Physical Chemical Properties of Trace and Minor Components of

University of Miami
Scholarly Repository
Open Access Dissertations
Electronic Theses and Dissertations
2012-11-06
Physical Chemical Properties of Trace and Minor
Components of Natural Waters: Solubility,
Speciation, and Density
Ryan J. Woosley
University of Miami, [email protected]
Follow this and additional works at: http://scholarlyrepository.miami.edu/oa_dissertations
Recommended Citation
Woosley, Ryan J., "Physical Chemical Properties of Trace and Minor Components of Natural Waters: Solubility, Speciation, and
Density" (2012). Open Access Dissertations. 868.
http://scholarlyrepository.miami.edu/oa_dissertations/868
This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Dissertations by an authorized administrator of Scholarly Repository. For more information, please contact
[email protected].
UNIVERSITY OF MIAMI
PHYSICAL CHEMICAL PROPERTIES OF TRACE AND MINOR COMPONENTS
OF NATURAL WATERS: SOLUBILITY, SPECIATION, AND DENSITY
By
Ryan J. Woosley
A DISSERTATION
Submitted to the Faculty
of the University of Miami
in partial fulfillment of the requirements for
the degree of Doctor of Philosophy
Coral Gables, Florida
December 2012
©2012
Ryan J. Woosley
All Rights Reserved
UNIVERSITY OF MIAMI
A dissertation submitted in partial fulfillment of
the requirements for the degree of
Doctor of Philosophy
PHYSICAL CHEMICAL PROPERTIES OF TRACE AND MINOR COMPONENTS
OF NATURAL WATERS: SOLUBILITY, SPECIATION, AND DENSITY
Ryan J. Woosley
Approved:
________________
Frank J. Millero, Ph.D.
Professor of Marine and
Atmospheric Chemistry
_________________
M. Brian Blake, Ph.D.
Dean of the Graduate School
________________
Anthony Hynes, Ph.D.
Professor of Marine and
Atmospheric Chemistry
_________________
Jingfeng Wu, Ph.D.
Professor of Marine and
Atmospheric Chemistry
________________
Robert H. Byrne, Ph.D.
Professor of Marine Physical Chemistry
University of South Florida
WOOSLEY, RYAN J.
(Ph.D., Marine and Atmospheric Chemistry)
Physical Chemical Properties of Trace
(December 2012)
and Minor Components of Natural Waters:
Solubility, Speciation, and Density
Abstract of a dissertation at the University of Miami.
Dissertation supervised by Professor Frank J. Millero.
No. of pages in text. (200)
The physical properties of minor/trace components of natural waters aren’t well
known. Although these components have received a great deal of study recently only a
small focus has been on properties such as speciation and solubility, which influence the
behavior and fate in the environment. The pH has a large influence on speciation. This is
of increasing importance due to ocean acidification from the anthropogenic input of CO2
into the environment and the resultant uptake by the oceans. Metals that form strong
complexes with hydroxide and carbonate will see large changes speciation over the next
few centuries. Metals with biological importance, either as a nutrient or toxin, are of most
interest. The bioavailable form of most metals will increase; this can be potentially
helpful or harmful depending on the metal.
Knowledge of speciation is often limited, when measurements are lacking,
correlations have been used to make reasonable estimates. The hydrolysis of Al(III) in
NaCl is well known over a wide range of conditions. A near linear correlation between
the hydrolysis constants of Al(III) and a variety of +2, +3, and +4 metals has been found.
This provides estimates of hydrolysis constants when measurements are not available.
Lead is extremely difficult to measure due to low solubility, but is important
because of its toxicity. The formation constant () of PbCO3 is not well known and most
speciation calculations are done using correlations with Cd or Zn. The PbCO3 was
measured in NaCl at 25°C from I= 0.05-3 m. This was then modeled using a Pitzer
Model and combining the new measurements with all previously published data on
PbCO3 and PbCln2-n. The Pitzer model can then be used for lead speciation in most
natural waters including seawater.
Calcite and Aragonite have been well studied due to their use by shell forming
organisms. However, several lines of evidence show that 51-71% of the CaCO3 produced
in the surface oceans is dissolving unexpectedly above the aragonite saturation horizon.
The most likely explanation is a more soluble form of CaCO3, but no possible source was
known. Then recently, it was discovered that telost fish produce a high magnesium
calcite as a byproduct of osmoregulation. The solubility of fish produced high
magnesium calcite was measured in Gulf Stream seawater at 25°C. The stoichiometric
solubility product constant (K*sp) was determined to be 5.89, in agreement with Bahamas
Banks high magnesium calcite and approximately twice as soluble as aragonite. This
more soluble CaCO3 likely explains at least a portion of the CaCO3 dissolution above the
aragonite saturation horizon.
Minor components of seawater can also influence density, a highly used property;
however most equations were determined on surfaces waters which have negligible
concentrations of minor components. Deep waters can have significant amounts of
silicate, nitrate and normalized total alkalinity. Using measurements of density and
nutrient concentrations, semi-empirical equations have been determined for nitrate,
silicate and normalized total alkalinity, and can increase density by up to ~20ppm.
All of these measurements help to improve our understanding of the physical
properties of minor components of seawater, and how they might change under future
ocean conditions.
DEDICATION
To my parents
David and Lee Woosley
To my sisters
Jennifer Gunther and Andrea Steckler
for their love, caring, understanding, and support
iii
Acknowledgements
I would like to thank my advisor, Dr. Frank J. Millero, for his dedication,
knowledge, guidance and support throughout my entire time at RSMAS. I consider
myself lucky to have had the opportunity to work with him. I would also like to thank Dr.
Robert Byrne, Dr. Anthony Hynes, and Dr. Jingfeng Wu for serving on my dissertation
committee and for all their knowledge and guidance.
I owe a great deal of gratitude to Ms. Gay Ingram. For all the countless things she
did and all the support and words of encouragement throughout my time as a student.
You are already missed. RIP.
I would like to thank everyone in Dr. Millero’s group, especially Dr. Jason
Waters, Dr. John Michael Trapp, Dr. Mareva Chanson, Ms. Nancy Williams, Ms.
Carmen Rodriguez, Ms. Fen Huang. Without their help and support I never would have
been able to finish. Additional thanks goes to all my co-authors outside of Dr Millero’s
group, Dr. Robert Letscher, Dr. Dennis Hansell, and Dr. Martin Grosell. Extra thanks go
to Ms. Fen Huang for the countless hours she spent measuring nearly all of the 1750
density samples.
