.023 Lat (N) 35.023 depth 125 200 249 298 494 690 982 1180 1127 1423 1915 2505 3687 4278 4869 5461 5560 3 47 134 518 1681 2178 2675 Long (E) -161.998 -161.998 -161.998 -161.998 -161.998 -161.998 -161.998 -161.998 -163.988 -163.988 -163.988 -163.988 -163.988 -163.988 -163.988 -163.988 -163.988 -174.033 -174.033 -174.033 -174.033 -174.033 -174.033 -174.033 174 178 174 43 8 5 4 147 148 151 157 162 175 173 158 146 142 128 88 43 19 17 14 8 Si 40 42 44 23 6 2 1 37 37 37 37 38 41 44 46 46 45 45 40 26 15 13 11 4 NO3 PO4 2444.00 2453.00 2453.00 2375.00 2312.00 2307.00 2307.00 2436.00 2437.00 2431.00 2439.00 2447.00 2416.00 2441.00 2419.00 2413.00 2415.00 2406.00 2373.00 2329.00 2314.00 2286.00 2316.00 2301.00 TA 2468.19 2478.99 2485.24 2441.98 2350.62 2343.70 2343.97 2456.35 2457.79 2452.09 2460.51 2469.01 2440.05 2469.22 2452.71 2452.59 2455.48 2453.89 2437.35 2395.88 2368.20 2317.38 2368.44 2355.93 NTA 34.657 34.633 34.546 34.04 34.425 34.452 34.448 34.71 34.704 34.699 34.694 34.688 34.655 34.6 34.519 34.435 34.423 34.317 34.076 34.023 34.199 34.526 34.225 34.184 Sp 26.050 26.030 25.971 25.576 25.861 25.881 25.878 26.089 26.084 26.079 26.075 26.070 26.049 26.006 25.946 25.884 25.868 25.791 25.615 25.568 25.699 25.941 25.714 25.679 Meas 26.036 26.018 25.952 25.570 25.861 25.881 25.878 26.076 26.071 26.068 26.064 26.059 26.034 25.993 25.932 25.868 25.859 25.779 25.597 25.557 25.690 25.937 25.710 25.679 Calc 0.014 0.012 0.018 0.006 0.000 -0.001 -0.001 0.013 0.012 0.011 0.011 0.010 0.014 0.013 0.014 0.015 0.008 0.011 0.018 0.011 0.009 0.004 0.005 0.001 156 Stn 53 53 53 53 59 61 61 61 61 61 61 65 69 69 69 69 69 77 77 77 77 77 85 85 Cruise M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 Table A.1 cont. 34.142 34.142 34.983 34.983 34.983 34.983 34.983 34.977 34.977 34.977 34.977 34.977 35 34.983 34.983 34.983 34.983 34.983 34.983 34.988 35.01 35.01 35.01 Lat (N) 35.01 depth 3172 3915 4901 5390 2 2 146 1172 1984 3184 3623 1 0 1144 1893 3137 4614 1 71 1780 2178 4003 1 31 Long (E) -174.033 -174.033 -174.033 -174.033 179.993 177.973 177.973 177.973 177.973 177.973 177.973 174.005 170.058 170.058 170.058 170.058 170.058 162.075 162.075 162.075 162.075 162.075 153.963 153.963 12 12 156 171 169 13 12 154 163 170 136 6 6 161 163 177 147 12 8 7 156 161 164 169 Si 5 4 37 42 43 7 5 36 38 43 43 1 2 36 38 43 45 9 0 1 36 37 37 38 NO3 PO4 2311.00 2317.00 2441.00 2444.00 2438.00 2316.00 2312.00 2445.00 2445.00 2446.00 2414.00 2307.00 2300.00 2445.00 2440.00 2445.00 2422.00 2307.00 2308.00 2309.00 2442.00 2448.00 2447.00 2447.00 TA 2341.30 2348.13 2462.46 2469.76 2466.68 2351.81 2344.96 2466.21 2467.92 2476.42 2459.89 2334.21 2324.31 2466.85 2462.66 2473.27 2464.67 2343.63 2351.74 2346.41 2463.33 2469.45 2468.87 2469.94 NTA 34.547 34.536 34.695 34.635 34.593 34.467 34.508 34.699 34.675 34.57 34.347 34.592 34.634 34.69 34.678 34.6 34.394 34.453 34.349 34.442 34.697 34.696 34.69 34.675 Sp 25.949 25.944 26.085 26.037 26.003 25.887 25.915 26.080 26.060 25.985 25.816 25.986 26.017 26.069 26.069 26.013 25.853 25.877 25.802 25.869 26.083 26.078 26.075 26.063 Meas 25.953 25.944 26.065 26.019 25.988 25.892 25.923 26.068 26.049 25.970 25.802 25.987 26.019 26.061 26.052 25.993 25.837 25.882 25.803 25.873 26.066 26.065 26.061 26.049 Calc -0.004 -0.001 0.020 0.017 0.015 -0.006 -0.009 0.012 0.010 0.014 0.014 -0.001 -0.002 0.008 0.017 0.020 0.015 -0.005 -0.002 -0.005 0.016 0.012 0.014 0.013 157 Stn 85 85 85 85 85 85 85 89 89 89 89 89 89 89 89 89 89 93 93 93 93 93 93 93 Cruise M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 Table A.1 cont. 34.97 34.97 34.97 34.97 34.97 34.97 34.97 35 35 35 35 35 35 35 35 35 35 34.142 34.142 34.142 34.142 34.142 34.142 Lat (N) 34.142 depth 592 1165 1178 2982 4174 5355 5744 1 51 399 985 1224 2003 3163 4316 4894 5472 1 99 580 1162 1896 2896 4385 Long (E) 153.963 153.963 153.963 153.963 153.963 153.963 153.963 149.867 149.867 149.867 149.867 149.867 149.867 149.867 149.867 149.867 149.867 146.017 146.017 146.017 146.017 146.017 146.017 146.017 152 160 167 159 108 20 12 147 151 155 162 171 153 137 56 11 10 145 147 154 161 158 156 105 Si 36 38 41 43 39 11 4 36 36 37 38 42 44 44 28 4 3 35 36 36 38 44 44 39 NO3 PO4 2440.00 2431.00 2440.00 2431.00 2399.00 2299.00 2317.00 2434.00 2444.00 2443.00 2448.00 2446.00 2408.00 2411.00 2352.00 2316.00 2320.00 2440.00 2433.00 2446.00 2446.00 2436.00 2431.00 2397.00 TA 2461.52 2453.93 2468.07 2468.16 2453.90 2343.53 2349.63 2452.50 2464.85 2464.26 2470.45 2473.49 2445.81 2452.55 2419.11 2341.22 2344.92 2459.96 2450.72 2467.22 2468.36 2472.88 2469.17 2453.07 NTA 34.694 34.673 34.602 34.473 34.217 34.335 34.514 34.736 34.704 34.698 34.682 34.611 34.459 34.407 34.029 34.623 34.628 34.716 34.747 34.699 34.683 34.478 34.459 34.2 Sp 26.081 26.065 26.011 25.914 25.712 25.795 25.924 26.106 26.081 26.079 26.071 26.014 25.899 25.856 25.569 26.003 26.008 26.095 26.123 26.082 26.068 25.917 25.904 25.707 Meas 26.064 26.048 25.994 25.897 25.703 25.793 25.928 26.096 26.071 26.067 26.055 26.001 25.886 25.847 25.561 26.010 26.014 26.080 26.104 26.068 26.056 25.901 25.886 25.691 Calc 0.017 0.017 0.016 0.017 0.009 0.002 -0.004 0.010 0.009 0.012 0.016 0.012 0.012 0.008 0.008 -0.008 -0.006 0.014 0.019 0.014 0.012 0.016 0.017 0.017 158 Stn 93 93 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 392-2 392-2 392-2 392-2 392-2 392-2 392-2 Cruise M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 M78 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 Table A.1 cont. 80.4629 80.4629 80.4629 80.4629 80.4629 80.4629 80.4629 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 34.97 Lat (N) 34.97 depth 5367 5852 21 58 141 229 358 530 1099 1186 1683 2180 2676 3170 4296 5454 5834 3.6 30.1 49.8 101 201.7 303.2 506 Long (E) 146.017 146.017 142.023 142.023 142.023 142.023 142.023 142.023 142.023 142.023 142.023 142.023 142.023 142.023 142.023 142.023 142.023 -158.6761 -158.6761 -158.6761 -158.6761 -158.6761 -158.6761 -158.6761 147 148 153 161 164 167 163 135 129 23 12 5 4 3 3 144 146 Si 35 35 36 38 39 41 43 41 41 15 9 3 2 0 0 35 35 NO3 PO4 2293.40 2281.51 2270.50 2244.28 2213.06 2217.66 2103.67 2430.00 2430.00 2431.00 2441.00 2439.00 2440.00 2417.00 2415.00 2407.00 2316.00 2303.00 2297.00 2270.00 2298.00 2288.00 2434.00 2432.00 TA 2302.34 2297.52 2313.74 2410.17 2421.14 2440.06 2437.38 2451.01 2451.22 2452.58 2463.24 2463.64 2467.21 2450.18 2459.84 2453.12 2352.84 2326.67 2313.66 2261.02 2314.13 2292.72 2454.97 2452.96 NTA 34.864 34.756 34.346 32.591 31.992 31.81 30.208 34.7 34.697 34.692 34.684 34.65 34.614 34.526 34.362 34.342 34.452 34.644 34.748 35.139 34.756 34.928 34.701 34.701 Sp 1023.231 1023.151 1022.84 1021.516 1021.071 1020.931 1019.723 26.186 26.106 25.795 24.471 24.026 23.886 22.678 26.079 26.080 26.076 26.076 26.046 26.026 25.954 25.825 25.811 25.894 26.026 26.104 26.399 26.110 26.239 26.081 26.083 Meas 26.192 26.111 25.801 24.476 24.024 23.886 22.678 26.068 26.066 26.062 26.056 26.031 26.003 25.937 25.813 25.798 25.881 26.026 26.105 26.400 26.111 26.241 26.069 26.069 Calc -0.006 -0.005 -0.006 -0.005 0.002 0.000 0.000 0.011 0.014 0.014 0.019 0.015 0.022 0.017 0.011 0.012 0.012 -0.001 -0.001 -0.001 -0.001 -0.002 0.011 0.013 159 Stn 392-2 392-2 392-2 396-2 396-2 396-2 396-2 396-2 396-2 396-2 396-2 396-2 396-2 408-2 408-2 408-2 408-2 408-2 408-2 408-2 408-2 408-2 408-2 413-2 Cruise AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 Table A.1 cont. 80.3118 80.5481 80.5481 80.5481 80.5481 80.5481 80.5481 80.5481 80.5481 80.5481 80.5481 80.5833 80.5833 80.5833 80.5833 80.5833 80.5833 80.5833 80.5833 80.5833 80.5833 80.4629 80.4629 Lat (N) 80.4629 1013.8 2031.4 3054 3.5 10.1 50.5 101.4 202.4 303.3 506 1013.2 2031.3 2592.7 4 29.9 50.4 99.8 202.2 303.6 505.8 1013.2 2031.2 2553.4 -158.6761 -158.6761 -158.6761 -162.4038 -162.4038 -162.4038 -162.4038 -162.4038 -162.4038 -162.4038 -162.4038 -162.4038 -162.4038 -174.6926 -174.6926 -174.6926 -174.6926 -174.6926 -174.6926 -174.6926 -174.6926 -174.6926 -174.6926 -178.5547 depth Long (E) Si NO3 PO4 2129.63 2310.02 2294.64 2289.45 2288.54 2293.75 2283.75 2246.42 2222.11 2228.76 2122.66 2298.03 2293.35 2290.45 2284.01 2278.67 2275.77 2231.23 2215.97 2119.44 2117.55 2305.59 2300.39 2297.28 TA 2423.49 2312.14 2296.93 2297.32 2297.59 2306.47 2317.52 2378.60 2405.47 2426.41 2425.27 2300.66 2296.57 2297.41 2292.85 2296.38 2319.17 2390.51 2417.59 2436.45 2442.95 2308.56 2303.69 2301.75 NTA 30.756 34.968 34.965 34.88 34.862 34.807 34.49 33.055 32.332 32.149 30.633 34.96 34.951 34.894 34.865 34.73 34.345 32.668 32.081 30.446 30.338 34.955 34.95 34.932 Sp 1020.139 1023.319 1023.313 1023.243 1023.23 1023.19 1022.953 1021.871 1021.325 1021.187 1020.045 1023.305 1023.297 1023.255 1023.232 1023.13 1022.84 1021.58 1021.14 1019.905 1019.827 1023.304 1023.296 1023.285 23.094 26.274 26.268 26.198 26.185 26.145 25.908 24.826 24.28 24.142 23 26.26 26.252 26.21 26.187 26.085 25.795 24.535 24.095 22.86 22.782 26.259 26.251 26.24 Meas 23.091 26.271 26.269 26.204 26.191 26.149 25.910 24.826 24.280 24.142 22.999 26.265 26.258 26.215 26.193 26.091 25.800 24.534 24.091 22.858 22.776 26.261 26.257 26.244 Calc 0.003 0.003 -0.001 -0.006 -0.006 -0.004 -0.002 0.000 0.000 0.000 0.001 -0.005 -0.006 -0.005 -0.006 -0.006 -0.005 0.001 0.004 0.002 0.006 -0.002 -0.006 -0.004 160 Stn 413-2 413-2 413-2 413-2 413-2 413-2 413-2 413-2 413-2 418-2 418-2 418-2 418-2 418-2 418-2 418-2 418-2 418-2 422-2 422-2 422-2 422-2 422-2 422-2 Cruise AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 Table A.1 cont. 80.5556 80.5556 80.5556 80.5556 80.5556 80.5556 80.3888 80.3888 80.3888 80.3888 80.3888 80.3888 80.3888 80.3888 80.3888 80.3118 80.3118 80.3118 80.3118 80.3118 80.3118 80.3118 80.3118 Lat (N) 80.3118 2275.67 2289.02 2285.00 2283.20 2292.11 2284.58 2091.34 9.8 40.4 101.1 202.2 303.6 405 506.3 759.4 1012.9 3.5 29.5 50.2 100.9 202.3 303.3 -178.5547 -178.5547 -178.5547 -178.5547 -178.5547 -178.5547 178.7087 178.7087 178.7087 178.7087 178.7087 178.7087 178.7087 178.7087 178.7087 175.7425 175.7425 175.7425 175.7425 175.7425 175.7425 2292.93 2282.14 2281.01 2221.57 2175.88 1956.57 2291.48 2292.06 2300.06 2292.26 2282.77 2277.09 2250.26 2236.59 2250.75 TA -178.5547 PO4 2222.42 NO3 -178.5547 Si 2205.16 depth -178.5547 Long (E) 2304.52 2305.66 2338.47 2369.28 2419.80 2436.84 2300.09 2301.20 2309.96 2303.05 2295.16 2307.75 2345.00 2415.18 2419.81 2291.52 2299.86 2291.91 2293.32 2301.71 2306.25 2358.57 2400.77 2411.51 NTA 34.824 34.643 34.14 32.818 31.472 28.102 34.869 34.861 34.85 34.836 34.811 34.535 33.586 32.412 30.249 34.894 34.882 34.867 34.873 34.807 34.536 33.4 32.4 32.005 Sp 1023.21 1023.074 1022.694 1021.697 1020.683 1018.139 1023.24 1023.231 1023.222 1023.211 1023.192 1022.987 1022.268 1021.384 1019.753 1023.253 1023.245 1023.234 1023.24 1023.189 1022.986 1022.131 1021.376 1021.079 26.163 26.027 25.647 24.65 23.636 21.092 26.195 26.186 26.177 26.166 26.147 25.942 25.223 24.339 22.708 26.208 26.2 26.189 26.195 26.144 25.941 25.086 24.331 24.034 Meas 26.162 26.025 25.645 24.647 23.631 21.092 26.196 26.190 26.182 26.171 26.152 25.944 25.227 24.341 22.709 26.215 26.206 26.195 26.199 26.149 25.944 25.086 24.332 24.033 Calc 0.001 0.002 0.002 0.003 0.005 0.000 -0.001 -0.004 -0.005 -0.005 -0.005 -0.002 -0.004 -0.002 -0.001 -0.007 -0.006 -0.006 -0.004 -0.005 -0.003 0.000 -0.001 0.001 161 Stn 422-2 422-2 422-2 422-2 430-2 430-2 430-2 430-2 430-2 430-2 430-2 430-2 430-2 430-2 