Much gratitude is due to all my family and friends for all their love, support, and
friendship, which has made all of this possible.
This work was supported by the Oceanographic section of the National Science
Foundation and the National Oceanic and Atmospheric Administration.
iv
Table of Contents
List of Figures ...………………………………………………………………………..vii
List of Tables ...…………………………………………………………………………..x
Chapter 1
1.1
1.2
1.3
1.4
1.5
1.6
Introduction
Minor and trace components of natural waters ...…………………………1
Speciation in natural waters ...…………………………………………….3
Effect of ocean acidification on trace metal speciation ...………………...4
Calcium carbonate in seawater ...………………………………………..17
Impact of minor components on the density of seawater ...……………..20
Scope of this work ...…………………………………………………….20
Chapter 2
2.1
2.2
2.3
The Hydrolysis of Al(III) in NaCl Solutions-A Model for Fe(III)
Background ...……………………………………………………………22
Hydrolysis constants for Al(III) in NaCl solutions ...……………………25
Correlations of the hydrolysis constants of Fe(III) and Al(III) in NaCl
solutions ...……………………………………………………………….28
Causes of the correlations of the hydrolysis constants of Fe(III) and
Al(III) …...……………………………………………………………….30
2.4
Chapter 3
3.1
3.2
3.3
Chapter 4
The Hydrolysis of Al(III) in NaCl Solutions-A Model for M(II),
M(III), and M(IV) ions
Background .……………………………………………………………..36
Hydrolysis constants for Al(III) in NaCl solutions .……………………..38
Al(III) Correlations with +2, +3, and +4 metals ...………………………38
4.4
Pitzer Model for the Speciation of Lead Chloride and Carbonate
Complexes in Natural Waters
Background .……………………………………………………………..45
Determination of PbCO3 in NaCl
4.2.1 Methods ...………………………………………………………..47
4.2.2 PbCO3 formation results .………………………………………..49
The Pitzer model .………………………………………………………..52
4.3.1 Determination of Pitzer parameters for Pb-Cln and Pb-CO3
interactions ...…………………………………………………….55
4.3.2 Pb(CO3)Cl- formation....................................................................65
4.3.3 Activity coefficients and speciation in seawater .………………..66
Conclusions ……………………………………………………………...69
Chapter 5
5.1
5.2
5.3
The Solubility of Fish-produced High Magnesium Calcite in Seawater
Background ……………………………………………………………...71
Methods ………………………………………………………………….73
Results ………………..………………………………………………….76
4.1
4.2
4.3
v
5.4
Discussion and conclusion ……………………………………………....80
Chapter 6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
Effect of Composition on the Density of Seawater
Background .……………………………………………………………..83
Experimental methods …………………………………………………..86
Indian Ocean …………………………………………………………….88
South Pacific …………………………………………………………….93
Arctic Ocean …………………………………………………………….96
Global Oceans ………………………………………………………….105
Effect of ocean acidification …………………………………………...108
Conclusions …………………………………………………………….110
Chapter 7
Conclusions…………………………………………………………….111
Appendix ……………………………………………………………………………....114
References ……………………………………………………………………………..188
vi
List of Figures
Figure 1.1: Classification of the elements in seawater based on typical concentrations…2
Figure 1.2. Increase in the pCO2 in the atmosphere over time…………………………...4
Figure 1.3. Expected changes in ocean pH as a function of time………………………...5
Figure 1.4: The decrease in the concentrations of OH- and CO32- ions in seawater due to
ocean acidification (Calculated using the carbonate constants of Millero et al., [2006])...7
Figure 1.5: Graphical representation of the Pitzer equations for the activity of lead in
seawater……………………………………………………………………………………8
Figure 1.6: Expected changes in the inorganic speciation of Cu(II) (top) and Fe(II)
(bottom) as a function of time (year based on Caldeira and Wickett [2003])…………...16
Figure 1.7: Profile of the normalized total alkalinity of seawater in the North Atlantic
(30°N and 23°E), showing an increase in NTA above the aragonite saturation horizon..19
Figure 2.1: Plot of the thermodynamic hydrolysis constants (Ki) for Fe(III) [Stefánsson,
2007; Stefánsson and Seward, 2008; Millero 2001a] versus Al(III) [Millero and Pierrot,
2007; Benézéth et al., 2001; Palmer and Wesolowski, 1993; Wesolowski, 1992] as a
function of temperature in pure water. The dashed line is a second degree fit of the
results…………………………………………………………………………………….23
Figure 2.2: Plot of the thermodynamic and stoichiometric (i) hydrolysis constants for
Fe(III) versus Al(III) in NaCl solutions at different ionic strengths and 25°C [Millero and
Pierrot, 2007; Benézéth et al., 2001]…………………………………………………….24
Figure 2.3: Comparison of the values of log i of Fe(III) and Al(III) as a function of
square root of ionic strength [Millero, 2001a; Benézéth et al., 2001]………………………..31
Figure 2.4: Comparison of the activity coefficients of Fe3+ [Millero, 2001a] and Al3+
[Christov et al., 2007] in NaCl solutions at 25°C as a function of the square root of ionic
strength…………………………………………………………………………………...33
Figure 2.5: Comparison of the activity coefficients of the Fe3+ and Al3+ complexes in
NaCl solutions at 25°C as a function of the square root of ionic strength……………….35
Figure 3.1: A plot of the thermodynamic hydrolysis constants of M(II) versus Al(III) at
25°C (a Baes and Mesmer [1976]; b Paulson and Kester [1980]; c Pivovarov [2005])…..39
vii
Figure 3.2: A plot of the thermodynamic hydrolysis constants of M(III) versus Al(III) at
25°C (a Baes and Mesmer [1976]; b Klungness and Byrne [2000]; c Rai et al. [2001])....40
Figure 3.3: A plot of the thermodynamic hydrolysis constants of M(IV) versus Al(III) at
25°C (a Baes and Mesmer [1976]; b Rai et al. [2001]; c Ekberg et al. [2000], d Ekberg et
al. [2004]; e Tarapcik et al. [2005]; f Manfredi et al. [2006]; g Choppin et al. [1997];
h
Neck and Kim [2001]).......................................................................................................40
Figure 3.4: The mean and standard deviations of the difference between the free energies
of the free metal and the complex by charge. Reference lines represent the values of
Al(III).................................................................................................................................42
Figure 4.1: Absorbance spectra for PbCO3 at 1.026 m NaCl. The height of the peak
increase with increasing carbonate concentration..............................................................50
Figure 4.2: Comparison of the measured and modeled logPbCO3 in NaCl, NaClO4 and
seawater (I=0.723). Measured values in NaClO4 are from Easley and Byrne [2011].......52
Figure 4.3: Difference between the measured logPbCln and calculated logPbCln as a
function of ionic strength in all media (HCl, MgCl2, CaCl2, NaCl, NaClO4)...................57
Figure 4.4: Difference between the measured logPbCO3 and calculated logPbCO3 as a
function of ionic strength in NaCl and NaClO4 media .....................................................64
Figure 5.1: Aragonite solubility measurement in seawater..............................................76
Figure 5.2: Scanning Electron Microscope picture of precipitates produced by the gulf
toadfish (Opsanus beta).....................................................................................................79
Figure 5.3: Fish-produced carbonate solubility measurement in seawater.......................80
Figure 5.4: Depth profile of the normalized total alkalinity of seawater for the North
Atlantic (30°N and 23°E) North Pacific (31°N and 151°W) and Southern Ocean (67°S
and 151°W) showing the saturation horizons for aragonite (solid line) and fish-produced
(dashed line) calcium carbonates. (Data taken from CLIVAR P16N, A16N, and S4P,
http://cdiac.ornl.gov/oceans/RepeatSections/). No dashed line is given for the Southern