442-2 442-2 442-2 442-2 442-2 442-2 442-2 442-2 451-2 451-2 Cruise AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 Table A.1 cont. 80.9684 80.9684 81.0179 81.0179 81.0179 81.0179 81.0179 81.0179 81.0179 81.0179 81.0012 81.0012 81.0012 81.0012 81.0012 81.0012 81.0012 81.0012 81.0012 81.0012 80.5556 80.5556 80.5556 Lat (N) 80.5556 depth 555.8 1013.6 2031.6 2530.6 3.7 10.1 50.5 101.3 202.7 304.3 507.2 1015.8 2031.5 2742.3 3.5 10.3 50.5 101.5 152.3 303.8 760.2 1522.2 10.4 50.7 Long (E) 175.7425 175.7425 175.7425 175.7425 164.8674 164.8674 164.8674 164.8674 164.8674 164.8674 164.8674 164.8674 164.8674 164.8674 145.0364 145.0364 145.0364 145.0364 145.0364 145.0364 145.0364 145.0364 142.0785 142.0785 Si NO3 PO4 2265.00 2171.00 2285.00 2299.00 2298.00 2282.00 2290.00 2270.00 2186.00 2172.00 2303.00 2308.00 2297.00 2295.00 2290.00 2294.00 2287.00 2247.00 1967.00 1966.00 2307.67 2293.61 2299.11 2289.84 TA 2349.65 2373.57 2290.56 2307.64 2308.02 2305.85 2326.76 2339.10 2398.21 2386.96 2305.70 2311.63 2304.84 2303.75 2300.12 2310.97 2332.45 2340.28 2485.20 2493.03 2309.92 2296.62 2307.68 2298.44 NTA 33.739 32.013 34.915 34.869 34.848 34.638 34.447 33.966 31.903 31.848 34.959 34.945 34.881 34.867 34.846 34.743 34.318 33.605 27.702 27.601 34.966 34.954 34.87 34.869 Sp 1022.387 1021.084 1023.274 1023.237 1023.222 1023.064 1022.923 1022.559 1021.004 1020.963 1023.31 1023.298 1023.247 1023.24 1023.222 1023.145 1022.826 1022.289 1017.84 1017.764 1023.313 1023.302 1023.239 1023.239 25.342 24.039 26.228 26.191 26.176 26.018 25.877 25.513 23.958 23.917 26.263 26.251 26.2 26.193 26.175 26.098 25.779 25.242 20.793 20.717 26.266 26.255 26.192 26.192 Meas 25.342 24.040 26.231 26.196 26.180 26.022 25.877 25.514 23.957 23.915 26.264 26.254 26.205 26.195 26.179 26.101 25.780 25.241 20.791 20.714 26.269 26.260 26.197 26.196 Calc 0.000 -0.001 -0.003 -0.005 -0.004 -0.004 0.000 -0.001 0.001 0.002 -0.001 -0.003 -0.005 -0.002 -0.004 -0.003 -0.001 0.001 0.002 0.003 -0.003 -0.005 -0.005 -0.004 162 Stn 451-2 451-2 451-2 451-2 451-2 459-2 459-2 459-2 459-2 459-2 459-2 459-2 459-2 466-1 466-1 466-1 466-1 466-1 466-1 466-1 466-1 471-2 471-2 471-2 Cruise AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 Table A.1 cont. 81.2353 81.2353 81.2353 81.013 81.013 81.013 81.013 81.013 81.013 81.013 81.013 80.978 80.978 80.978 80.978 80.978 80.978 80.978 80.978 80.9684 80.9684 80.9684 80.9684 Lat (N) 80.9684 depth 101.4 202.6 407.6 1012.4 1584.8 3.3 10.3 50.8 101.3 253.1 505.6 1013.4 1667.8 3.7 10.1 49.1 101.3 202.3 404.8 1013.1 2541.8 3.4 10.3 50.4 Long (E) 142.0785 142.0785 142.0785 142.0785 142.0785 139.0126 139.0126 139.0126 139.0126 139.0126 139.0126 139.0126 139.0126 136.1054 136.1054 136.1054 136.1054 136.1054 136.1054 136.1054 136.1054 121.2663 121.2663 121.2663 Si NO3 PO4 2284.00 2241.00 2231.00 2307.00 2304.00 2312.00 2297.00 2300.00 2264.00 2205.00 2196.00 2309.00 2299.00 2291.00 2295.00 2280.00 2276.00 2195.00 2299.00 2292.00 2288.00 2290.00 2281.00 TA 2363.41 2370.50 2366.79 2311.49 2310.14 2317.89 2306.22 2335.23 2353.15 2400.91 2391.56 2312.57 2306.38 2298.95 2303.49 2313.85 2345.84 2390.47 2303.54 2299.36 2295.67 2304.42 2318.76 NTA 33.824 33.088 32.992 34.932 34.907 34.911 34.86 34.472 33.674 32.144 32.138 34.946 34.888 34.879 34.871 34.488 33.958 32.138 32.039 34.931 34.888 34.883 34.781 34.43 Sp 1022.456 1021.898 1021.825 1023.291 1023.269 1023.27 1023.23 1022.937 1022.338 1021.184 1021.182 1023.295 1023.251 1023.246 1023.238 1022.949 1022.549 1021.18 1021.108 1023.289 1023.252 1023.247 1023.171 1022.906 25.41 24.852 24.779 26.245 26.223 26.224 26.184 25.891 25.292 24.138 24.136 26.25 26.206 26.201 26.193 25.904 25.504 24.135 24.063 26.244 26.207 26.202 26.126 25.861 Meas 25.407 24.851 24.778 26.244 26.225 26.228 26.189 25.896 25.293 24.138 24.134 26.254 26.210 26.204 26.198 25.908 25.508 24.134 24.059 26.243 26.210 26.207 26.130 25.864 Calc 0.003 0.001 0.001 0.001 -0.002 -0.004 -0.005 -0.005 -0.001 0.000 0.002 -0.004 -0.004 -0.003 -0.005 -0.004 -0.004 0.001 0.004 0.001 -0.003 -0.005 -0.004 -0.003 163 74.8 74.82 69.5 73.34 74.49 75.17 75.87 76.93 77.09 77.47 77.95 78 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 81.2353 74.78 471-2 AXXIII/3 81.2353 AXXIII/3 471-2 AXXIII/3 81.2353 74.81 471-2 AXXIII/3 81.2353 AXXIII/3 471-2 AXXIII/3 81.2353 74.86 471-2 AXXIII/3 81.2353 AXXIII/3 471-2 AXXIII/3 81.2353 74.92 471-2 AXXIII/3 Lat (N) 81.2353 AXXIII/3 Stn 471-2 Cruise AXXIII/3 Table A.1 cont. depth 101.1 202.4 303.2 505.9 1013.1 2031.5 3054.1 4260.4 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Long (E) 121.2663 121.2663 121.2663 121.2663 121.2663 121.2663 121.2663 121.2663 -127 -128.38 -129.76 -129.39 -130.67 -131.25 -136.01 -141.23 -147.17 -151.39 -155.32 -162.98 -163.86 -165.31 -169.77 -170.09 Si NO3 PO4 1858.20 1858.80 1867.80 1785.00 1766.90 1761.20 1673.40 1670.40 1681.60 1750.70 1769.00 1868.70 1887.70 1911.50 1929.60 1941.30 2307.00 2301.00 2308.00 2296.00 2296.00 2295.00 2296.00 2277.00 TA 2487.74 2481.24 2501.93 2522.10 2540.74 2544.35 2562.19 2554.02 2571.70 2528.14 2532.52 2490.56 2478.60 2472.65 2462.57 2461.70 2310.43 2304.69 2312.69 2302.12 2302.18 2302.17 2303.77 2318.27 NTA 26.143 26.22 26.129 24.771 24.34 24.227 22.859 22.891 22.886 24.237 24.448 26.261 26.656 27.057 27.425 27.601 34.948 34.944 34.929 34.907 34.906 34.891 34.882 34.377 Sp 1016.667 1016.727 1016.657 1015.637 1015.317 1015.233 1014.2 1014.228 1014.225 1015.238 1015.395 1016.759 1017.055 1017.356 1017.626 1017.764 1023.3 1023.296 1023.286 1023.27 1023.267 1023.257 1023.25 1022.869 19.62 19.68 19.61 18.59 18.27 18.186 17.153 17.181 17.178 18.191 18.348 19.712 20.008 20.309 20.579 20.717 26.254 26.25 26.24 26.224 26.221 26.211 26.204 25.823 Meas 19.617 19.675 19.607 18.586 18.262 18.177 17.149 17.173 17.169 18.184 18.343 19.706 20.003 20.305 20.582 20.715 26.256 26.253 26.241 26.225 26.224 26.213 26.206 25.824 Calc 0.003 0.005 0.003 0.004 0.008 0.009 0.004 0.008 0.009 0.007 0.005 0.006 0.005 0.004 -0.003 0.002 -0.002 -0.003 -0.001 -0.001 -0.003 -0.002 -0.002 -0.001 164 78.23 78.07 78.15 78.41 78.47 78.19 77.97 77.6 77.6 77.6 77.59 77.59 77.58 77.59 77.62 77.6 77.51 77.24 77.31 77.61 77.34 77.06 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 Lat (N) 78.11 78.23 Stn AXXIII/3 Cruise AXXIII/3 Table A.1 cont. depth 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Long (E) -173.04 -178.68 179.17 178.47 177.47 173.93 173 172.73 173.05 177.07 179.66 -177.77 -172.16 -171.34 -170.48 -170.46 -175.86 -176.66 -178.68 178.58 179.05 174.54 174.14 173.71 Si NO3 PO4 2126.20 2123.50 2088.60 2085.70 2090.80 2090.10 2018.40 2008.80 2015.40 2027.10 2097.00 2079.10 2077.20 2081.20 2124.20 2099.90 2065.30 2117.10 2117.80 2090.00 2117.90 2122.20 2029.20 2029.20 TA 2413.00 2410.80 2417.68 2420.17 2426.25 2421.18 2452.92 2438.71 2449.19 2465.80 2418.84 2417.48 2416.63 2413.19 2410.19 2415.26 2422.92 2422.15 2423.43 2394.51 2427.11 2431.80 2437.52 2453.52 NTA 30.84 30.829 30.236 30.163 30.161 30.214 28.8 28.83 28.801 28.773 30.343 30.101 30.084 30.185 30.847 30.43 29.834 30.592 30.586 30.549 30.541 30.544 29.137 28.947 Sp 1020.199 1020.196 1019.747 1019.692 1019.686 1019.731 1018.665 1018.691 1018.668 1018.643 1019.825 1019.646 1019.635 1019.709 1020.137 1019.896 1019.445 1020.014 1020.014 1019.982 1019.973 1019.982 1018.921 1018.779 23.152 23.149 22.7 22.645 22.639 22.684 21.618 21.644 21.621 21.596 22.778 22.599 22.588 22.662 23.09 22.849 22.398 22.967 22.967 22.935 22.926 22.935 21.874 21.732 Meas 23.155 23.147 22.700 22.644 22.643 22.683 21.617 21.640 21.618 21.597 22.780 22.598 22.585 22.661 23.160 22.846 22.396 22.968 22.963 22.935 22.929 22.932 21.871 21.728 Calc -0.003 0.002 0.000 0.001 -0.004 0.001 0.001 0.004 0.003 -0.001 -0.002 0.001 0.003 0.001 0.003 0.002 -0.001 0.004 0.000 -0.003 0.003 0.003 0.004 165 76.23 75.98 75.72 75.51 75.25 74.72 74.79 74.86 74.92 75.05 75.05 75.36 75.42 75.49 75.55 75.61 75.67 75.74 75.8 76.13 76.18 76.28 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 Lat (N) 76.78 76.47 Stn AXXIII/3 Cruise AXXIII/3 Table A.1 cont. depth 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Long (E) 173.29 172.85 172.51 172.16 171.8 171.5 170.98 170.94 171.57 172.18 172.83 173.33 173.99 177.2 177.81 178.46 179.09 179.72 -178.33 -177.02 -177.63 -174.87 -173.56 -172.13 Si NO3 PO4 1939.00 1929.30 1945.50 1994.00 2004.00 1998.80 2030.40 2095.00 2100.80 2090.60 2088.00 2082.00 2081.20 2027.90 2028.40 2030.00 2032.80 2076.20 2093.00 2093.90 2103.40 2107.10 2103.30 2103.40 TA 2475.83 2466.14 2475.46 2469.92 2478.80 2467.74 2456.07 2435.08 2439.95 2431.01 2413.63 2412.27 2416.95 2413.02 2415.50 2418.56 2421.40 2406.19 2411.85 2409.00 2414.69 2419.09 2415.52 2416.03 NTA 27.411 27.381 27.507 28.256 28.296 28.349 28.934 30.112 30.135 30.099 30.278 30.208 30.138 29.414 29.391 29.377 29.383 30.2 30.373 30.422 30.488 30.486 30.476 30.471 Sp 1017.619 1017.599 1017.697 1018.256 1018.288 1018.33 1018.766 1019.654 1019.673 1019.647 1019.78 1019.727 1019.676 1019.131 1019.112 1019.101 1019.109 1019.72 1019.848 1019.887 1019.937 1019.936 1019.928 1019.924 20.573 20.553 20.651 21.209 21.241 21.283 21.719 22.607 22.626 22.6 22.733 22.68 22.629 22.084 22.065 22.054 22.062 22.673 22.801 22.84 22.89 22.889 22.881 22.877 Meas 20.572 20.549 20.644 21.208 21.238 21.278 21.718 22.606 22.623 22.596 22.731 22.678 22.626 22.080 22.063 22.052 22.057 22.672 22.803 22.840 22.889 22.888 22.880 22.877 Calc 0.001 0.004 0.007 0.001 0.003 0.005 0.001 0.001 0.003 0.004 0.002 0.002 0.003 0.004 0.002 0.002 0.005 0.001 -0.002 0.000 0.001 0.001 0.001 0.000 166 76.4 76.34 76.32 76.28 75.98 75.86 75.72 75.54 74.57 74.26 73.93 73.63 73.85 74.65 74.84 75.05 75.04 75.24 75.39 75.59 76.39 76.45 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 Lat (N) 76.29 76.35 Stn AXXIII/3 Cruise AXXIII/3 Table A.1 cont. depth 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Long (E) -172.83 -171.49 -170.14 -170.78 -169.4 -165.15 -165.76 -165.83 -165.73 -165.71 -165.6 -165.56 -165.53 -165.49 -165.17 -167.69 -167.32 -168.93 -168.84 -168.55 -168.05 -169.82 -171.81 -172.71 Si NO3 PO4 1844.30 1825.10 1863.50 1855.50 1863.00 1878.50 1863.60 1843.50 1853.40 1852.40 1842.30 1843.20 1843.10 1864.50 1831.70 1830.80 1832.40 1829.00 1856.80 1890.20 1896.50 1939.70 1939.80 1939.80 TA 2478.23 2507.10 2504.32 2498.08 2488.08 2508.01 2512.65 2487.66 2460.42 2437.19 2502.74 2505.13 2504.60 2513.29 2502.03 2501.00 2499.08 2495.23 2480.93 2492.63 2487.26 2480.07 2476.76 2477.67 NTA 26.047 25.479 26.044 25.997 26.207 26.215 25.959 25.937 26.365 26.602 25.764 25.752 25.756 25.965 25.623 25.621 25.663 25.655 26.195 26.541 26.687 27.374 27.412 27.402 Sp 1016.595 1016.17 1016.594 1016.558 1016.718 1016.723 1016.53 1016.514 1016.835 1017.014 1016.383 1016.375 1016.377 1016.534 1016.274 1016.273 1016.303 1016.297 1016.706 1016.964 1017.075 1017.594 1017.62 1017.612 19.55 19.124 19.548 19.512 19.672 19.677 19.484 19.468 19.789 19.968 19.337 19.329 19.331 19.488 19.228 19.227 19.257 19.251 19.66 19.918 20.029 20.548 20.574 20.566 Meas 19.545 19.118 19.543 19.507 19.666 19.672 19.479 19.462 19.784 19.963 19.332 19.323 19.326 19.483 19.226 19.225 19.256 19.250 19.657 19.917 20.027 20.544 20.572 20.565 Calc 0.005 0.006 0.005 0.005 0.006 0.005 0.005 0.006 0.005 0.005 0.005 0.006 0.005 0.005 0.002 0.002 0.001 0.001 0.003 0.001 0.002 0.004 0.002 0.001 167 76.42 76.46 75.33 75.13 75.11 75.31 75.44 75.57 75.84 76.15 76.48 76.75 77.05 77.01 77.06 77.06 77.16 77.63 79.2 79.51 79.76 80.09 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 Lat (N) 76.5 76.45 Stn AXXIII/3 Cruise AXXIII/3 Table A.1 cont. depth 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Long (E) -173.84 -174.62 -175.48 178.13 174.75 175.35 175.36 176.25 176.85 177.48 178.76 -178.07 -178.52 -178.91 -177.36 -173.64 -172.69 -171.91 -170.78 -170.47 -165.45 -163.24 -162.89 -160.81 Si NO3 PO4 2097.90 2057.20 2045.70 2051.30 1955.60 1890.20 1930.10 2009.00 2034.90 2058.90 2073.90 2056.20 2049.80 2064.50 2029.70 2082.90 2068.50 2048.10 2067.40 2090.20 2073.20 1921.20 1919.00 1921.70 TA 2440.23 2444.31 2445.25 2447.77 2473.39 2482.81 2501.61 2456.08 2465.01 2444.83 2438.33 2443.20 2456.36 2440.97 2454.04 2431.75 2435.41 2434.98 2423.92 2423.54 2440.45 2489.34 2475.03 2476.33 NTA 30.09 29.457 29.281 29.331 27.673 26.646 27.004 28.629 28.893 29.475 29.769 29.456 29.207 29.602 28.948 29.979 29.727 29.439 29.852 30.186 29.733 27.012 27.137 27.161 Sp 1019.636 1019.16 1019.027 1019.063 1017.819 1017.042 1017.312 1018.537 1018.736 1019.173 1019.394 1019.159 1018.971 1019.268 1018.776 1019.551 1019.365 1019.145 1019.456 1019.707 1019.371 1017.321 1017.413 1017.43 22.592 22.116 21.983 22.019 20.775 19.998 20.268 21.493 21.692 22.128 22.349 22.114 21.926 22.223 21.731 22.506 22.32 22.1 22.411 22.662 22.326 20.276 20.368 20.385 Meas 22.589 22.112 21.980 22.017 20.769 19.996 20.265 21.489 21.688 22.126 22.348 22.112 21.924 22.222 21.729 22.506 22.316 22.099 22.410 22.662 22.320 20.271 20.365 20.383 Calc 0.003 0.004 0.003 0.002 0.006 0.002 0.003 0.004 0.004 0.002 0.001 0.002 0.002 0.001 0.002 0.000 0.004 0.001 0.001 0.000 0.006 0.005 0.003 0.002 168 80.72 80.57 80.64 80.62 80.59 80.62 80.69 80.56 80.38 80.32 80.31 80.39 80.51 80.54 80.59 80.37 80.87 80.94 81 81 81 81 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 Lat (N) 80.29 80.6 Stn AXXIII/3 Cruise AXXIII/3 Table A.1 cont. depth 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Long (E) -159.99 -156.76 -154.5 -162.38 -165.29 -167.92 -168.69 -168.15 -170.45 -171.21 -176.65 -177.35 -177.45 178.69 176.7 173.77 172.1 172.13 167.62 166.13 158.73 157.06 155.42 153.87 Si NO3 PO4 2015.80 1980.10 1925.20 1990.50 1967.50 1976.40 1969.90 1968.50 1976.80 1982.40 2076.20 2127.80 2122.60 2123.90 2108.70 1937.60 2118.10 2107.60 2107.10 2084.20 2103.00 2086.00 2088.50 2103.70 TA 2491.37 2504.46 2534.49 2523.45 2505.73 2512.86 2438.86 2442.31 2448.96 2436.06 2424.42 2422.20 2424.64 2424.78 2431.30 2234.76 2436.60 2437.18 2433.70 2401.15 2436.20 2441.81 2440.16 2441.13 NTA 28.319 27.672 26.586 27.608 27.482 27.528 28.27 28.21 28.252 28.482 29.973 30.746 30.64 30.657 30.356 30.346 30.425 30.267 30.303 30.38 30.213 29.9 29.956 30.162 Sp 1018.305 1017.815 1017 1017.769 1017.671 1017.707 1018.266 1018.218 1018.251 1018.423 1019.547 1020.132 1020.049 1020.067 1019.84 1019.83 1019.889 1019.769 1019.798 1019.855 1019.73 1019.492 1019.532 1019.69 21.258 20.768 19.953 20.722 20.625 20.661 21.22 21.172 21.205 21.377 22.501 23.086 23.003 23.021 22.794 22.784 22.843 22.723 22.754 22.811 22.686 22.448 22.488 22.646 Meas 21.255 20.768 19.951 20.720 20.625 20.660 21.218 21.173 21.205 21.378 22.501 23.084 23.004 23.017 22.790 22.782 22.842 22.723 22.750 22.808 22.682 22.446 22.488 22.644 Calc 0.003 0.000 0.002 0.002 0.000 0.001 0.002 -0.001 0.000 -0.001 0.000 0.002 -0.001 0.004 0.004 0.002 0.001 0.000 0.004 0.003 0.004 0.002 0.000 0.002 169 81.05 80.98 81.01 81.17 81.16 81.1 81.12 81.16 81.24 80.48 80.22 79.95 79.65 79.46 79.24 78.54 78.21 77.95 77.92 77.91 -25.3352 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 AXXIII/3 I9 94 80.99 AXXIII/3 Lat (N) 81 80.98 Stn AXXIII/3 Cruise AXXIII/3 Table A.1 cont. depth 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 8.8 Long (E) 151.97 148 146.47 140.57 137.54 136.09 128.79 127.93 126.61 124.42 123.1 121.22 121.48 120.86 119.95 118.87 118.55 118.11 117.77 117.3 116.64 115.22 114 95.0001 99 Si 0.06 NO3 0.11 PO4 2349.40 2083.50 2077.00 2067.70 2072.70 2130.90 2181.40 2181.30 2192.00 2220.70 2219.20 2220.20 2229.30 2191.30 2165.70 2167.20 2167.90 2166.90 2212.50 2207.60 2179.60 2188.10 2220.00 2049.80 TA 2294.85 2449.61 2435.83 2420.47 2398.09 2384.01 2366.82 2369.95 2351.72 2352.44 2357.20 2365.37 2366.70 2393.74 2409.09 2418.83 2418.68 2411.95 2409.76 2414.11 2388.49 2386.45 2405.72 2491.77 NTA 35.832 29.769 29.844 29.899 30.251 31.284 32.258 32.214 32.623 33.04 32.951 32.852 32.968 32.04 31.464 31.359 31.371 31.444 32.135 32.006 31.939 32.091 32.298 28.792 Sp 1023.969 1019.396 1019.455 1019.495 1019.758 1020.536 1021.27 1021.234 1021.543 1021.859 1021.791 1021.719 1021.806 1021.107 1020.672 1020.595 1020.607 1020.662 1021.176 1021.078 1021.028 1021.143 1021.306 1018.665 26.924 22.348 22.407 22.447 22.71 23.488 24.222 24.188 24.497 24.813 24.745 24.673 24.76 24.061 23.626 23.548 23.56 23.615 24.129 24.031 23.981 24.096 24.259 21.618 Meas 26.924 22.347 22.404 22.446 22.711 23.490 24.224 24.191 24.500 24.815 24.748 24.673 24.760 24.060 23.625 23.546 23.555 23.610 24.132 24.034 23.984 24.098 24.255 21.611 Calc 0.000 0.001 0.003 0.001 -0.001 -0.002 -0.002 -0.003 -0.003 -0.002 -0.003 0.000 0.000 0.001 0.001 0.002 0.005 0.005 -0.003 -0.003 -0.003 -0.002 0.004 0.007 170 Stn 94 94 96 96 96 98 98 98 102 102 102 104 104 104 106 106 106 108 108 108 110 110 110 114 Cruise I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 Table A.1 cont. -14.0844 -16.2776 -16.2776 -16.2776 -17.4001 -17.4001 -17.4001 -18.5188 -18.5189 -18.5188 -19.6334 -19.6334 -19.6335 -20.7633 -20.7633 -20.7633 -23.0157 -23.0157 -23.0157 -24.137 -24.137 -24.137 -25.3352 Lat (N) -25.3351 depth 1381.5 5333.6 4.3 1350.7 5268 33.4 1109.8 4963.1 42 1047.8 5061.5 31.4 1007.6 5145.4 47.8 1078.3 5633.2 4.1 1148 6086.5 3.5 1008.1 6086.9 76 Long (E) 95.0001 95.0001 95.0073 95.0073 95.0073 94.9976 94.9976 94.9976 94.9995 94.9995 94.9995 95.0016 95.0016 95.0016 94.9984 94.9984 94.9984 94.9982 94.9982 94.9982 95.007 95.007 95.007 94.9924 2.6 122.42 90 1.98 122.73 92.79 1.65 122.32 88.68 2.14 122.03 82.37 2.19 122.53 77.23 2.19 122.55 73.7 1.91 122.31 82.42 1.83 122.9 82.83 Si 0.07 32.25 36.16 0.06 32.32 36.21 0.06 32.21 36.08 0.07 32.09 35.74 0 32.3 35.52 0.05 32.16 34.9 0.06 32.21 35.13 0.05 32.3 35.19 NO3 0.09 2.24 2.65 0.07 2.25 2.64 0.08 2.25 2.65 0.08 2.25 2.61 0.09 2.25 2.58 0.09 2.24 2.5 0.09 2.25 2.52 0.09 2.25 2.48 PO4 2380.90 2362.10 2273.90 2376.50 2365.90 2286.30 2379.40 2362.60 2308.90 2381.20 2358.60 2299.40 2321.70 2338.70 2351.10 2336.90 2377.80 2358.60 TA 2400.71 2294.82 2396.29 2385.67 2295.81 2399.69 2385.98 2293.76 2401.02 2383.14 2280.44 2291.52 2287.59 35.021 34.7112 34.681 34.7109 34.71 34.855 34.704 34.657 35.231 34.7111 34.6396 35.291 34.7113 34.707 35.461 34.7118 34.5551 35.782 34.7111 34.609 35.678 2292.49 2377.66 34.7107 Sp 2397.62 NTA 1023.354 1023.134 1023.115 1023.095 1023.129 1023.124 1023.23 1023.126 1023.09 1023.516 1023.134 1023.079 1023.564 1023.185 1023.13 1023.694 1023.136 1023.013 1023.926 1023.17 1023.049 1023.856 1023.131 1023.029 26.309 26.089 26.07 26.05 26.084 26.079 26.185 26.081 26.045 26.471 26.089 26.034 26.519 26.14 26.085 26.649 26.091 25.968 26.881 26.125 26.004 26.811 26.086 25.984 Meas 26.311 26.077 26.054 26.077 26.076 26.186 26.071 26.036 26.470 26.077 26.023 26.515 26.077 26.074 26.644 26.077 25.959 26.886 26.077 26.000 26.808 26.076 Calc -0.002 0.012 -0.004 0.007 0.003 -0.001 0.010 0.009 0.001 0.012 0.011 0.004 0.011 0.005 0.014 0.009 -0.005 0.004 0.003 0.010 171 Stn 114 114 116 116 116 118 118 118 120 120 120 122 122 122 124 124 124 126 126 128 128 128 130 130 Cruise I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 Table A.1 cont. -5.5304 -5.5304 -6.5991 -6.5992 -6.5992 -7.6741 -7.6741 -8.7302 -8.7303 -8.7303 -9.8168 -9.8168 -9.8168 -10.8848 -10.8848 -10.8848 -11.9477 -11.9477 -11.9478 -13.0168 -13.0169 -13.0169 -14.084 Lat (N) -14.0843 depth 1046.6 5499.2 2.7 655.3 4149.6 3.8 977.1 4189.1 1.7 1047.6 5475.4 1.4 1000 5284.5 3.6 677.2 5484.9 2.2 1045.3 2.3 606.5 5223.7 3.1 776.2 Long (E) 94.9924 94.9925 94.9988 94.9988 94.9988 94.9999 94.9999 95 94.9991 94.9991 94.9991 95.0009 95.0009 95.0009 95.0068 95.0068 95.0068 95.0048 95.0048 95.0101 95.0101 95.0101 95.0124 95.0124 69.01 1.79 125.35 48.19 1.79 93.76 1.94 124.01 66.07 2.25 125.44 97.21 1.92 124.11 99.03 2.15 126.13 96.43 1.69 126.95 66.5 2.88 124.02 95.14 Si 35.85 0.06 32.14 33.79 0.01 36.73 0 32.26 35.54 0.05 32.55 36.75 0.06 32.3 36.64 0.06 32.89 36.34 0.03 32.83 34.65 0 32.31 36.3 NO3 2.63 0.08 2.24 2.44 0.09 2.69 0.08 2.24 2.56 0.08 2.26 2.68 0.1 2.25 2.7 0.13 2.28 2.66 0.08 2.28 2.48 0.07 2.26 2.66 PO4 2351.30 2230.20 2392.90 2227.70 2369.20 2233.10 2388.30 2340.10 2245.60 2388.10 2371.00 2212.70 2389.50 2374.20 2200.80 2393.60 2369.00 2233.40 2397.30 2282.40 2385.70 2369.30 TA 2363.10 2297.49 2412.63 2298.29 2387.14 2290.96 2408.01 2356.94 2298.08 2407.80 2409.23 2397.85 2280.04 2413.24 2393.52 2297.80 2416.93 2299.89 2405.41 2393.49 NTA 34.8252 33.9749 34.7138 34.8739 33.925 34.737 34.116 34.7135 34.7499 34.2007 34.7136 34.7134 34.6548 33.7836 34.7152 34.6415 34.019 34.7157 34.665 34.7339 34.7132 34.6462 Sp 1023.211 1022.573 1023.136 1023.266 1022.526 1023.148 1022.672 1023.132 1023.152 1022.736 1023.141 1023.122 1022.388 1023.133 1023.091 1022.429 1023.138 1023.079 1022.596 1023.136 1023.092 1023.142 1023.145 1023.083 26.166 25.528 26.091 26.221 25.481 26.103 25.627 26.087 26.107 25.691 26.096 26.077 25.343 26.088 26.046 25.384 26.093 26.034 25.551 26.091 26.047 26.097 26.1 26.038 Meas 26.163 25.521 26.079 26.200 25.483 26.096 25.627 26.079 26.106 25.691 26.079 26.079 26.034 25.376 26.080 26.024 25.554 26.080 26.042 26.094 26.078 26.028 Calc 0.003 0.007 0.012 0.021 -0.002 0.007 0.000 0.008 0.001 0.000 0.017 0.009 0.012 0.008 0.013 0.010 -0.003 0.011 0.005 0.003 0.022 0.010 172 Stn 130 132 132 132 136 136 136 138 138 138 140 140 140 142 142 142 144 144 144 148 148 148 150 150 Cruise I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 Table A.1 cont. 1.45 1.45 0.8179 0.8179 0.8179 -0.3168 -0.3167 -0.3168 -0.9341 -0.9341 -0.9341 -1.5647 -1.5647 -1.5647 -2.2017 -2.2017 -2.2013 -2.8332 -2.8332 -2.8332 -4.534 -4.5341 -4.534 Lat (N) -5.5304 depth 5135 2.1 525.3 4751.4 2.3 674.5 4836.1 2.6 845.2 4785.7 2.4 805.5 4728.3 3.2 775.7 4679.3 2.8 846.4 4601.6 2.9 674.5 4464.6 1.2 744.7 Long (E) 95.0124 94.8687 94.8687 94.8687 94.3325 94.3325 94.3325 94.1333 94.132 94.132 93.9322 93.9322 93.9322 93.7334 93.7334 93.7334 93.5519 93.5518 93.5518 92.7344 92.7344 92.7344 92.2993 92.2993 57.92 1.08 127.71 49.47 1.26 128.01 66.39 1.09 128.54 59.5 1.27 126.4 63.46 1.28 127.62 68.68 1.07 126 52.07 1.24 128.88 38.57 1.41 124.99 Si 35.43 0.02 32.78 34.42 0.06 32.71 36.16 0.07 33.02 35.65 0.05 32.61 35.78 0.13 32.55 36.1 0 32.56 34.64 0 32.61 32.71 0.05 32.48 NO3 2.64 0.07 2.27 2.51 0.07 2.27 2.69 0.07 2.27 2.62 0.09 2.26 2.63 0.07 2.26 2.67 0.08 2.25 2.51 0.08 2.26 2.28 0.08 2.24 PO4 2339.70 2233.30 2399.70 2335.60 2234.40 2394.30 2345.40 2227.10 2395.50 2321.50 2230.30 2398.50 2346.40 2223.70 2395.40 2227.00 2397.30 2227.30 2317.20 2243.80 2395.30 TA 2419.43 2335.49 2294.27 2413.98 2344.93 2415.21 2322.35 2292.12 2418.24 2348.21 2290.99 2415.09 2294.61 2417.04 2289.78 2323.06 2296.76 2415.03 NTA 34.7146 35.0017 34.0867 34.7147 35.007 34.7144 34.9872 34.0561 34.7143 34.973 