Ocean station since the surface waters are under-saturated with respect to fish-produced
calcium carbonate..............................................................................................................82
Figure 6.1: The measured  for the Indian Ocean (28° S - 18° N) as a function of depth
(m). The solid line is a linear fit and has a  = 0.041 kg m-3.............................................89
Figure 6.2: Profiles of the changes in normalized total alkalinity (NTA), normalized
total carbon (NTCO2), silicate (SiO2), and nitrate (NO3) for the Indian Ocean
stations...............................................................................................................................91
viii
Figure 6.3: The excess density due to changes in normalized total alkalinity (NTA),
normalized total carbon (NTCO2), silicate (SiO2), and nitrate (NO3) for the Indian
Ocean.................................................................................................................................92
Figure 6.4: Measured  for the South Pacific (28° S-18° N) from CLIVAR cruise P18,
as a function of depth.........................................................................................................94
Figure 6.5: Measured  for samples collected on CLIVAR cruise P18 as a function of
Si(OH)4, NO3-, NTA, and PO43-, all in mol kg-1...........................................................95
Figure 6.6: The values of S determined from density measurements plotted as a
function on SiO2.................................................................................................................96
Figure 6.7: Normalized total alkalinity as a function of depth in the Arctic Ocean from
cruise ARKXXIII/3............................................................................................................98
Figure 6.8: Dissolved organic carbon as a function of depth in the Arctic Ocean (cruise
ARKXXIII/3).....................................................................................................................99
Figure 6.9: Distribution of normalized total alkalinity (NTA) for surface waters in the
Arctic Ocean (cruise ARKXXIII/3).................................................................................100
Figure 6.10: Distribution of dissolved organic carbon (DOC) for surface waters in the
Arctic Ocean (cruise ARKXXIII/3).................................................................................100
Figure 6.11: Values of  as a function of depth in the Arctic Ocean (cruise
ARKXXIII/3)...................................................................................................................101
Figure 6.12: Normalized total alkalinity (NTA) as a function of salinity for surface
waters in the eastern and western Arctic Ocean..............................................................103
Figure 6.13: DOC as a function of salinity for surface waters in the eastern and western
Arctic Ocean....................................................................................................................104
Figure 6.14: Correlation of the values of DOC and NTA for waters in the eastern and
western Arctic Ocean.......................................................................................................104
Figure 6.15: All available density measurements versus depth broken down
by ocean...........................................................................................................................106
Figure 6.16: All Available density data versus silicate (top) and NTA (bottom) by
ocean................................................................................................................................107
Figure 6.17: Predicted changes in salinity as a result of increased TCO2 from the burning
of fossil fuels as a function of time (top) and TCO2 (bottom).........................................109
ix
List of Tables
Table 1.1: Speciation of the hydroxide dominated trace metals in seawater as a function
of pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on
Millero and Pierrot [1998; 2002]......................................................................................10
Table 1.2: Speciation of the chloride dominated trace metals in seawater as a function of
pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on
Millero and Pierrot [1998; 2002]......................................................................................11
Table 1.3: Speciation of the free ion dominated trace metals in seawater as a function of
pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on
Millero and Pierrot [1998; 2002]......................................................................................11
Table 1.4: Speciation of the transition/mixed trace metals in seawater as a function of pH
and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on Millero
and Pierrot [1998; 2002] (lead speciation was calculated according to constants
determined in Chapter 4)..................................................................................................12
Table 1.5: Speciation of the carbonate dominated trace metals in seawater as a function
of pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on
Millero and Pierrot [1998; 2002]......................................................................................13
Table 2.1: Values of the parameters for eqn. 2.15 for the Thermodynamic Hydrolysis
constants of Al(III) in Water [Zotov and Kitova, 1979; Benézéth et al., 2001; Palmer et
al., 2001]............................................................................................................................27
Table 2.2: Vales of the parameters for eqn. 2.16 for the Thermodynamic (Ki) and
stoichiometric (i) Hydrolysis constants of Al(III) in NaCl solutions [Benézéth et al.,
2001; Palmer and Wesolowski, 1993; Wesolowski 1992]................................................27
Table 2.3: Estimated Thermodynamic hydrolysis constants for Fe(III) as a function of
temperature determined from eqn. 2.17. Literature values are in parenthesis below
calculated values................................................................................................................28
Table 2.4: Estimated stoichiometric hydrolysis constants for Fe(III) as a function of
temperature and molality in NaCl solutions determined from eqn 2.18...........................29
Table 2.5: Free energy (kJ mol-1) and enthalpy (kJ mol-1) for Al3+, Fe3+, and their
complexes at 25°C.............................................................................................................32
Table 2.6: Log of the ratio of the activity coefficients of the free metal and the hydroxide
complex for Fe(III) and Al(III). The differences in the ratios are close to the standard
deviation of the fits............................................................................................................34
x
Table 3.1: The Values of the parameters for eqn. 3.11. All coefficients and slopes were
determined from Ki at 25°C, except As(III) which was determined from K1 from 25300°C.................................................................................................................................41
Table 4.1: Measured formation constants of PbCO3 in NaCl...........................................51
Table 4.2: Molal absorptivities determined from equation 4.7 at three representative
wavelengths........................................................................................................................51
Table 4.3: Pitzer coefficients for chloride and perchlorate saltsa used in this study.........54
Table 4.4: Pitzer coefficients for lead chloride and lead carbonate complexes for Eqs.