33.972 34.7146 34.9409 33.9688 34.7141 34.978 34.045 34.7144 34.9117 34.1929 34.7141 Sp 1023.366 1022.661 1023.133 1023.342 1022.646 1023.142 1023.343 1022.578 1023.136 1023.33 1022.63 1023.143 1023.328 1022.56 1023.131 1023.303 1022.562 1023.144 1023.332 1022.619 1023.143 1023.278 1022.738 1023.13 26.321 25.616 26.088 26.297 25.601 26.097 26.298 25.533 26.091 26.285 25.585 26.098 26.283 25.515 26.086 26.258 25.517 26.099 26.287 25.574 26.098 26.233 25.693 26.085 Meas 26.079 26.296 25.605 26.079 26.300 26.079 26.285 25.582 26.079 26.275 25.518 26.079 26.250 25.516 26.079 26.278 25.574 26.079 26.228 25.685 26.079 Calc 0.009 0.001 -0.004 0.018 -0.002 0.012 0.000 0.003 0.019 0.008 -0.003 0.007 0.008 0.001 0.020 0.009 0.000 0.019 0.005 0.008 0.006 173 Stn 150 152 152 152 154 154 154 156 156 156 158 158 158 160 160 160 162 162 162 164 164 164 166 166 Cruise I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 Table A.1 cont. 7.6106 7.6106 6.8727 6.8727 6.8727 6.1198 6.1197 6.1197 5.3939 5.3939 5.3939 4.6543 4.6543 4.6543 3.9009 3.9008 3.9009 3.0003 3.0003 3.0003 2.2011 2.2011 2.2011 Lat (N) 1.45 depth 4396.2 2.2 804.7 4315.3 1.6 675.2 4203.5 2.7 745.1 3913.9 2 504.1 3252.9 1.8 772.9 2892.9 1.7 643.5 3130.6 2.5 804.1 3777.5 2.3 572.3 Long (E) 92.2993 92.0206 92.0205 92.0206 91.7596 91.7596 91.7596 91.3271 91.3271 91.3271 90.7628 90.7628 90.7628 90.1935 90.1935 90.1935 89.6287 89.6287 89.6287 89.0551 89.0551 89.0551 88.486 88.486 51.35 2.16 142.11 68.86 1.56 136.59 54.22 1.5 134.41 63.11 1.28 135.08 39.94 1.32 131.07 61.85 1.15 128.04 55.21 1.22 128.38 68.36 1.46 128.18 Si 36.16 0.14 34.34 36.84 0.01 34.54 36.44 0.01 34.49 36.15 0.05 34.33 33.22 0.05 33.07 35.83 0.05 32.94 35.61 0.06 33.01 36.68 0.07 33 NO3 2.6 0 2.37 2.7 0.05 2.4 2.64 0.06 2.43 2.66 0.07 2.41 2.37 0.07 2.29 2.64 0.09 2.28 2.62 0.08 2.29 2.72 0.08 2.29 PO4 2332.40 2192.50 2433.50 2192.60 2418.90 2337.50 2215.20 2414.90 2346.60 2238.30 2416.00 2326.90 2228.80 2402.80 2345.50 2228.20 2392.20 2337.70 2234.30 2418.40 2354.00 2233.10 2401.70 TA 2330.80 2319.40 2453.02 2305.92 2437.73 2336.00 2298.56 2432.13 2346.90 2291.51 2432.19 2324.51 2291.87 2422.48 2289.63 2411.85 2295.03 2438.28 2354.08 2292.40 2420.23 NTA 35.024 33.0851 34.7215 34.9863 33.28 34.7296 35.0225 33.7307 34.752 34.9956 34.1873 34.767 35.036 34.0368 34.7157 34.061 34.7148 34.0738 34.7147 34.9988 34.0946 34.732 Sp 1023.361 1021.896 1023.141 1023.326 1022.036 1023.153 1023.365 1022.378 1023.162 1023.336 1022.724 1023.168 1023.378 1022.617 1023.131 1023.339 1022.629 1023.143 1023.373 1022.645 1023.139 1023.343 1022.653 1023.154 26.316 24.851 26.096 26.281 24.991 26.108 26.32 25.333 26.117 26.291 25.679 26.123 26.333 25.572 26.086 26.294 25.584 26.098 26.328 25.6 26.094 26.298 25.608 26.109 Meas 26.313 24.849 26.085 26.285 24.996 26.091 26.312 25.336 26.108 26.292 25.681 26.119 26.322 25.567 26.080 25.586 26.080 25.595 26.079 26.294 25.611 26.093 Calc 0.003 0.002 0.011 -0.004 -0.005 0.017 0.008 -0.003 0.009 -0.001 -0.002 0.004 0.011 0.005 0.006 -0.002 0.018 0.005 0.015 0.004 -0.003 0.016 174 Stn 166 168 170 170 170 173 173 173 175 175 175 177 177 177 179 179 179 181 181 181 183 183 183 185 Cruise I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 I9 Table A.1 cont. 11.2429 10.2993 10.2993 10.2993 9.3069 9.307 9.307 8.2664 8.2664 8.2664 8.8485 8.8485 8.8485 9.969 9.969 9.9689 9.9672 9.9672 9.9672 9.0878 9.0878 9.0878 8.3498 Lat (N) 7.6106 depth 3714.1 3 1.8 204.1 3603 2 1105.2 3513.9 3 90 3539.4 1.7 273.7 3697.6 1.9 104.9 3740.2 2.5 163.1 3637.2 1.6 103 3484.5 2.5 Long (E) 88.4861 87.9196 87.3512 87.3512 87.3512 87.3002 87.3002 87.3002 86.1998 86.1999 86.1999 85.6994 85.6994 85.6994 86.0062 86.0062 86.0062 86.5242 86.5242 86.5242 87.0624 87.0624 87.0624 87.6232 2.24 141.32 12.04 1.79 149.88 23.9 1.42 150.84 17.87 1.41 150.66 32.71 1.49 148.05 9.84 1.61 142.18 89.7 1.62 145.46 30.3 1.4 1.36 146.08 Si 0.03 34.5 20.26 0.06 35.22 28.03 0.05 35.07 21.67 0.05 35.17 32.46 0.06 35.19 15.38 0.05 34.65 37.36 0.05 34.76 31.08 0.04 0.02 34.94 NO3 0.02 2.39 1.46 0.02 2.44 2.04 0.05 2.44 1.57 0.07 2.44 2.34 0.07 2.44 1.17 0.05 2.38 2.71 0.04 2.41 2.27 0.05 0.06 2.39 PO4 2191.40 2430.10 2270.60 2195.80 2451.10 2291.20 2207.10 2446.50 2275.40 2200.70 2445.70 2313.70 2215.70 2442.30 2268.60 2211.60 2430.60 2208.10 2442.30 2302.50 2215.70 2197.40 2432.00 TA 2449.37 2286.67 2327.05 2470.65 2297.57 2307.05 2466.05 2294.92 2465.26 2310.45 2299.69 2289.66 2311.79 2449.89 2309.24 2461.77 2303.56 2304.91 2300.12 2451.49 NTA 34.7247 34.7541 33.0259 34.7231 34.903 33.4837 34.7226 33.563 34.7223 35.0492 33.7217 34.678 33.4832 34.7244 34.9133 33.467 34.7232 34.9839 33.6453 33.4369 34.7217 Sp 1021.658 1023.148 1023.157 1021.851 1023.147 1023.269 1022.199 1023.144 1023.169 1022.257 1023.146 1023.379 1022.38 1023.157 1023.095 1022.19 1023.145 1023.278 1022.182 1023.152 1023.33 1022.322 1022.165 1023.147 24.613 26.103 26.112 24.806 26.102 26.224 25.154 26.099 26.124 25.212 26.101 26.334 25.335 26.112 26.05 25.145 26.1 26.233 25.137 26.107 26.285 25.277 25.12 26.102 Meas 26.087 26.109 24.804 26.086 26.222 25.150 26.085 25.210 26.085 26.332 25.329 26.052 25.149 26.087 26.230 25.137 26.086 26.283 25.272 25.114 26.085 Calc 0.016 0.003 0.002 0.016 0.002 0.004 0.014 0.002 0.016 0.002 0.006 -0.002 -0.004 0.013 0.003 0.000 0.021 0.002 0.005 0.006 0.017 175 196 198 198 I9 I9 I9 17 196 I9 A10 196 I9 17 194 I9 A10 194 I9 17 194 I9 A10 191 I9 17 191 I9 A10 191 I9 17 189 I9 A10 189 I9 17 189 I9 A10 187 I9 17 185 I9 A10 Stn 185 Cruise I9 Table A.1 cont. -29.735 -29.735 -29.735 -29.735 -29.735 -29.735 -29.735 17.5015 17.5015 16.4998 16.4998 16.4998 15.5001 15.5002 15.5001 14.0742 14.0742 14.0742 13.13 13.13 13.13 12.1876 11.2429 Lat (N) 11.2429 depth 137.9 3362.9 3220.4 2.3 128.5 3074.8 1.6 87.3 2878.3 2.6 113.8 2648.5 1.8 272.7 2474.7 203.1 2285.6 4.2 39.9 95.3 139.3 189 189 271.7 Long (E) 87.6233 87.6232 88.1815 88.7441 88.7441 88.7441 89.3057 89.3057 89.3057 89.8498 89.8498 89.8498 89.8495 89.8496 89.8496 89.8488 89.8488 6.725 6.725 6.725 6.725 6.725 6.725 6.725 3.32 2.83 2.83 2.44 2.44 1.95 1.85 137.64 35.37 137.47 39.14 2.26 139.82 26.79 2.04 139.75 1.87 1.48 139.39 20.43 2.62 140.81 139.39 25.24 Si 8.1 4.1 4.1 1.95 1.85 0.29 0.1 35.38 32.28 35.3 33.95 0.01 35.09 27.74 0 34.95 0.17 0 34.84 25.62 0 35.13 34.57 27.42 NO3 0.61 0.38 0.38 0.28 0.26 0.15 0.14 2.55 2.4 2.54 2.47 0.01 2.5 2.16 0.02 2.45 0.14 0.07 2.44 1.94 0.02 2.42 2.39 2.05 PO4 2311.40 2325.90 2325.90 2335.40 2338.50 2338.20 2340.60 2423.70 2310.10 2423.30 2316.50 2185.10 2423.50 2294.30 2201.00 2425.00 2245.80 2224.10 2427.40 2284.00 2183.80 2423.80 2423.20 2291.90 TA 2298.66 2294.11 2293.46 2296.75 2298.57 2297.76 2299.21 2440.50 2309.69 2436.67 2312.14 2353.00 2441.72 2299.89 2353.10 2442.02 2300.01 2302.13 2446.23 2292.86 2349.09 2442.84 2442.40 2300.18 NTA 35.194 35.485 35.495 35.589 35.608 35.616 35.630 34.759 35.0062 34.808 35.066 32.5025 34.7389 34.915 32.7376 34.756 34.175 33.8137 34.7306 34.8647 32.5373 34.7272 34.7249 34.874 Sp 1023.478 1023.699 1023.706 1023.78 1023.795 1023.802 1023.813 1023.169 1023.349 1023.203 1023.394 1021.456 1023.15 1023.283 1021.632 1023.164 1022.714 1022.458 1023.145 1023.237 1021.484 1023.147 1023.138 1023.243 26.439 26.66 26.667 26.741 26.756 26.763 26.774 26.124 26.304 26.158 26.349 24.411 26.105 26.238 24.587 26.119 25.669 25.413 26.1 26.192 24.439 26.102 26.093 26.198 Meas 26.442 26.662 26.669 26.741 26.755 26.761 26.772 26.113 26.300 26.150 26.345 24.409 26.098 26.231 24.586 26.111 25.672 25.399 26.092 26.193 24.435 26.089 26.087 26.200 Calc -0.003 -0.002 -0.002 0.000 0.001 0.002 0.002 0.011 0.004 0.008 0.004 0.002 0.007 0.007 0.001 0.008 -0.003 0.014 0.008 -0.001 0.004 0.013 0.006 -0.002 176 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 43 43 43 43 43 43 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 Stn 17 A10 Cruise A10 Table A.1 cont. -30.003 -30.003 -30.003 -30.003 -30.003 -30.003 -29.735 -29.735 -29.735 -29.735 -29.735 -29.735 -29.735 -29.735 -29.735 -29.735 -29.735 -29.735 -29.735 -29.735 -29.735 -29.735 -29.735 Lat (N) -29.735 depth 369 493.1 644.8 794 945 1239.3 1451.9 1603.6 1897.5 2203.9 2500.4 2797.6 3101.4 3498.8 3901.2 4298 4700.9 5153.5 5.3 34.9 72.5 125.7 184.8 270.5 Long (E) 6.725 6.725 6.725 6.725 6.725 6.725 6.725 6.725 6.725 6.725 6.725 6.725 6.725 6.725 6.725 6.725 6.725 6.725 -6.244 -6.244 -6.244 -6.244 -6.244 -6.244 2.63 1.85 1.66 1.56 1.46 1.46 106.19 104.24 93.21 67.63 57.48 52.21 48.11 43.72 40.79 38.94 42.85 47.34 55.74 37.78 24.31 15.33 7.42 5.07 Si 3.71 1.07 0.68 0.29 0 0 30.55 30.16 28.79 25.77 24.69 24.2 24.11 23.81 24.2 25.18 27.43 29.38 32.8 31.92 29.09 25.58 18.45 13.37 NO3 0.4 0.26 0.24 0.2 0.16 0.16 2.25 2.23 2.11 1.83 1.72 1.67 1.64 1.62 1.63 1.69 1.87 2.02 2.26 2.14 1.92 1.67 1.22 0.89 PO4 2331.40 2347.70 2348.40 2342.70 2348.50 2351.20 2366.00 2363.40 2357.10 2354.60 2347.70 2337.40 2332.50 2327.40 2329.40 2325.80 2324.80 2320.10 2311.50 2304.80 2291.00 2288.70 2291.40 2301.60 TA 2294.17 2295.17 2294.32 2288.50 2293.01 2293.85 2383.16 2380.13 2372.28 2365.55 2356.72 2346.45 2341.26 2335.27 2337.35 2335.61 2338.90 2338.41 2341.34 2346.36 2333.74 2326.52 2311.08 2301.47 NTA 35.568 35.801 35.825 35.829 35.847 35.875 34.748 34.754 34.776 34.838 34.866 34.865 34.869 34.882 34.881 34.853 34.789 34.726 34.554 34.380 34.359 34.431 34.702 35.002 Sp 1023.76 1023.937 1023.954 1023.956 1023.969 1023.989 1023.144 1023.149 1023.167 1023.214 1023.235 1023.234 1023.237 1023.244 1023.245 1023.224 1023.175 1023.129 1022.999 1022.865 1022.849 1022.904 1023.11 1023.335 26.727 26.904 26.921 26.923 26.936 26.956 26.109 26.114 26.132 26.179 26.2 26.199 26.202 26.209 26.21 26.189 26.136 26.09 25.96 25.826 25.81 25.865 26.071 26.296 Meas 26.725 26.901 26.919 26.922 26.936 26.957 26.105 26.109 26.126 26.173 26.194 26.193 26.196 26.206 26.205 26.184 26.136 26.088 25.958 25.827 25.811 25.865 26.070 26.297 Calc 0.002 0.003 0.002 0.001 0.000 -0.001 0.004 0.005 0.006 0.006 0.006 0.006 0.006 0.003 0.005 0.005 0.000 0.002 0.002 -0.001 -0.001 0.000 0.001 -0.001 177 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 61 61 61 61 61 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 Stn 43 A10 Cruise A10 Table A.1 cont. -30.000 -30.000 -30.000 -30.000 -30.000 -30.003 -30.003 -30.003 -30.003 -30.003 -30.003 -30.003 -30.003 -30.003 -30.003 -30.003 -30.003 -30.003 -30.003 -30.003 -30.003 -30.003 -30.003 Lat (N) -30.003 depth 359.2 499.7 625.3 774.8 924.2 1124.5 1325 1524.2 1774.5 1774.5 2049.3 2350.1 2650.7 2951.7 3199.7 3550.9 3908.5 4249.6 4673.3 4.2 40.8 89.4 134.2 193.7 Long (E) -6.244 -6.244 -6.244 -6.244 -6.244 -6.244 -6.244 -6.244 -6.244 -6.244 -6.244 -6.244 -6.244 -6.244 -6.244 -6.244 -6.244 -6.244 -6.244 -18.999 -18.999 -18.999 -18.999 -18.999 2.05 1.56 1.37 1.37 1.37 54.38 53.11 52.23 52.03 51.35 51.45 52.13 52.82 51.45 51.36 51.36 54.87 53.71 41.21 23.24 14.35 6.54 4.39 2.63 Si 4.29 1.27 0.1 0 0 23.72 23.62 23.43 23.53 23.53 23.92 24.5 25.48 26.85 28.51 28.51 31.44 32.91 32.23 28.91 24.51 16.3 10.74 4.49 NO3 0.45 0.26 0.16 0.15 0.15 1.7 1.69 1.68 1.69 1.7 1.72 1.77 1.84 1.94 2.08 2.08 2.29 2.42 2.38 2.12 1.8 1.22 0.86 0.46 PO4 2346.30 2359.10 2363.60 2366.20 2355.20 2352.30 2349.00 2343.20 2340.30 2336.60 2333.40 2331.30 2332.80 2325.90 2325.90 2323.00 2318.70 2303.00 2292.50 2285.40 2283.90 2309.60 2327.90 TA 2296.63 2293.76 2294.12 2294.80 2363.10 2360.19 2356.74 