4.20-4.24. The standard deviation () for PbCl- = 0.16, PbCl20 = 0.14, PbCl3+ = 0.19,
PbCO3 = 0.11.....................................................................................................................58
Table 4.5: Stoichiometric formation constants for lead chloride at 15.1 °C determined by
Luo and Millero [2007]......................................................................................................60
Table 4.6: Corrected stoichiometric formation constants for lead chloride at 25 °C
determined by Luo and Millero [2007]..............................................................................61
Table 4.7: Stoichiometric formation constants for lead chloride at 34.7 °C determined by
Luo and Millero [2007]......................................................................................................62
Table 4.8: Stoichiometric formation constants for lead chloride at 44.5 °C determined by
Luo and Millero [2007]......................................................................................................63
Table 4.9: Measured and theoretical Pb(CO3)Cl-. Theoretical constants were calculated
using the equations of Byrne [1980]..................................................................................66
Table 4.10: Comparison of the activity coefficients and stoichiometric constants in
various media and seawater at I=0.723 and 25°C. Values calculated by Millero and Byrne
[1984] (MB84) are given for comparison..........................................................................68
Table 4.11: Speciation of lead as a percent in seawater at 25°C and S=35 (I=0.723), total
alkalinity = 2300 mol/kg. pH is on the free scale............................................................69
Table 5.1: Equilibrium [CO32-], [Ca2+] and pK*sp for individual fish-produced solubility
experiments........................................................................................................................79
Table 6.1: Values of a and b from eqn. 6.7 for CLIVAR P18 samples............................95
Table 6.2: Slope and intercept of global density dataset fit to eqn 6.7. NTA is fit with
and without Arctic data because of divergence at high NTA in the Arctic compared to
the other oceans................................................................................................................108
xi
Table A.1: All available density measurements. All nutrients are in units of mol kg-1,
density is in kg m-3. Cruise M78 is Millero et al. [1978].................................................115
xii
Chapter 1:
Introduction
1.1 Minor and Trace Components of Natural Waters
Essentially every naturally occurring element can be found in seawater. Fourteen
of these (O, H, Cl, Na, Mg, S, Ca, K, Br, C, Sr, B, Si and F) are found in concentrations
greater than 1 part per million (ppm) and most of these constitute the major components
of seawater. Most of the major components are conservative and make up the salinity (S)
of seawater. The behaviors of these elements are well studied and understood. The
remaining elements are considered minor or trace elements. The elements were classified
according to their concentration by Bruland [1983] and are given in Figure 1.1.
Although they are present in low concentrations, most are highly reactive, making
them important in biogeochemical cycling. Many are also nutrients or toxins and are
therefore important for organisms and ecosystems. Despite this importance, it has only
been in the last few decades that techniques for sampling and analysis became available
to study such low concentrations; therefore much about their behavior and fate is still
uncertain. Some of this uncertainty includes even basic physical chemical properties,
such as speciation and solubility.
When direct measurements are unavailable it is often possible to use correlations
with other elements to provide reasonable estimates. Such techniques have been used in
many different applications [Millero and Byrne, 1984; Millero and Hawke, 1992] and
have been applied to many different physical chemical properties.
1
Figure 1.1: Classification of the elements in seawater based on typical concentrations
2
3
1.2 Speciation in Natural Waters
Speciation of an element can be thought of as the partitioning of the element
among its different chemical forms. This is most often considered as the formation of
complexes with both organic and inorganic ligands. Only inorganic complexes are
considered here. For most natural waters the dominant inorganic ligands are Cl-, CO32-,
and OH-. The fraction of any complex in a given system is a result of the stability of the
complex and metal to ligand ratio.
Trace metals in seawater can be classified into five main groups based on the
dominant inorganic ligand [Byrne et al., 1988; Byrne 2002]:
a.) Hydroxide (OH-): Al(III), Fe(III), In(III), Th(IV), U(IV)
b.) Carbonate (CO32-): Cu(II), UO22+, Rare earth elements
c.) Chloride (Cl-): Ag(I), Au(I), Cu(I), Hg(II)
d.) Free: Mn(II), Fe(II), Co(II)
e.) Transition/mixed: Pb(II), Y(III), Sc(III), Ac(III)
The transition/mixed elements could be placed within the other categories, but are
separated because of their more complex speciation. The speciation in other natural
waters such as brines will vary greatly depending on the solution composition so a similar
classification system is not as useful. Aside from chloride, most ligand concentrations
(both organic and inorganic) are highly influenced by pH, making ocean acidification
(the lowering of oceanic pH as a result of uptake of anthropogenic CO2 from the
atmosphere) an important factor in the cycling of metals [Byrne et al., 1988; Byrne,
2002].
4
1.3 Effect of Ocean Acidification on Trace Metal Speciation1
Since the industrial revolution atmospheric carbon dioxide concentrations have
been steadily increasing due to the burning of fossil fuels, cement production, and land
use change. Figure 1.2 shows the increase in the partial pressure of CO2 (pCO2) as a
function of time based on Caldeira and Wickett [2003]. In order to maintain equilibrium
the surface oceans must take up CO2 causing an increase in the amount of CO2 dissolved
in the oceans.
2500
pCO2 (atm)
2000
1500
1000
500
0
1800
2000
2200
2400
2600
2800
3000
Year
Figure 1.2. Increase in the pCO2 in the atmosphere over time.
1
This section was previously published as: Millero, F.J., R. Woosley, B. DiTrolio, and J. Waters
(2009), Effect of Ocean Acidification on the speciation of metals in seawater, Oceanography, 22(4), 72-85.
5
Once in seawater the CO2 reacts with water molecules according to the following
reactions:
CO2(aq) + H2O ↔ H2CO3
(1.1)
H2CO3↔ H+ + HCO3-
(1.2)
HCO3- ↔ H+ + CO32-
(1.3)
The shift in the equilibrium of these reactions leads to the production of hydrogen
ions and a decrease in the carbonate ion, thus the process has been named ocean
acidification. Figure 1.3 shows the expected changes in surface pH at 25°C over time
based on the pCO2 shown in Figure 1.2.
8.4
8.2
8.0
H
p
7.8
7.6
7.4
7.2
1800
1900
2000
2100
2200
2300
Year
Figure 1.3. Expected changes in ocean pH as a function of time.
2400
6
This originally led to concern over calcifying organisms, mainly phytoplankton
and corals, because of their need to produce CaCO3 shells. As the pH decreases the
carbonate ion concentration also decreases, causing the saturation state of the two main
forms of CaCO3 (calcite and aragonite) to decrease, potentially making it difficult or
impossible for these organisms to produce their shells [Orr et al., 2005; Gattuso et al.,
1998; Kleypas, et al., 1999; Langdon et al., 2003]. Phytoplankton form the base of the
food chain, and disrupting their growth could have major impacts on the entire food
chain, with implications for the entire ecosystem. Corals build reefs which provide food
and protection for countless organisms. For these reasons nearly all ocean acidification
research has focused on these classes of organisms.
pH influences nearly all aspects of ocean chemistry, but until recently the impacts
of ocean acidification on processes other than calcification have been ignored. The
decrease in the pH can also affect the speciation and solubility, and therefore the behavior
and fate, of trace metals in seawater. This can impact the entire biogeochemistry of the
oceans. Studies by Byrne et al. [1988], Byrne [2002], and Turner et al. [1981] showed the
large variations in trace metal speciation that can occur over the expected pH changes.
The impact of these changes on organisms and metal cycling are only now being
considered. Both OH- and CO32- are known to form strong complexes in natural waters
with divalent [Baes and Mesmer, 1976; Byrne et al., 1988; Millero and Hawke, 1992] and
trivalent [Millero, 1992; Millero et al., 1995; Cantrell and Byrne, 1987; Millero 2001a,b]
metals. Hydroxide is expected to decrease by 82% and carbonate by 77% as shown in
7
Figure 1.4. Metals in categories a and d are not expected to be strongly influenced by
changes in pH, but categories b, c, and e will undergo significant changes.
The ionic interaction model of Pitzer [1991] is useful in examining the effect of
pH on metal speciation [Millero and Pierrot, 1998; 2002]. The model will be discussed in
detail in Chapter 4, but a brief overview will be given here. At first glance the equations
that make up the Pitzer model seem very complex, but they are comparatively simple,
and once the various coefficients are known activity coefficients () and the various
thermodynamic properties can be calculated in a solution of nearly any composition with
ease.
2.5
270
2.0
240
210
1
180
1.5
150

g
k
l
o
m
,
H
O
1.0
120
CO32-, mol kg-1
OHCO32-
90
0.5
60
0.0
1800
1900
2000
2100
2200
2300
30
2400
Year
Figure 1.4: The decrease in the concentrations of OH- and CO32- ions in seawater due to
ocean acidification (Calculated using the carbonate constants of Millero et al., [2006]).
8
The Pitzer model for the activity () of an ion or complex consists of a DebyeHückel (D.H.) term plus the sum of all the various possible ionic interactions including
anion-cation, anion-anion, cation-cation, and triple ionic interactions. A graphical
representation of these equations for lead in seawater is given in Figure 1.5. Most of the
coefficients required are available either directly from Pitzer [1991] or in the literature
[Baes and Mesmer, 1976; Cantrell and Byrne, 1987; Byrne et al., 1988; Millero and
Hawke, 1992; Millero, 1992, 2001a]. A Microsoft Excel program is available to examine
the speciation of metals from 0-50°C and 0-6 m ionic strength (I) [Millero and Pierrot,
1998, 2002]. It should be pointed out that the Pitzer [1991] ionic interaction model only
considers the formation of strong complexes and neglects the formation of weak
complexes with chloride and sulfate (Cl- and SO42-). This model estimates the effect of
the major components of seawater on metal ions and their complexes. The resultant
activity coefficients are used to determine the stability constants () in seawater.
Figure 1.5: Graphical representation of the Pitzer equations for the activity of lead in
seawater.
9
The speciation for each metal was calculated from a pH (on the free scale) of 7.4
to 8.1 at 0.1 intervals and time (estimated from Caldeira and Wickett [2003]).
The
detailed results are given in Tables 1.1-1.5 organized according to the dominant ligand.
The pH is expected to decrease most rapidly from the present until 2100, so the most
rapid changes will occur over the latter half of this century. Figure 1.6 shows examples
of the changes in Cu(II) and Fe(II) as a function of time (based on Caliera and Wickett
[2003]). These are representative of all metals, although the magnitudes vary. This figure
highlights the importance of understanding these changes and the impacts it will have on
biogeochemical cycles because about half of the change will occur by the end of this
century.
Metals that form strong complexes with chloride will see little if any change in
speciation because decreasing the pH will not change the chloride concentration. These
metals include Cd2+, and Hg2+. The decrease in pH is not expected to strongly influence
metals that are predominantly in the free form either. The metals Co2+, Zn2+, and Mn2+
will only increase by a few percent. There will be much larger increases in Fe2+ and Ni2+
in their ionic forms because they form carbonate complexes to a larger degree than the
other free metals.
Metals that are strongly complexed with hydroxide include Al3+, Ga3+, In3+, and
Be2+. These metals form strong enough complexes with hydroxide such that the change in
pH will not cause significant increases in their free forms. However, there will be a shift
to fewer hydroxides per metal ion (i.e. Al(OH)4- to Al(OH)3).
The metals mostly strongly affected by ocean acidification will be the carbonate
dominated metals which include Cu2+, UO22+, and the rare earths. The largest change will
10
be for Cu2+ which will increase in the free form by 30%. This large change is significant
not only in its magnitude but also because free copper is known to be toxic to organisms
[Steeman-Nielsen and Wium-Anderson, 1970; Sunda and Ferguson, 1983].
Table 1.1: Speciation of the hydroxide dominated trace metals in seawater as a function
of pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on
Millero and Pierrot [1998; 2002].
Year
pH
Major
Species
Al(OH)3
Al(OH)4-
2000 2050 2070 2085 2100 2150 2200 2250
8.1
8
7.9
7.8
7.7
7.6
7.5
7.4
32.2
67.5
37.3
62.2
42.8
56.6
48.3
50.8
53.8
45.0
59.1
39.2
64.0
33.7
68.3
28.6
Ga(OH)3
Ga(OH)4-
0.9
99.1
1.2
98.8
1.5
98.5
1.9
98.1
2.3
97.7
2.9
97.1
3.7
96.4
4.6
95.4
In(OH)3
95.6
4.3
96.5
3.4
97.1
2.8
97.7
2.2
98.1
1.8
98.4
1.4
98.6
1.1
98.8
0.9
Be2+
0.2
0.3
0.4
0.6
0.7
0.9
1.2
1.5
BeOHBe(OH)2
Be(OH)3
Be(CO3)
59.1
27.3
2.4
13.3
62.4
22.9
1.6
14.4
65.2
19.0
1.0
15.3
67.6
15.7
0.7
16.1
69.7
12.1
0.5
16.8
71.3
10.4
0.3
17.3
72.6
8.4
0.2
17.7
73.7
6.8
0.1
18.0
In(OH)4
-
11
Table 1.2: Speciation of the chloride dominated trace metals in seawater as a function of
pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on
Millero and Pierrot [1998; 2002].