2351.19 2342.51 2342.15 2343.38 2342.54 2345.26 2342.63 2342.77 2347.28 2351.01 2341.33 2332.62 2318.59 2292.15 2299.94 2299.58 NTA 35.517 35.757 35.997 36.060 36.089 34.883 34.883 34.885 34.881 34.967 34.917 34.851 34.832 34.814 34.750 34.748 34.638 34.519 34.427 34.398 34.499 34.874 35.147 35.431 Sp 1023.722 1023.904 1024.085 1024.131 1024.151 1023.253 1023.253 1023.251 1023.25 1023.314 1023.276 1023.227 1023.212 1023.196 1023.148 1023.146 1023.067 1022.975 1022.906 1022.883 1022.961 1023.245 1023.452 1023.666 26.687 26.869 27.05 27.096 27.116 26.212 26.212 26.21 26.209 26.273 26.235 26.186 26.171 26.155 26.107 26.105 26.026 25.934 25.865 25.842 25.92 26.204 26.411 26.625 Meas 26.686 26.868 27.049 27.097 27.119 26.207 26.207 26.208 26.205 26.270 26.232 26.183 26.168 26.155 26.106 26.105 26.022 25.932 25.862 25.840 25.917 26.200 26.406 26.621 Calc 0.001 0.001 0.001 -0.001 -0.003 0.005 0.005 0.002 0.004 0.003 0.003 0.003 0.003 0.000 0.001 0.000 0.004 0.002 0.003 0.002 0.003 0.004 0.005 0.004 178 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 81 81 81 81 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 Stn 61 A10 Cruise A10 Table A.1 cont. -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 Lat (N) -30.000 depth 275.6 364.9 464.8 564.2 666.4 766 766 864.8 963.8 1064.3 1263.3 1499.6 1750.3 2002 2300.7 2601.2 2950.9 3300.1 3699.5 3869.7 4 40.1 90.2 161.6 Long (E) -18.999 -18.999 -18.999 -18.999 -18.999 -18.999 -18.999 -18.999 -18.999 -18.999 -18.999 -18.999 -18.999 -18.999 -18.999 -18.999 -18.999 -18.999 -18.999 -18.999 -31.892 -31.892 -31.892 -31.892 1.76 0.78 0.88 0.78 70.39 63.95 49.4 41.78 43.64 47.93 51.74 54.87 56.53 52.54 37.31 30.76 22.17 16.02 16.02 12.5 8.89 6.25 4.29 3.03 Si 3.61 0.1 0 0 25.29 24.6 22.65 22.06 22.94 24.31 26.26 28.41 30.76 32.32 31.35 30.47 28.81 26.66 26.66 24.41 20.11 15.33 11.42 7.91 NO3 0.3 0.1 0.08 0.08 1.86 1.8 1.66 1.61 1.68 1.79 1.92 2.1 2.27 2.4 2.33 2.25 2.11 1.98 1.98 1.81 1.51 1.2 0.92 0.69 PO4 2283.70 2361.70 2354.40 2353.70 2364.10 2339.60 2323.10 2326.60 2326.30 2328.20 2328.10 2327.00 2320.60 2313.70 2297.80 2291.90 2280.70 2280.70 2280.20 2288.90 2291.30 2309.30 2317.80 TA 2242.63 2302.49 2293.71 2293.48 2374.21 2349.74 2330.56 2333.47 2333.37 2337.89 2341.48 2345.02 2344.99 2338.56 2341.89 2337.86 2322.84 2322.84 2311.77 2311.55 2297.27 2301.34 2299.01 NTA 35.641 35.900 35.926 35.919 34.851 34.849 34.888 34.897 34.894 34.855 34.800 34.731 34.636 34.628 34.341 34.312 34.282 34.365 34.365 34.522 34.657 34.909 35.121 35.286 Sp 1023.812 1024.015 1024.033 1024.029 1023.228 1023.224 1023.255 1023.26 1023.259 1023.23 1023.188 1023.136 1023.065 1023.059 1022.842 1022.817 1022.787 1022.849 1022.848 1022.968 1023.07 1023.263 1023.422 1023.546 26.777 26.975 26.993 26.989 26.187 26.183 26.214 26.219 26.216 26.187 26.145 26.093 26.022 26.016 25.799 25.774 25.752 25.814 25.813 25.933 26.035 26.228 26.387 26.511 Meas 26.780 26.976 26.995 26.990 26.183 26.181 26.211 26.217 26.215 26.186 26.144 26.092 26.020 26.014 25.797 25.775 25.753 25.815 25.815 25.934 26.036 26.227 26.387 26.511 Calc -0.003 -0.001 -0.002 -0.001 0.004 0.002 0.003 0.002 0.001 0.001 0.001 0.001 0.002 0.002 0.002 -0.001 -0.001 -0.001 -0.002 -0.001 -0.001 0.001 0.000 0.000 179 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 105 105 105 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 Stn 81 A10 Cruise A10 Table A.1 cont. -29.189 -29.189 -29.189 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 -30.000 Lat (N) -30.000 depth 209.5 280.5 364.8 442.8 532.8 635.5 745.7 832.5 920.4 1014.9 1134.4 1319.7 1319.7 1599.7 1849.1 2130 2374.5 2799.6 3300.3 3799 3995.6 6.2 34.6 70.5 Long (E) -31.892 -31.892 -31.892 -31.892 -31.892 -31.892 -31.892 -31.892 -31.892 -31.892 -31.892 -31.892 -31.892 -31.892 -31.892 -31.892 -31.892 -31.892 -31.892 -31.892 -31.892 -42.533 -42.533 -42.533 0.78 0.78 0.88 93.69 77.78 45.86 37.86 40.69 46.35 51.92 54.56 52.42 52.42 43.34 33.09 26.07 19.52 15.81 11.81 7.61 5.07 3.71 2.83 2.15 Si 0 0 0 28.59 26.45 22.64 21.86 23.03 24.88 27.33 30.16 32.41 32.41 32.21 30.95 29.68 27.92 26.26 23.23 18.44 13.95 10.93 8.39 5.85 NO3 0.06 0.05 0.05 2.25 2.01 1.55 1.46 1.55 1.7 1.89 2.06 2.18 2.18 2.11 1.97 1.85 1.71 1.59 1.4 1.11 0.86 0.69 0.56 0.42 PO4 2381.90 2389.10 2401.60 2353.20 2344.80 2328.60 2325.10 2324.80 2325.10 2325.20 2322.10 2314.80 2314.80 2303.60 2293.20 2287.20 2267.60 2281.10 2285.90 2291.10 2302.10 2310.20 2318.00 2326.90 TA 2294.45 2295.51 2294.48 2368.63 2356.52 2336.14 2331.70 2325.93 2335.71 2340.24 2344.47 2346.99 2346.51 2340.92 2336.53 2333.33 2304.07 2319.88 2314.73 2306.79 2298.36 2298.12 2297.06 2293.35 NTA 36.334 36.427 36.634 34.772 34.826 34.887 34.901 34.983 34.841 34.775 34.666 34.520 34.527 34.442 34.351 34.308 34.446 34.415 34.564 34.762 35.057 35.184 35.319 35.512 Sp 1024.344 1024.419 1024.576 1023.162 1023.203 1023.247 1023.256 1023.32 1023.214 1023.164 1023.08 1022.969 1022.975 1022.912 1022.843 1022.808 1022.913 1022.887 1022.999 1023.15 1023.372 1023.467 1023.569 1023.714 27.307 27.382 27.539 26.127 26.168 26.212 26.221 26.285 26.179 26.129 26.045 25.934 25.94 25.877 25.808 25.773 25.878 25.852 25.964 26.115 26.337 26.432 26.534 26.679 Meas 27.304 27.374 27.531 26.123 26.164 26.210 26.220 26.282 26.175 26.125 26.043 25.933 25.938 25.874 25.805 25.772 25.877 25.853 25.966 26.115 26.338 26.434 26.536 26.682 Calc 0.003 0.008 0.008 0.004 0.004 0.002 0.001 0.003 0.004 0.004 0.002 0.001 0.002 0.003 0.003 0.001 0.001 -0.001 -0.002 0.000 -0.001 -0.002 -0.002 -0.003 180 Stn 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 23 23 Cruise A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A10 A22 A22 Table A.1 cont. 33.7842 33.7842 -29.189 -29.189 -29.189 -29.189 -29.189 -29.189 -29.189 -29.189 -29.189 -29.189 -29.189 -29.189 -29.189 -29.189 -29.189 -29.189 -29.189 -29.189 -29.189 -29.189 -29.189 Lat (N) -29.189 depth 104.2 154.2 154.2 225.8 278.4 350.9 450 549.5 650.9 749.6 900.4 1073.5 1274.6 1476.5 1649.3 1925.2 2173.6 2450.6 2800.7 3198.9 3629.6 4060.3 4.4 25.8 Long (E) -42.533 -42.533 -42.533 -42.533 -42.533 -42.533 -42.533 -42.533 -42.533 -42.533 -42.533 -42.533 -42.533 -42.533 -42.533 -42.533 -42.533 -42.533 -42.533 -42.533 -42.533 -42.533 -65.9914 -65.9914 0.01 0 118.69 86.09 36.01 30.06 27.13 26.84 28.89 44.7 52.03 49.89 36.81 22.75 14.16 10.93 7.61 4.49 2.83 2.54 2.05 1.27 1.27 0.88 Si 0.05 0.06 31.53 27.43 20.89 20.49 20.4 20.98 22.35 27.53 30.85 32.51 31.54 28.9 25.87 23.43 18.74 12.98 8.39 7.02 5.07 1.95 1.95 0.88 NO3 0 0 2.76 2.2 1.37 1.28 1.27 1.29 1.38 1.81 2.04 2.11 1.94 1.67 1.43 1.28 1.03 0.74 0.51 0.45 0.35 0.17 0.17 0.11 PO4 2395.2 2416.4 2366.10 2351.80 2328.20 2325.20 2297.20 2318.20 2319.50 2325.30 2323.70 2316.10 2302.40 2288.80 2283.00 2287.30 2296.80 2313.40 2331.70 2334.80 2342.60 2353.40 2353.40 2362.90 TA 2293.44 2313.67 2385.46 2365.86 2333.60 2329.19 2299.50 2322.38 2325.35 2340.75 2348.73 2351.51 2345.97 2336.80 2328.44 2322.60 2312.26 2306.68 2303.14 2302.63 2300.15 2296.45 2296.64 2284.38 NTA 36.553 36.554 34.716 34.792 34.919 34.940 34.965 34.937 34.912 34.769 34.627 34.473 34.350 34.281 34.317 34.468 34.766 35.102 35.434 35.489 35.646 35.868 35.865 36.203 Sp 1024.516 1024.515 1023.124 1023.18 1023.276 1023.293 1023.312 1023.291 1023.27 1023.163 1023.057 1022.936 1022.842 1022.791 1022.816 1022.932 1023.157 1023.409 1023.663 1023.705 1023.826 1023.996 1023.992 1024.249 27.473 27.472 26.084 26.14 26.236 26.253 26.272 26.251 26.23 26.123 26.017 25.899 25.805 25.754 25.779 25.895 26.12 26.372 26.626 26.668 26.789 26.959 26.955 27.212 Meas 27.470 27.470 26.081 26.138 26.234 26.250 26.269 26.248 26.229 26.121 26.013 25.897 25.804 25.752 25.779 25.893 26.118 26.372 26.623 26.665 26.784 26.951 26.949 27.205 Calc 0.003 0.002 0.003 0.002 0.002 0.003 0.003 0.003 0.001 0.002 0.004 0.002 0.001 0.002 0.000 0.002 0.002 0.000 0.003 0.003 0.005 0.008 0.006 0.007 181 Stn 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 Cruise A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 Table A.1 cont. 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 Lat (N) 33.7842 depth 51.2 76 104.7 150.6 200.6 252.7 303.7 352.4 402.4 504.3 604.1 705.9 807.4 907.5 1007.8 1109.4 1211.3 1311.2 1413.8 1513.9 1617.1 1820 2020.8 2275.1 Long (E) -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 19.71 13.42 12.76 11.95 11.74 11.64 11.76 12.15 12.69 13.38 13.51 9.73 6.33 3.1 1.84 1.43 1.14 1.14 0.95 0.35 0.09 0.11 0.16 0.06 Si 18.5 17.69 17.83 17.81 17.9 18.07 18.34 19.09 20.08 21.7 23.47 19.89 15.59 9.7 6.24 5.1 4.42 4.13 3.81 1 0.19 0.2 0.19 0.1 NO3 1.24 1.18 1.18 1.19 1.19 1.19 1.21 1.26 1.32 1.41 1.5 1.24 0.95 0.56 0.32 0.25 0.2 0.19 0.16 0.03 0 0 0 0 PO4 2309.9 2311.2 2308.4 2311.2 2313.7 2317.7 2323.1 2332.6 2346.8 2366.5 2387.2 2389.4 2391.9 2393.4 2392.6 2391.6 TA 2312.34 2312.19 2308.53 2309.68 2308.29 2311.29 2310.36 2303.19 2297.82 2293.44 2289.28 2283.45 2287.21 2290.08 2291.01 2290.24 NTA 34.964 34.963 34.974 34.985 34.997 34.998 35.023 35.055 35.082 35.097 35.193 35.447 35.746 36.115 36.391 36.497 36.624 36.573 36.602 36.579 36.552 36.549 36.549 36.554 Sp 1023.31 1023.309 1023.318 1023.329 1023.336 1023.336 1023.356 1023.381 1023.401 1023.414 1023.484 1023.675 1023.902 1024.184 1024.391 1024.469 1024.569 1024.529 1024.551 1024.535 1024.512 1024.513 1024.513 1024.515 26.268 26.267 26.276 26.287 26.294 26.294 26.314 26.339 26.358 26.371 26.441 26.632 26.859 27.141 27.348 27.426 27.526 27.486 27.508 27.492 27.469 27.470 27.470 27.472 Meas 26.268 26.267 26.276 26.284 26.293 26.294 26.313 26.337 26.357 26.369 26.441 26.633 26.859 27.138 27.347 27.427 27.523 27.485 27.507 27.489 27.469 27.467 27.467 27.470 Calc 0.000 0.000 0.000 0.003 0.001 0.000 0.001 0.002 0.001 0.002 0.000 -0.001 0.000 0.003 0.001 -0.001 0.003 0.001 0.001 0.003 0.000 0.003 0.003 0.002 182 Stn 23 23 23 23 23 23 23 23 23 23 28 28 28 28 28 28 28 28 28 28 28 28 28 28 Cruise A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 Table A.1 cont. 