Year
pH
Major
Species
Cd2+
2000 2050 2070 2085 2100 2150 2200 2250
8.1
8
7.9
7.8
7.7
7.6
7.5
7.4
20.2
20.2
20.2
20.2
20.2
20.2
20.2
20.2
CdCl
CdCl2
43.7
27.7
43.8
27.7
43.8
27.7
44.1
28.1
43.8
27.8
43.8
27.8
43.9
27.8
43.9
27.8
CdCl3-
+
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
-
11.8
11.8
11.8
11.8
11.8
11.8
11.8
11.8
2-
88.2
88.2
88.2
88.2
88.2
88.2
88.2
88.2
HgCl3
HgCl4
Table 1.3: Speciation of the free ion dominated trace metals in seawater as a function of
pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on
Millero and Pierrot [1998; 2002].
Year
pH
Major
Species
2000 2050 2070 2085 2100 2150 2200 2250
8.1
8
7.9
7.8
7.7
7.6
7.5
7.4
Fe2+
66.0
70.4
74.6
78.4
81.8
84.8
87.3
89.5
FeCO3
FeOH
32.0
1.4
27.8
1.2
23.8
1.0
20.2
0.8
16.9
0.7
14.0
0.6
11.5
0.5
9.4
0.4
Ni2+
68.3
72.5
76.4
79.9
83.1
85.8
88.2
90.1
NiCO3
30.3
26.2
22.3
18.8
15.7
13.0
10.6
8.6
CoCO3
CoOH
92.6
5.3
1.5
93.8
4.4
1.2
94.8
3.6
0.9
95.7
2.9
0.8
96.4
2.4
0.6
97.0
1.9
0.5
97.4
1.5
0.4
97.8
1.2
0.3
Zn2+
80.6
84.4
87.5
89.9
91.7
93.2
94.4
95.3
ZnOH+
5.7
4.7
3.9
3.2
2.6
2.1
1.7
1.3
ZnCO3
7.2
6.1
5.1
4.2
3.5
2.8
2.3
1.8
Mn2+
97.3
97.7
98.1
98.4
98.6
98.8
98.9
99.1
Co
2+
12
Table 1.4: Speciation of the transistion/mixed trace metals in seawater as a function of
pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on
Millero and Pierrot [1998; 2002] (lead speciation was calculated according to constants
determined in Chapter 4).
Year
pH
2000 2050 2070 2085 2100 2150 2200 2250
8.1
8
7.9
7.8
7.7
7.6
7.5
7.4
Major Species
2+
Pb
Transistion/Mixed
3.3
3.8
4.2
4.8
5.3
5.8
6.4
6.9
2.3
50.8
2.1
47.8
1.9
44.4
1.7
40.8
1.5
36.9
1.3
33.0
1.1
29.1
1.0
25.3
11.9
12.8
13.5
14.6
15.3
16.4
17.2
18.5
19.1
20.5
21.1
22.7
23.0
24.7
24.9
26.7
4.1
4.6
5.2
5.9
6.5
7.2
7.9
8.5
13.2
9.5
12.4
10.7
11.5
11.8
10.6
13.0
9.6
14.2
8.6
15.3
7.6
16.3
6.6
17.2
YOH2+
14.8
13.2
11.7
10.2
8.8
7.5
6.4
5.4
+
41.5
38.0
34.2
30.3
26.5
22.9
19.5
16.4
+
PbOH
PbCO3
PbCl+
PbCl2
PbCl3-
Pb(CO3)Cl
3+
Y
YCO3
YSO4+
-
9.3
10.5
11.6
12.8
13.9
15.0
16.0
16.9
2+
16.9
19.0
21.1
23.2
25.3
27.2
29.0
30.6
2+
5.3
6.0
6.6
7.3
8.0
8.6
9.1
9.6
YCl
YF
13
Table 1.5: Speciation of the carbonate dominated trace metals in seawater as a function
of pH and time [Caldeira and Wickett, 2003] at 25°C and S=35. Speciation based on
Millero and Pierrot [1998; 2002].
Year
pH
Major
Species
2000 2050 2070 2085 2100 2150 2200 2250
8.1
8
7.9
7.8
7.7
7.6
7.5
7.4
Cu2+
7.7
9.6
12.0
14.9
18.3
22.3
26.8
31.8
CuOH+
CuCO3
4.7
67.0
4.7
68.5
4.7
69.3
4.6
69.1
4.5
68.1
4.3
66.3
4.1
63.5
3.9
60.0
Cu(CO3)22-
18.3
15.3
12.5
10.1
8.0
6.2
4.7
3.6
UO2(CO3)22-
13.8
16.5
19.6
23.2
27.3
31.9
37.0
42.5
UO2(CO3)34-
86.1
83.5
80.4
76.7
72.5
67.9
62.7
57.2
La3+
17.0
20.5
24.4
28.6
33.0
37.4
41.7
45.9
56.2
55.2
53.1
50.2
46.4
42.1
37.5
32.8
19.2
15.3
11.9
9.1
6.8
4.9
3.5
2.4
LaSO4-
3.9
4.7
5.6
6.5
7.5
8.5
9.5
10.5
LaCl2+
2.5
3.0
3.5
4.1
4.8
5.4
6.0
6.6
Ce3+
12.6
15.5
18.8
22.5
26.5
30.6
34.9
39.1
57.2
57.2
56.1
54.1
51.1
47.4
43.0
38.4
22.4
18.2
14.5
11.3
8.5
6.3
4.6
3.3
CeSO4+
3.5
4.3
5.2
6.3
7.4
8.5
9.7
10.9
2+
1.9
2.4
2.9
3.5
4.1
4.7
5.4
6.0
10.6
13.2
16.3
19.7
23.6
27.7
32.0
36.3
56.8
57.6
57.4
56.2
53.9
50.6
46.6
42.1
Pr(CO3)2-
26.2
21.6
17.4
13.7
10.6
7.9
5.8
4.2
PrSO4+
2.8
3.5
4.3
5.2
6.2
7.3
8.4
9.5
2+
1.6
2.0
2.5
3.1
3.6
4.3
4.9
6.6
8.5
10.7
13.3
16.4
20.0
23.8
28.0
32.3
56.9
58.5
59.1
58.7
57.2
54.7
51.2
47.0
LaCO3
+
La(CO3)2
CeCO3
+
Ce(CO3)2
CeCl
Pr
-
-
3+
PrCO3
PrCl
+
3+
Nd
NdCO3
+
Nd(CO3)2-
29.4
24.6
20.1
16.1
12.6
9.6
7.2
5.3
+
2.2
2.7
3.4
4.2
5.1
6.1
7.1
8.3
2+
1.3
1.6
2.1
2.5
3.1
3.7
4.3
5.0
NdSO4
NdCl
14
Table 1.5 cont.