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 33.7842 Lat (N) 33.7842 depth 2530.7 2787.2 3040.7 3346.8 3654.3 3961 4268 4577.7 4885.7 5198.9 3.3 20.6 41.4 66.4 90.4 136.5 186.8 237.1 287 338.5 386.8 440.3 487 567.5 Long (E) -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.9914 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 2.44 1.62 1.19 1.07 0.89 0.86 0.68 0.12 0.2 0.19 0.23 0.16 0.16 0.21 43.59 34.55 32.6 30.44 27.59 25.28 22.72 22.44 21.65 19.77 Si 8.27 6.46 4.85 4.31 3.99 3.77 3.45 0.58 0.72 0.07 0.01 -0.01 -0.01 -0.01 20.75 19.27 18.96 18.59 18.28 18.06 17.96 18.41 18.54 18.52 NO3 0.45 0.33 0.23 0.19 0.18 0.16 0.14 0.02 0.02 -0.01 -0.01 -0.01 0.01 0 1.42 1.35 1.31 1.28 1.25 1.23 1.22 1.24 1.25 1.24 PO4 2373.3 2381.7 2389.9 2392 2393.4 2393.6 2395.1 2393.9 2393.7 2398.9 2397.9 2397.2 2397.3 2398.7 2348.7 2331.4 2320.4 2321.3 2322.4 2319.7 TA 2337.24 2322.96 2308.95 2294.58 2292.84 2290.46 2290.90 2287.87 2278.72 2284.98 2281.05 2279.02 2277.94 2281.00 2357.39 2338.88 2327.38 2327.68 2326.59 2321.29 NTA 35.540 35.885 36.227 36.486 36.535 36.576 36.592 36.622 36.766 36.745 36.793 36.815 36.834 36.806 34.871 34.886 34.888 34.890 34.895 34.904 34.923 34.937 34.954 34.976 Sp 1023.752 1024.01 1024.269 1024.466 1024.503 1024.536 1024.547 1024.57 1024.68 1024.665 1024.706 1024.722 1024.737 1024.712 1023.24 1023.253 1023.255 1023.255 1023.258 1023.265 1023.279 1023.29 1023.307 1023.32 26.705 26.963 27.222 27.419 27.456 27.489 27.500 27.523 27.633 27.618 27.655 27.671 27.686 27.661 26.198 26.211 26.213 26.213 26.216 26.223 26.237 26.248 26.265 26.278 Meas 26.703 26.964 27.223 27.419 27.456 27.487 27.499 27.522 27.631 27.615 27.651 27.668 27.682 27.661 26.198 26.209 26.211 26.212 26.216 26.223 26.237 26.248 26.261 26.277 Calc 0.002 -0.001 -0.001 0.000 0.000 0.002 0.001 0.001 0.002 0.003 0.004 0.003 0.004 0.000 0.000 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.004 0.001 183 Stn 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 47 47 Cruise A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 Table A.1 cont. 19.3543 19.3543 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 31.3098 Lat (N) 31.3098 depth 669.4 770.4 871.9 972.8 1074.8 1173.6 1277.2 1378.1 1480.8 1582.2 1752 1954.7 2189.1 2444.7 2699.6 2953.6 3243.1 3548.8 3857.9 4166.2 4475.3 4708.5 3.3 24.7 Long (E) -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -65.2875 -66.0016 -66.0016 0.95 0.92 38.69 36.8 34.49 31.06 27.59 24.37 23.02 21.78 19.18 16.73 14.57 12.88 12.18 11.91 11.95 12 12.17 12.52 13.25 13.15 9.44 5.49 Si 0 0 20 19.66 19.32 18.75 18.3 18.04 18.22 18.42 18.17 17.96 17.89 17.81 17.94 17.96 18.19 18.51 18.99 20.08 21.85 23.32 19.9 14.24 NO3 0 0 1.38 1.36 1.33 1.3 1.26 1.23 1.24 1.24 1.22 1.21 1.2 1.19 1.19 1.19 1.21 1.23 1.26 1.33 1.42 1.49 1.24 0.86 PO4 2370.7 2371.5 2338.7 2337.6 2334.6 2330.3 2327.3 2324.2 2323.4 2323.2 2320.7 2318.7 2315.9 2314.2 2315.3 2316.2 2314.4 2315.3 2316.2 2319.1 2319.7 2324 2334.4 2350.7 TA 2295.92 2295.36 2346.95 2345.64 2342.09 2336.84 2333.57 2305.43 2328.39 2327.19 2323.95 2320.95 2316.96 2314.73 2311.80 2313.42 2310.83 2310.94 2311.25 2313.35 2313.49 2317.71 2325.70 2331.91 NTA 36.140 36.161 34.877 34.880 34.888 34.902 34.906 35.285 34.925 34.940 34.951 34.966 34.984 34.992 35.053 35.042 35.054 35.066 35.075 35.087 35.094 35.095 35.131 35.282 Sp 1024.189 1024.207 1023.247 1023.249 1023.256 1023.267 1023.267 1023.556 1023.285 1023.294 1023.303 1023.316 1023.332 1023.338 1023.383 1023.376 1023.383 1023.393 1023.401 1023.41 1023.416 1023.417 1023.443 1023.557 27.156 27.174 26.204 26.206 26.213 26.224 26.224 26.513 26.242 26.251 26.260 26.273 26.285 26.291 26.336 26.329 26.336 26.346 26.354 26.363 26.369 26.370 26.396 26.510 Meas 27.157 27.173 26.202 26.205 26.211 26.221 26.224 26.511 26.239 26.250 26.258 26.270 26.283 26.289 26.335 26.327 26.336 26.345 26.352 26.361 26.366 26.367 26.394 26.508 Calc -0.001 0.001 0.002 0.001 0.002 0.003 0.000 0.002 0.003 0.001 0.002 0.003 0.002 0.002 0.001 0.002 0.000 0.001 0.002 0.002 0.003 0.003 0.002 0.002 184 Stn 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 Cruise A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 Table A.1 cont. 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 Lat (N) 19.3543 depth 49.4 74.4 100.1 151.2 201.3 251.4 302 352.4 402.9 503.5 603.5 704.3 806.2 906.9 1007.4 1108.4 1209.8 1311.2 1412.3 1614.9 1818.5 2020 2274.5 2528.4 Long (E) -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 20.06 17.08 14.76 13.7 12.84 12.44 13.08 14.32 16.78 22.78 21.4 18.54 15.47 12.21 8.97 3.54 1.59 1.13 0.69 0.36 0.07 0.38 0.72 0.98 Si 18.31 18.02 17.93 17.93 18.09 18.55 19.41 21.06 23.97 30.27 30.86 29.99 28.6 25.81 21.53 12.15 6.88 5.21 3.89 2.37 0.43 0 0 0 NO3 1.23 1.21 1.2 1.19 1.2 1.23 1.29 1.39 1.57 2 2.02 1.93 1.82 1.63 1.36 0.7 0.36 0.25 0.16 0.07 0 0 0 0 PO4 2315.9 2315.8 2319.1 2313.3 2311.5 2311.7 2316.6 2320.7 2328.5 2362.8 2387.2 2403.2 2400.7 2372 TA 2317.62 2314.41 2315.86 2321.32 2316.47 2316.14 2310.60 2301.60 2290.30 2283.59 2287.27 2292.68 2293.12 NTA 34.959 34.987 34.974 35.004 35.000 35.021 35.048 35.049 35.028 34.852 34.928 35.007 35.153 35.409 36.108 36.403 36.588 36.617 36.774 36.970 36.649 36.265 36.204 Sp 1023.317 1023.339 1023.329 1023.352 1023.346 1023.363 1023.383 1023.365 1023.35 1023.215 1023.273 1023.336 1023.443 1023.637 1024.164 1024.387 1024.53 1024.551 1024.67 1024.816 1024.576 1024.286 1024.241 26.266 26.288 26.278 26.301 26.295 26.312 26.332 26.333 26.318 26.183 26.241 26.304 26.411 26.605 27.132 27.355 27.498 27.519 27.638 27.784 27.544 27.254 27.208 Meas 26.264 26.285 26.276 26.298 26.295 26.311 26.332 26.332 26.316 26.183 26.241 26.301 26.411 26.604 27.133 27.356 27.496 27.518 27.637 27.785 27.542 27.252 27.206 Calc 0.002 0.003 0.002 0.003 0.000 0.001 0.000 0.001 0.002 0.000 0.000 0.003 0.000 0.001 -0.001 -0.001 0.002 0.001 0.001 -0.001 0.002 0.002 0.002 185 Stn 47 47 47 47 47 47 47 47 47 47 67 67 67 67 67 67 67 67 67 67 67 67 67 67 Cruise A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 Table A.1 cont. 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 19.3543 Lat (N) 19.3543 depth 2781.8 3037.2 3343.8 3650.3 4055.5 4467.9 4881.4 5293 5702.9 6117 3.3 21.1 40.8 65.5 90.6 115.2 142 186.2 236.8 286.2 334.6 387 437.4 488 Long (E) -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -66.0016 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 11.27 9.37 7.66 5.46 4.13 2.62 1.37 1.15 1.01 0.58 1.56 1.76 1.63 1.61 61.74 59.11 47.25 37.55 32.68 29.76 27.15 24.79 23.27 21.96 Si 23.57 21.3 18.72 14.98 12.1 8.55 4.32 2.28 1.44 0.03 0 0 0 0 23.69 23.26 21.4 19.84 19.04 18.58 18.31 18.06 18.23 18.31 NO3 1.47 1.33 1.15 0.9 0.7 0.47 0.2 0.1 0.06 0 0 0 0 0 1.63 1.6 1.47 1.37 1.31 1.28 1.25 1.23 1.24 1.24 PO4 2327.4 2334.2 2342.7 2370 2389.2 2409.6 2412.2 2399.7 2346.1 2348.4 2349.8 2349.3 2336 2328.5 2323.3 TA 2305.14 2302.04 2299.02 2291.56 2290.51 2288.63 2289.17 2293.42 2299.33 2297.78 2360.32 2359.21 2343.16 2334.17 2327.89 NTA 35.338 35.489 35.665 35.957 36.198 36.508 36.850 36.881 37.212 36.622 35.947 35.712 35.764 35.771 34.844 34.853 34.973 34.893 34.895 34.915 35.089 34.937 34.931 34.946 Sp 1023.59 1023.704 1023.837 1024.057 1024.241 1024.475 1024.733 1024.758 1025.004 1024.562 1024.05 1023.871 1023.911 1023.916 1023.231 1023.237 1023.328 1023.266 1023.268 1023.283 1023.416 1023.301 1023.296 1023.305 26.554 26.668 26.801 27.021 27.205 27.439 27.697 27.722 27.968 27.526 27.014 26.835 26.875 26.880 26.180 26.186 26.277 26.215 26.217 26.232 26.365 26.250 26.245 26.254 Meas 26.551 26.665 26.798 27.019 27.201 27.435 27.694 27.718 27.968 27.522 27.011 26.834 26.873 26.878 26.177 26.184 26.275 26.214 26.216 26.231 26.363 26.248 26.243 26.254 Calc 0.003 0.003 0.003 0.002 0.004 0.004 0.003 0.004 0.000 0.004 0.003 0.001 0.002 0.002 0.003 0.002 0.002 0.001 0.001 0.001 0.002 0.002 0.002 0.000 186 Stn 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 Cruise A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 Table A.1 cont. 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 15.9481 Lat (N) -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 -68.2923 Long (E) 4326.8 3955.1 3548.3 3240.9 2950.5 2695.9 2441 2187.8 1953.8 1782.1 1680.2 1578.4 1477.8 1376.2 1274.8 1174.3 1071.6 972.7 871.3 769.7 668.8 568.9 depth 28.47 28.76 28.74 28.71 28.45 28.27 28.01 27.54 27.16 26.77 26.62 26.07 25.41 24.97 24.2 24.47 4.15 24.3 23.39 22.41 19.2 14.74 Si 21.74 21.9 21.99 22.08 22.02 22.04 22.05 22.03 22.13 22.25 22.45 22.5 22.66 22.98 23.25 23.95 12.15 26.74 28.65 30.45 29.67 26.78 NO3 2341.8 1.49 34.995 34.996 2341.5 1.49 2342.13 34.983 1.5 2341.77 34.986 34.982 1.49 1.49 34.984 1.49 2340.80 34.985 1.49 2339.6 34.991 1.5 34.983 35.012 34.985 34.987 34.983 34.978 34.966 36.195 34.905 34.884 34.846 34.928 35.120 Sp 1.5 2338.54 2333.07 2331.73 2331.57 2330.36 2293.78 2331.13 2324.81 2322.42 2317.27 2310.18 NTA 34.986 2337.4 2332.2 2330.6 2330.1 2328.1 2372.1 2324.8 2317.1 2312.2 2312.5 2318.1 TA 1.51 1.52 1.53 1.53 1.55 1.57 1.61 0.71 1.79 1.9 2 1.91 1.7 PO4 1023.326 1023.325 1023.317 1023.319 1023.317 1023.318 1023.317 1023.323 1023.317 1023.319 1023.338 1023.319 1023.32 1023.317 1023.314 1023.307 1024.238 1023.258 1023.244 1023.217 1023.279 1023.422 26.293 26.292 26.284 26.286 26.284 26.285 26.284 26.290 26.284 26.286 26.305 26.286 26.287 26.284 26.281 26.271 27.202 26.222 26.208 26.181 26.243 26.386 Meas 26.292 26.292 26.282 26.285 26.282 26.283 26.284 26.288 26.282 26.285 26.304 26.284 26.285 26.282 26.279 26.270 27.199 26.223 26.208 26.179 26.241 26.386 Calc 0.001 0.000 0.002 0.001 0.002 0.002 0.000 0.002 0.002 0.001 0.001 0.002 0.002 0.002 0.002 0.001 0.003 -0.001 0.000 0.002 0.002 0.000 187 References Amon, R. M. W. (2004), The role of dissolved organic matter for the organic carbon cycle in the Arctic Ocean in The Organic Carbon Cycle in the Arctic Ocean, edited by R. Stein and R. W. Macdonald, pp. 83-99, Springer-Verlag, Berlin Heidelberg. Anderson, L. G., S. Jutterström, and S. Kaltin (2004), Variability in river runoff distribution in the Eurasian Basin of the Arctic Ocean, J. Geophys. Res., 109, C01016, doi:10.1029/2003JC001773. Apps J. A., J. M. Neil, and C. –H. Jun (1988), Thermochemical properties of gibbsite, boehmite, diaspore and the aluminate ion between 0 and 350°C, Lawrence Berkeley Laboratory Rpt. 21482. Baes, C. F., and R. E. Mesmer (1976), The Hydrolysis of Cations, 489pp., John Wiley & Sons Inc. Bates, N. R., J. T. Mathis, and L. W. Cooper (2009), Ocean acidification and biologically induced seasonality of carbonate mineral saturation states in the western Arctic Ocean, J. Geophys. Res., 114, C11007, doi:10.1029/2008JC004862. Benézéth P., D. A. Palmer, and D. J. Wesolowski (2001), Aqueous high-temperature solubility studies. II. The solubility of Boehmite at 0.03 m ionic strength as a function of temperature and pH as determined by in situ measurements, Geochim. Cosmochim. Acta, 65, 2097-2111. Bigg, P.H. (1967), Density of water in SI units over the range 0-40oC, Brit. J. Appl. Phys., 18, 521-524. Bischoff W. D., F. T. Mackenzie, and F. C. Bishop (1987), Stabilities of synthetic magnesian calcites in aqueous solution: Comparison with biogenic materials, Geochim. Cosmochim. Acta, 51, 1413-1423. Borgmann, U., W. P. Nonvood, and C. Clarke C. (1993), Accumulation, regulation and toxicity of copper, zinc, lead and mercury in Hyalella Azteca, Hydrobiologia 259, 79-89. Bourcier W. L., K. G. Knauss, and K. J. Jackson (1993), Aluminum hydrolysis constants to 250°C from boehmite solubility measurements, Geochim. Cosmochim. Acta, 57, 747–762. 188 189 Boyle, E. A., R. M. Sherrell, and M. P. Bacon (1994), Lead variability in the western North Atlantic and central Greenland ice: Implications for the search for decadal trends in anthropogenic emissions, Geochim. Cosmoschim. Acta, 58(15), 32273238. Brand, L. E. (1991), Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production, Lim. And Ocean., 36(8), 1756-1771. Brewer, P. G., and A. Bradshaw (1975), The effect of non-ideal composition of seawater on salinity and density, J. Mar. Res. 33, 157-175. Broecker, W. S. (1977), Recommendations of the working group on carbonate dissolution: Neutraliztion of fossil fuel CO2 by marine calcium carbonate in The Fate of Fossil Fuel CO2 in the Oceans, edited by N. R. Andersson and A. Malch, pp. 207-212, Plenum, New York. Bruland, K. W. (1983), Trace elements in seawater, in Chemical Oceanography, Vol 8, 2nd ed. edited by J. P. Riley and R. Chester, pp. 157-220, Academic Press, New York. Bryan, G.W. (1971), The effects of heavy metals (other than mercury) on marine and estuarine organisms, Proc. R. Soc. London B, 177, 389–410. Busenberg E. and L. N. Plummer (1989), Thermodynamics of magnesian calcite solidsolutions at 25°C and 1 atm pressure. Geochim. Cosmochim. Acta, 53, 1189-1208. Byrne, R.H. (1980), Theoretical upper-bound limitations for mixed-ligand complexes in solution, Mar. Chem., 9, 75-80. Byrne, R. H. (1981), Inorganic lead complexation in natural seawater determined by UV spectroscopy, Nature 290, 487-489. Byrne, R. H. (2002), Inorganic speciation of dissolved elements in seawater: The influence of pH on concentration ratios, Geochem. Trans., 3, 11-16. Byrne, R. H., and W. L. Miller (1984), Medium composition dependence of Lead (II) complexation by chloride ion,. Am. J. of Sci. 284, 79-94. Byrne, R. H., and W. Yao (2008), Procedures for measurement of carbonate ion concentrations in seawater by direct spectrophotometric observations of Pb(II) complexation, Mar. Chem. 112, 128-135. DOI:10.1016/j.marchem.2008.07.009. Byrne, R. H. and R. W. Young (1982), Mixed halide complexes of lead. A comparison with theoretical predictions, J. Soln. Chem. 11, 127-136. DOI: 10.1007/ BF01036380. 190 Byrne, R. H., J. G. Acker, P. R. Betzer, R. A. Feely, and M. H. Cates (1984), Water column dissolution of aragonite in the Pacific, Nature, 312, 321-326. Byrne, R. H., L. R. Kump, and K.J. Cantrell (1988), The influence of temperature and pH on trace metal speciation in seawater, Mar. Chem., 25:163–181. Byrne, R. H., W. Yao, Y. Luo, and F. J. Millero (2010), Complexation of Pb(II) by chloride ions in aqueous solutions. Aqua. Geochim., 16(3), 325-335. DOI: 10.1007/s10498-010-9101-4. Castet S, J. –L. Dandurand, J. Schott, and R. Gout (1993), Boehmite solubility and aqueous aluminum speciation in hydrothermal solutions (90–350°), Experimental study and modeling, Geochim. Cosmochim. Acta, 57, 4869–4884. Caldeira, K., and M. E. Wickett (2003), Oceanography: anthropogenic carbon and ocean pH, Nature, 425, 365. Cantrell, K. J., and R. H. Byrne (1987), Rare earth complexation by carbonate and oxalate ions, Geochim. Cosmochim. Acta, 51(3), 597-605. Chave K. E., K. S. Deffeyes, P. K. Weyl, R. M. Garrels, and M. E. Thompson (1962), Observations on the solubility of skeletal carbonates in aqueous solutions, Science, 137, 33-34, DOI:10.1126/science.137.3523.33. Choppin G. R., A. H. Bond, and P. M. Hromadka (1997), Redox speciation of plutonium, J. Radioanal. and Nuclear Chem., 219, 203-210. Connors, D. N., and P. K. Weyl (1968), The partial equivalent conductance of salt in seawater and the density-conductance relationship, Limnol. Oceanogr. 13, 39-50. Cooper, L. W., J. W. McCelland, R. M. Holmes, P. A. Raymond, J. J. Gibson, C. K. Guay, and B. J. Peterson (2008), Flow-weighted values of runoff tracers (18O, DOC, Ba alkalinity) from the six largest Arctic rivers, Geophys. Res. Letts, 35, L18606, doi:10.1029/2008GL035007. Couturier Y., G. Michard, and G. Sarazin (1984), Constantes de formation des complexes hydroxydés de l'aluminum en solution aqueuse de 20 et 70°C, Geochim. Cosmochim. Acta, 48, 649–659. Christov C., and N Møller (2004), Chemical equilibrium model of solution behavior and solubility in the H-Na-K-OH-Cl-HSO4-SO4-H2O system to high concentration and temperature, Geochim. Cosmochim. Acta, 68, 1309-1331. 191 Christov C. A G. Dickson, and N. Møller (2007), Thermodynamic modeling of aqueous aluminum chemistry and solid-liquid equilibria to high solution concentration and temperature. I. The acidic H-Al-Na-K-Cl-H2O system from 0 to 100 °C, J. Solution Chem., 36, 1495–1523. Easley, R. A., and R. H. Byrne, (2011), The ionic strength dependence of lead (II) carbonate complexation in perchlorate media, Geochim. Cosmochim. Acta, 75(19), 5638-5647. DOI:10.1016/j.gca.2011.07.007. Ekberg C., Y. Albinsson, M. J. Comarmound, and P. L. Brown (2000), Studies on the complexation behavior of thorium(IV). 1. Hydrolysis equilibria, J. Soln. Chem., 29, 63-86. Ekberg C., G. Källvenius, Y. Albinsson, and P. L. Brown (2004), Studies on the hydrolytic behavior of zirconium(IV), J. Soln. Chem., 33, 47-79. Farmer, C. and D. A. Hansell (2007), Determination of dissolved organic carbon and total dissolved nitrogen in sea water in Guide to best practices for ocean CO2 measurements edited by Dickson, A. G., C. L. Sabine, and J. R. Christian, J.R., pp.191, PICES Special Publication 3. Feely, R. A., C. L. Sabine, K. Lee, F. J. Millero, M. F. Lamb, D. Greeley, J. L. Bullister, R. M. Key, T. -H. Peng, A. Kozyer, T. Ono, and C. S. Wong (2002), In Situ Calcium Carbonate dissolution in the Pacific, Glob. Biogeochem. Cycles, 16(4), 1144, doi:10.1029/2002GB091866. Feely, R. A., C. L. Sabine, K. Lee, W. Berelson, J. Kleypas, V. J. Fabry, and F. J. Millero (2004), Impact of anthropogenic CO2 on the CaCO3 system in the oceans, Science 16, 362-366. Frink C. R. and M. Peech (1963), Hydrolysis of the aluminum ion in dilute solutions, Inorg. Chem., 2, 473–478. Gaffey, S. J., and C. E. Bronniman (1993), Effects of bleaching on organic and mineral phases in biogenic carbonates, J. Sed. Petrol.,63, 752-754. Garrels, R. M., M. E. Thompson, and R. Siever (1960), Stability of some carbonates at 25°C and one atmosphere total pressure, Am. J. of Sci., 258, 402-218. Gattuso, J. -P., M. Frankignoulle, I. Bourge, S. Romaine, and R. W. Buddemeier (1998), Effect of calcium carbonate saturation of seawater on coral calcification, Global Planetary Change, 18(1–2), 37–46. Gieskes, J.M. (1982) The practical salinity scale 1978, a reply to comments by T.R. Parsons, Limnol.Oceanogr., 27, 387-389. 192 Greenberg, J. P. and N. Møller (1989), The Prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentrations from 0 to 250°C, Geochim. Cosmochim. Acta, 53, 2503-2518. Grosell, M. (2011), Intestinal anion exchange in marine teleosts is involved in osmoregulation and contributes to the oceanic inorganic carbon cycle, Acta Physiol (Oxf). 2011 Jul;202(3):421-34. doi: 10.1111/j.1748-1716.2010.02241.x. Epub 2011 Mar 1. Hannan, P. J., and C. Patouillet, (1972), Effect of mercury on algal growth rates. Biotechnol. Bioengin, 14, 93–101. Hansell, D. A., D. Kadko, and N. R. Bates (2004), Degradation of terrigenous dissolved organic carbon in the western Arctic Ocean, Science, 304, 858-861. Hansell, D. A., C. A. Carlson, D. J. Repeta, and R. Schlitzer (2009) Dissolved organic matter in the ocean: New insights stimulated by a controversy, Oceanography, 22, 52-61. Harvie, C. E., and J. H. Weare (1980), The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-SO4-Cl-H2O system from zero to high concentrations at 25°C, Geochim. Cosmochim. Acta, 44, 981-997. Harvie C. E., and J. H. Weare (1983), The prediction of mineral solubility in natural waters: The Na-K-Mg-Ca-Cl-SO4-H2O system to higher concentration at 25°C, Geochim. Cosmochim. Acta, 47, 981-997. Harvie, C. E., N. Møller, and J. H. Weare, (1984), The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C, Geochim. Cosmochim. Acta, 48(4), 723742. Heuer, R. M., A. J. Esbaugh, and M. Grosell (2012), Oceanacidification leads to counterproductive intestinal base loss in gulf toadfish (Opsanus beta), Physiol. Biochem. Zool., in press. Jansen, H., R. E. Zeebe, and D. A. Wolf-Gladrow (2002), Modeling the dissolution of CaCO3 in the ocean, Glob. Biogeochem. Cycles, 16(2), 1027, DOI:10.1029/ 2000GB001279. Kell, G.S. (1975), The density, thermal expansivity and compressibility of liquid water from 0 to 150°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on the 1968 temperature scale, J. Chem. Eng. Data, 20, 97-105. 193 Kleypas, J. A., R. W. Buddemeier, D. Archer, J. -P. Gattuso, C. Langdon, and B. N. Opdyke (1999), Geochemical consequences of increased atmospheric carbon dioxide on coral reefs, Science, 284, 118–120. Klungness G. D., and R. H. Byrne (2000), Comparative hydrolysis behavior of the rare earths and yttrium: the influence of temperature and ionic strength, Polyhedron, 19,99-107. Langdon, C., W. S. Broecker, D. E. Hammond, E. Glenn, K. Fitzsimmons, S. G. Nelson, T. -H. Peng, I. Hajdas, and G. Bonani (2003), Effect of elevated CO2 on the community metabolism of an experimental coral reef, Global Biogeochem. Cycles, 17, 1011, doi:10.1029/2002GB001941. Langer, G., G. Nehrke, and S. Jansen (2007), Dissolution of Calcidicus leptoporus coccoliths in copepod guts? A morphological study, Mar. Eco. Prog. Ser. 331, 139146, DOI:10.1021/cr0503557. Letscher, R. T., D. A. Hansell and D. Kadko (2011), Rapid removal of terrigenous dissolved organic carbon over the Eurasian shelves of the Arctic Ocean, Mar. Chem., 123, 78-87. DOI: 10.1016/j.marchem.2010.10.002. Liu X., and F. J. Millero (1999), The solubility of iron hydroxide in sodium chloride solutions, Geochim. Cosmochim Acta, 63, 3487-3497. Lo Surdo, A., E. M. Alzola, and F. J. Millero (1982), The PVT properties of concentrated aqueous electrolytes. I. Densities and apparent molal volume of NaCl, Na2SO4, MgCl2, and MgSO4 solutions from 0.1 mol kg-1 to saturation and from 273.15 to 323.15 K, J. Chem. Thermodyn., 13, 649–662. Luo Y., and F. J. Millero (2007), Stability constants for the formation of lead chloride complexes as a function of temperature and ionic strength, Geochim. Cosmochim. Acta, 71, 326–334. Manfredi C., V. Caruso, E. Vasca, S. Vero, E. Ventimiglia, G. Pallidino, and D. Ferri (2006), On the hydrolysis of tetravalent uranium ion U4+, J. Soln. Chem., 35, 927-937. Middag, R., H. J. W. de Baar, P. Laan, and K. Bakker (2009), Dissolved aluminium and the silicon cycle in the Arctic Ocean, Mar. Chem., 115, 176–195. Millero, F. J. (1975), The physical chemistry of estuaries, in Marine Chemistry in the Coastal Environment, edited by T. M. Church, pp. 25-55, ACS Symp. Ser. 18 Washington, DC. Millero, F. J. (1978), The physical chemistry of Baltic Sea waters, Thalassia Jugoslavica 14, 1-46. 194 Millero F. J. (1983), The estimation of the pK*HA of acids in seawater, using the Pitzer equations, Geochim. Cosmochim. Acta, 47, 212 l-2129. Millero, F. J. (1984), The conductivity-density-salinity-chlorinity relationship for estuarine waters, Limnol. Oceanogr., 29, 1317-1321. Millero, F. J. (1992), Stability constants for the formation of rare earth inorganic complexes of a function of ionic strength, Geochimi. Cosmochim. Acta, 56, 31233132. Millero, F. J. (2000), Effect of changes in the composition of seawater on the densitysalinity relationship, Deep-Sea Res. 47, 1583-1590. Millero, F. J. (2001a), Physical Chemistry of Natural Waters, 654 pp., WileyInterscience, New York. Millero, F. J. (2001b), Speciation of metals in natural water, Geochemical Transctions 8. Millero, F. J. (2007), The Marine Inorganic Carbon Cycle, Chemical Reviews, 107(2), 308-341. Millero, F. J. and R. H. Byrne (1984), Use of Pitzer’s equations to determine the media effect on the formation of lead chloro complexes, Geochim. Cosmochim. Acta, 48, 1145-1150. Millero F. J., and D. J. Hawke (1992), Ionic interactions of divalent metals in natural waters, Mar. Chem., 40, 19-48. Millero, F. J., and K. Kremling (1976), The densities of Baltic Sea Waters, Deep-Sea Res., 23, 1129-1138. Millero, F. J., and D. Pierrot (1998), A chemical model for natural waters, Aquatic Geochem., 4, 153-199. Millero, F. J., and D. Pierrot (2002), Speciation of metals in natural waters. in Chemistry of Marine Water and Sediments, edited by A. Gianguzza, E. Pellizzetti, and S. Sammartano, Springer-Verlag, Berlin. Millero F. J., and D. Pierrot (2007), The activity coefficients of Fe(III) hydroxide complexes in NaCl and NaClO4 solutions, Geochim. Cosmochim. Acta., 71, 4825-4833. Millero, F. J., and A. Poisson (1981), International one atmosphere equation of state of seawater, Deep-Sea Res. 28, 625-629. 