Year
pH
Major
Species
2000 2050 2070 2085 2100 2150 2200 2250
8.1
8
7.9
7.8
7.7
7.6
7.5
7.4
Pm3+
PmCO3+
-
6.7
8.5
10.8
13.5
16.6
20.1
24.0
28.1
55.1
57.4
58.8
59.3
58.6
56.8
54.0
50.3
33.4
28.3
23.5
19.1
15.1
11.8
8.9
6.6
+
2.0
2.6
3.3
4.1
5.1
6.2
7.4
8.6
PmCl2+
1.0
1.3
1.6
2.0
2.5
3.0
3.6
4.2
Sm3+
5.3
6.8
8.9
11.1
13.9
17.2
20.8
24.8
53.1
56.1
58.4
59.8
60.1
59.0
57.3
54.3
37.9
32.5
27.4
22.6
18.3
14.4
11.1
8.4
SmSO4+
1.4
1.9
2.4
3.0
3.8
4.7
5.7
6.7
SmCl2+
0.8
1.0
1.3
1.7
2.1
2.6
3.1
3.7
Eu3+
4.2
5.6
7.2
9.3
11.8
14.7
18.0
21.7
50.8
54.3
57.1
59.1
60.0
59.9
58.6
56.2
41.6
36.1
30.8
25.7
20.9
16.7
13.0
10.0
EuSO4+
1.4
1.9
2.4
3.1
4.0
4.9
6.1
7.3
2+
0.6
0.8
1.0
1.3
1.7
2.1
2.6
3.1
3.4
4.5
5.9
7.7
9.9
12.6
15.7
19.3
47.5
51.5
55.0
57.8
59.7
60.6
60.3
58.8
46.8
41.2
35.6
30.2
25.0
20.3
16.1
12.5
GdSO4+
0.9
1.2
1.5
2.0
2.5
3.2
4.0
4.9
2+
0.5
0.7
0.9
1.1
1.4
1.8
2.3
2.8
3.6
4.9
6.4
8.4
10.8
13.6
16.9
44.1
48.3
52.2
55.6
58.2
59.9
60.4
59.8
Pm(CO3)2
PmSO4
SmCO3
+
Sm(CO3)2
EuCO3
+
Eu(CO3)2
EuCl
-
-
Gd3+
GdCO3
+
Gd(CO3)2
GdCl
-
3+
Tb
TbCO3
+
Tb(CO3)2-
51.0
45.4
39.7
34.1
28.7
23.6
19.0
15.0
+
0.6
0.8
1.1
1.5
1.9
2.5
3.1
3.9
2+
0.4
0.5
0.7
0.9
1.2
1.5
1.9
2.4
TbSO4
TbCl
15
Table 1.5 Cont.
Year
pH
Major
Species
2000 2050 2070 2085 2100 2150 2200 2250
8.1
8
7.9
7.8
7.7
7.6
7.5
7.4
Dy3+
DyCO3
+
-
2.2
3.0
4.0
5.4
7.1
9.3
11.9
15.0
40.1
44.5
48.7
52.5
55.8
58.2
59.5
59.8
55.8
50.3
44.6
38.7
33.0
27.6
22.5
18.0
+
0.5
0.6
0.8
1.1
1.5
1.9
2.5
3.1
DyCl2+
0.3
0.4
0.6
0.8
1.0
1.3
1.7
2.1
Ho3+
1.8
2.5
3.4
4.5
6.1
8.0
10.5
13.4
36.1
40.5
44.8
49.0
52.7
55.6
57.7
58.6
60.4
55.0
49.3
43.4
37.5
31.7
26.2
21.2
HoSO4+
0.4
0.5
0.7
1.0
1.3
1.7
2.2
2.8
Er3+
1.5
2.1
2.8
3.9
5.3
7.1
9.3
12.0
32.7
37.0
41.4
45.7
49.7
53.2
55.8
57.4
64.3
59.1
53.5
47.6
41.6
35.6
29.8
24.4
1.2
1.7
2.4
3.3
4.5
6.1
8.2
10.8
28.6
32.6
37.0
41.4
45.7
49.5
52.8
55.1
Tm(CO3)2-
69.0
64.2
58.8
53.0
47.0
40.8
34.7
28.8
Yb3+
1.1
1.5
2.1
3.0
4.1
5.6
7.6
10.1
25.5
29.4
33.6
37.9
42.3
46.4
50.0
52.7
72.4
67.8
62.7
57.1
51.1
44.9
38.6
32.4
0.9
1.2
1.7
2.5
3.5
4.8
6.6
8.9
21.9
25.5
29.4
33.6
38.0
42.3
46.3
49.7
76.4
72.3
67.6
62.3
56.6
50.4
44.0
37.6
Dy(CO3)2
DySO4
HoCO3
+
Ho(CO3)2
-
ErCO3+
Er(CO3)2
Tm
-
3+
TmCO3
+
YbCO3+
Yb(CO3)2
-
3+
Lu
LuCO3
+
Lu(CO3)2-
16
80
70
species %
60
50
Cu2+
CuCO3
40
30
20
10
0
1950 2000 2050 2100 2150 2200 2250 2300
Year
100
Species %
80
60
Fe2+
FeCO3
40
20
0
1950 2000 2050 2100 2150 2200 2250 2300
Year
Figure 1.6: Expected changes in the inorganic speciation of Cu(II) (top) and Fe(II)
(bottom) as a function of time (year based on Caldeira and Wickett [2003])
17
Lead and yttrium are placed in their own category because of their more complex
speciation. Both form strong complexes with multiple ligands, thus speciation is very
dependent on media composition. The speciation of lead is determined in great detail in
Chapter 4.