195 Millero, F. J., P. V. Chetirkin, and F. Culkin (1976a), The relative conductivity and density of standard seawaters, Deep-Sea Res. 24, 315-321. Millero, F .J., A. Gonzalez, and G. K. Ward (1976b), The density of seawater solutions at one atmosphere as a function of temperature and salinity, J. Mar. Res. 34, 61-93. Millero, F. J., A. Gonzalez, P. G. Brewer, and A. Bradshaw (1976c), The density of North Atlantic and North Pacific deep waters, Earth and Planetary Sci. Letters, 32, 468-472. Millero, F. J., D. Lawson, and A. Gonzalez (1976d), The density of artificial river and estuarine waters, J. Geophys. Res., 81, 1177-1179. Millero, F. J., D. Forsht, D. Menas, J. Giekes, and K. Kenyon (1978), The density of North Pacific Ocean waters, J.Geophys. Res., 83, 2359-2364. Millero, F. J., J. Z. Zhang, K. Lee, and D. M. Campbell (1993), Titration alkalinity of seawater, Mar. Chem., 44, 153-165. Millero, F. J., W. Yao, and J. Aicher (1995), The speciation of iron (II) and (III) in natural waters, Mar. Chem., 50, 21-39. Millero, F. J., T. Graham, F. Huang, H. Bustos and D. Pierrot (2006), Dissociation constants for carbonic acid in seawater as a function of temperature and salinity, Mar. Chem., 100, 80-94. Millero, F. J., F. Huang, T. Graham, D. Pierrot (2007), The dissociation of carbonic acid in NaCl solutions as a function of concentration and temperature, Geochim. Cosmochim. Acta, 71, 46-55. DOI:10.1016/j.gca.2006.08.041. Millero, F. J., R. Reistel, D. G. Wright, and T. J. McDougall, T (2008), The Standard Composition of Seawater: The Definition of a Reference Salinity Scale, Deep-Sea Res. I, 55(1), 50-72, DOI:10.1016/j.dsr.2007.10.001. Millero, F. J., R. Woosley, B. DiTrolio, and J. Waters (2009), Effect of ocean acidification on the speciation of metals in seawater, Oceanography, 22(4), 72-85. Millero, F. J., J. M. Santana-Casino, and M. Gonzalez-Davilla (2010), The formation of Cu(II) complexes with carbonate and bicarbonate in NaClO4 solutions, J. Soln. Chem., 39(4), 543-558. DOI: 10.1007/s10953-010-9523-z. Milliman, J. D., and A. W. Droxler (1996), Neritic and Pelagic Carbonate Sediment in the Marine Environment: Ignorace is not Biss, Geol. Res. , 496-504. 196 Milliman, J. D., P. J. Troy, W. M. Balch, A. K. Adams, Y. -H. Li, and F. T. Mackenzie (1999), Biologically mediated dissolution of calcium carbonate above the chemical lysocline?, Deep-Sea Res. I, 46, 1653-1669. Møller N. (1988), The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system to high temperatures and concentration, Geochim. Cosmochim. Acta, 52, 821-837. Morse, J. W., and F. T. Mackenzie (1990), The Geochemistry of Sedimentary Carbonates, 707 pp., Elsevier, Amsterdam. Morse, J. W., A. Mucci, and F. J. Millero (1980), The solubility of calcite and aragonite in seawater and 35 ‰ salinity at 25°C and atmospheric pressure, Geochim. Cosmochim. Acta, 44, 85-95. Morse, J. W., D. K. Gledhill, and F. J. Millero (2003), CaCO3 precipitation kinetics in waters from the Great Bahama Bank: Implications for the relationship between Bank hydrochemistry and whitings, Geochim. Cosmochim. Acta, 67(15), 28192826, doi:10.1016/S0016-7037(03)00103-0. Morse, J. W., A. J. Andersson, and F.T. Mackenzie (2006), Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and ‘‘ocean acidification’’: Role of high Mg-calcites, Geochim. Cosmochim. Acta, 70, 5814-5830. Morse J. W., R. S. Arvidson, and A. Lüttge (2007), Calcium carbonate formation and dissolution, Chem. Rev., 107, 342–381. Mucci, A. (1983), The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure, Am. J. Sci. 283, 780-799. Neck V., and J. I. Kim (2001), Solubility and hydrolysis of tetravalent actinides, Radiochem. Acta, 89, 1-16. Orr, J. C., V. J. Fabry, O. Aumont, L. Bopp, S. C. Doney, R. A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, and others (2005), Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437, 681–686. Palmer D. A., and J. L. S. Bell (1994), Aluminum speciation and equilibria in aqueous solution: IV. A potentiometric study of aluminum acetate complexation in acidic NaCl brines to 150°C, Geochim. Cosmochim. Acta, 58, 651–659. Palmer D. A., and D. J. Wesolowski (1992), Aluminum speciation and equilibria in aqueous solution: II. The solubility of gibbsite in acidic sodium chloride solutions from 30 to 70°C, Geochim. Cosmochim. Acta, 56, 1093–1111. 197 Palmer, D. A., and D.J. Wesolowski (1993), Aluminum speciation and equilibria in aqueous solution: III. Potentiometric determination of the first hydrolysis constant of aluminum (III) in sodium chloride solutions to 125°C, Geochim. Cosmochim. Acta, 57, 2929–2938. Palmer D. A., P. Benezeth P., and D. J. Wesolowski (2001), Aqueous high-temperature solubility studies. I. The solubility of boehmite as functions of ionic strength (to 5 molal, NaCl), temperature (100-290°C), and pH as determined by in situ measurements, Geochim. Cosmochim. Acta, 65, 2081-2095. Parsons, T.R. (1982), The new physical definition of salinity: Biologists beware, Limnol. Oceanogr., 27, 384-385. Paulson A. J., and D. R. Kester (1980), Copper(II) ion hydrolysis in aqueous solution, J. Soln. Chem., 9, 269-277. Perry, C. T., M. A. Salter, A. R. Harborne, S. F. Crowley, H. L. Jelks, and R. W. Wilson (2011), Fish as major carbonate mud producers and missing components of the tropical carbonate factor, PNAS, 108(10), 3865-3869, DOI:10.1073/pnas. 1015895108. Pierrot, D., E. Lewis, and D. W. R. Wallace (2006), MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee. Pitzer, K. S. (1991), Theory: ion interaction approach: theory and data collection. in Activity Coefficients in Electrolyte Solutions, 2nd ed. CRC Press, Boca Raton, FL. Pivovarov, S. (2005), Modeling of ionic equilibria of trace metals (Cu2+, Zn2+, Cd2+) in concentrated aqueous electrolyte solutions at 25°C, J. Colloid and Inter. Sci., 291,421-432. Plummer L.N. and F.T. Mackenzie (1974), Predicting mineral solubility from rate data: Application to the dissolution of magnesian calcites. Am. J. Sci., 274, 179-216. Poisson, A., M. Perie, J. Perie, and M. Chemla (1979) Individual equivalent ionic conductances of the major ions in seawater, J. Sol. Chem., 8, 377-394. Poisson, A., J. Lebel, and C. Brunet (1980), Influence of local variations in the ionic ratios on the density of seawater in the St. Lawrence area, Deep-Sea Res. 27, 763781. Poisson, A., J. Lebel, and C. Brunet (1981), The densities of western Indian Ocean, Red Sea and eastern Mediterranean surface waters, Deep-Sea Res., 28, 1161-1172. 198 Powell K. J., P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, K. –A. Leuz, S. Sjoberg, and H. Wanner (2009) Chemical speciation of environmentally significant metals with inorganic ligands. Part 3: the Pb2+ + OH-, Cl-, CO32-, SO42-, and PO43systems (IUPAC Technical Report), Pure Appl. Chem., 81(12), 2425–2476. Rai D., Y. Xia, N. J. Hess, D. M. Strachan, and B. P. McGrail (2001), Hydroxo and chloro complexes/Ion interactions of Hf4+ and the solubility product of HfO2(am), J. Soln. Chem., 30, 949-967. Schofield R. K., and A. W. Taylor (1954), The hydrolysis of aluminum salt solutions, J. Chem. Soc., 4445–4448. Sharp, J. H., and C. H. Culberson (1982), The physical definition of salinity: A chemical evaluation, Limnol.Oceanogr., 27, 385-387. Soli, A. L., Z. I. Stewart, Z, and R. H. Byrne (2008), The influence of temperature on PbCO30 formation in seawater, Mar. Chem., 110,1-6. DOI:10.1016/ j.marchem.2008.01.004. Spieweck, F., and H. Bettin (1992), Review: Solid and liquid density determination, Technisches. Messen, 59, 285-292. Steemann-Nielsen, E., and S. Wium-Anderson (1970), Copper ions as poison in the sea and in freshwater, Mar. Bio., 6, 93-97. Stefánsson A. (2007), Iron(III) hydrolysis and solubility at 25°C, Environ. Sci. Technol., 41, 6117-6123. Stefánsson A., and T. M. Seward (2008), A Spectrophotometric study of iron(III) hydrolysis in aqueous solutions to 200°C, Chem. Geology, 249, 227-235. Sunda, W. G., and R. L. Ferguson (1983), Sensitivity of natural bacterial communities to additions of copper and to cupric ion activity: A bioassay of copper complexation in seawater, in Trace Metals in Seawater, edited by C. S. Wond, E. Boyle, K. W. Bruland, J. D. Burton, and E. D. Goldberg, Plenum, New York. Sverdrup, H. U., N. W. Johnson, and R. H. Fleming (1941), The Oceans, 1087 pp., Prentice Hall, Englewood Cliffs, New Jersey. Tarapcik P., B. Fourest, and E. Giffaut (2005), Comparative approach of the solubility of protactinium oxy/hydroxides, Radiochem. Acta, 93, 27-33. Taylor, J. R. and M. Grosell (2006), Evolutionary aspects of intestinal bicarbonate secretion in fish. Comp.Biochem.Physiol., A 143, 523-529. 199 Thornstenson, D. C., and L. N. Plummer (1977), Equilibrium criteria for two-component solids reacting with fixed composition in an aqueous phase-Example: The Magnesian calcites, Am. J. Sci., 277, 1203-1223. Turner, D. R., M. Whitfield, and A. G. Dickson (1981), The equilibrium speciation of dissolved components of freshwater and seawater at 25°C and 1 atm pressure, Geochim. Cosmochim. Act, 44, 855–881. UNESCO (1981a) Background papers and supporting data on the Practical Salinity Scale, 1978, UNESCO Technical Papers in Marine Science 37, pp. 144. UNESCO (1981b), Background papers and supporting data on the International Equation of State of Seawater, 1980, UNSECO Technical Papers in Marine Science 38, pp. 192. Verdes G., R. Gout, and S. Castet (1992), Thermodynamic properties of Aluminate ion and of bayerite, boehmite, diaspore and gibbsite, Euro. J. of Miner., 4, 767-792. Volokhov, Yu. A., L. N. Pavlov, N. I. Eremin, and V. E. Mironov (1971), Hydrolysis of aluminum salts, J. Appl. Chem., 44, 243–246. Walsh, P. J., P. Blackwelder, K. A. Gill, E. Danulat, and T. P. Mommsen (1991) Carbonate deposits in marine fish intestines: a new source of biomineralization, Limnol. Oceanogr., 36, 1227-1232. Wesolowski, D. J. (1992), Aluminum speciation and equilibria in aqueous solution: I. The solubility of gibbsite in the system Na-K-Cl-OH-Al(OH)4 from 0 to 100°C, Geochim. Cosmochim. Acta, 56, 1065–1091. Wesolowski D. J., and D. A. Palmer (1994), Aluminum speciation and equilibria in aqueous solutions: V. Gibbsite solubility at 50°C and pH 3-9 in 1 molal NaCl solutions (a general model for aluminum speciation; analytical methods), Geochim. Cosmochim. Acta, 58, 2947-2969. Wilson, R. W., F. J. Millero, J. R. Taylor, P. J. Walsh, V. Christensen, S. Jennings, and M. Grosell (2009), Contribution of fish to the marine inorganic carbon cycle, sScience, 323, 359-362, DOI: 10.1126/science.1157972. Whitfield, M. (1975), The extension of chemical models for seawater to include trace components at 25°C and 1 atm. Pressure, Geochim. Cosmochim. Acta, 39, 15451557. Zakanova-Herzog V.P., T. M. Seward, and O. M. Sulemenov (2006), Arsenous acid ionization in aqueous solutions from 25 to 300°C, Geochim. Cosmochim. Acta, 70, 1928-1938. 200 Zotov A. V., and Z. Y. Kotova (1979), Spectrophotometric determination of the first hydrolysis constant of Fe3+ at 25-80°C, Geokhimiya, 285-290 (in Russian). Zotov A. V., and Z. Y. Kotova (1980), Spectrophotometric determination of the first constant of hydrolysis of Fe3+ ion at 80-200°C, Geokhimiya, 768-773 (in Russian).
© Copyright 2026 Paperzz