Ocean acidification will affect properties besides speciation. Most metals are
amphoteric causing them to be more soluble in high and low pH with a minimum
somewhere in the circum-neutral pH (5-9). Depending on the exact location of the
minimum ocean acidification will either increase or decrease the solubility of many
metals in seawater. For example, Fe(III) solubility will increase by about 40% from a pH
of 8.1 to 7.4. This could have large impacts on biogeochemical cycles because iron is an
important micronutrient [Brand, 1991]. Aluminum on the other hand will likely see a
30% decrease in solubility (based on its solubility in NaCl [Wesolowski, 1992]). There
will also be changes in kinetics as well as organic speciation, but that will not be
discussed in this dissertation.
1.4 Calcium Carbonate in seawater
The oceans play a major role in the earth’s carbon cycle [Millero, 2007]. A major
component of the ocean’s carbon cycle is the production and dissolution of calcium
carbonate minerals. There are generally two dominant polymorphs of calcium carbonate
minerals, the stable form, Calcite, and the semi-stable form, Aragonite. There is also a
less stable form that receives little consideration, high magnesium calcite. Although these
minerals can form biotically or abiotically the biogenic forms are dominant and better
studied because of their importance to organisms. Until recently, it was thought that
marine biogenic production of calcium carbonate was dominated by coccolithophores and
18
foraminifera, as well as corals and coralline algae [Feely et al., 2004]. Recently, Wilson
et al. [2009] based in part on the observations of Walsh et al. [1991], showed that teleost
fish also contribute to carbonate production by up to 15% or higher of the global
carbonate production. These bony fish continually produce a high magnesium calcite
(defined as >4 mol % Mg) as a byproduct of osmoregulation [Grosell, 2011].
The biogenic calcification process involves the reaction of calcium (Ca2+) with
bicarbonate (HCO3-) to form solid calcium carbonate of one of the three crystalline forms
according to the following reaction:
Ca2+ + 2HCO3- ↔ CaCO3 + CO2 + H2O
(1.4)
Planktonic organisms produce the majority of oceanic biogenic calcium carbonate
[Feely et al., 2004]. When these organisms die their skeletons sink to deeper ocean layers
where they can either dissolve in the water column or reach the bottom and be buried in
the sediments. The depth at which, thermodynamically, the calcium carbonate can
dissolve is determined by the saturation state (), defined as:
 = [Ca2+][CO32-]/K*sp
(1.5)
Where K*sp is the stoichiometric solubility product constant. When  is greater than one
the solution is supersaturated, when  is less than one it is undersaturated, and when 
equals one it is in equilibrium. Dissolution is expected to begin once the solution
becomes undersaturated. Since dissolution is the reverse reaction of eqn 1.4 there is an
increase in total alkalinity (TA) with depth. It would be expected that there would not be
an increase in TA until below the depth at which =1, or the saturation horizon
[Sverdrup et al., 1941; Broecker, 1977]. However, there are several lines of evidence
suggesting that 50-71% of calcium carbonate exported from the surface is dissolved
19
above the aragonite saturation horizon [Feely et al., 2002; Milliman et al., 1999;
Milliman and Droxler, 1996]. This can be demonstrated by the profile of normalized total
alkalinity (NTA = TA/S*35) from the North Atlantic shown in Figure 1.7. Several
possible explanations have been proposed, the most likely being a more soluble form of
calcium carbonate [Byrne et al., 1984], but a probable source wasn’t identified until
recently [Wilson et al., 2009].
-1
NTA (mol kg )
2250
0
2300
2350
2400
Depth (db)
500
1000
1500
2000
Aragonite Saturation
2500
3000
Figure 1.7: Profile of the normalized total alkalinity of seawater in the North Atlantic
(30°N and 23°E), showing an increase in NTA above the aragonite saturation horizon.
20
High magnesium calcite with greater than about 10 mol % Mg is known to more
soluble than aragonite [Morse and Mackenzie, 1990; Morse et al., 2007, 2003]. Fishproduced high magnesium calcite could potentially contribute to the source of increased
NTA. The first step in determining this would be to determine the solubility of this
material.
1.5 Impact of minor components on the density of seawater
The international equation of state for seawater [Millero and Poisson, 1981] is
largely based on the conductivity-density relationship, but changes in the composition of
minor components of seawater can result in variations in this relationship [Brewer and
Bradshaw, 1975; Connors and Weyl, 1968]. There have been many studies examining the
limitations of the international equation of state [Millero, 1975, 1978, 2000; Millero et
al., 1976a, b, c, d; Millero and Kremling, 1976; Poisson et al., 1980]. Brewer and
Bradshaw [1975] were to first to make estimates of the relationship between changes in
composition and the calculated density. They estimated that changes in salinity of 0.015
could result in changes in density of 0.012 kg m-3. The changes in salinity are mainly a
result of the inputs of carbon and minor nutrients (mainly silicate and nitrate) as organic
matter is decomposed as depth. Despite the large number of studies the measurements are
limited in number and geographical coverage.
1.6 Scope of this work
This work will cover a variety of topics relating to the physical chemical
properties of minor and trace components of seawater. The main focus will be on trace
metals, but CaCO3 and minor nutrients will also be covered. The objectives are to better
21
understand the behavior and fate of these components in natural waters through the
determination of their physical chemical properties, mainly speciation, solubility, and
density. Chapters two and three will use correlations of the hydrolysis of the well-studied
metal Al(III) with other metals to estimate hydrolysis when measurements aren’t
available. Chapter four will use a Pitzer model, published measurements and new
measurements of the formation constant of lead chloro and lead carbonate complexes to
model the speciation of lead in natural waters. Chapter five will measure the solubility of
fish-produced high magnesium calcite to help determine their contribution to the oceanic
carbon cycle. Finally, chapter six will provide nearly 2000 measurements on the density
of seawater from every major ocean to better determine the effect of minor components
on the conductivity-density relationship.
Chapter 2:
The Hydrolysis of Al(III) in NaCl Solutions-A Model
for Fe(III)2
2.1 Background
There is currently a large interest in the speciation of Fe(III) in natural waters due
to its importance as a nutrient for primary production. Fundamental to understanding the
forms of Fe(III) in natural waters is a knowledge of the hydrolysis constants in the media
of interest. Recently Millero and Pierrot [2007] used the limited data for the hydrolysis
of Fe(III) in NaCl solutions to determine the activity coefficients of Fe(OH)2+, Fe(OH)2+,
Fe(OH)30 and Fe(OH)4- as a function of temperature (5 to 50oC) and ionic strength (0 to 6
m). These results were examined using the ionic interaction model of Pitzer [1991] that
can be used to model the behavior of Fe(III) in natural waters using the methods of
Christov and Møller [2004], Greenberg and Møller [1989], Harvie and Weare [1980],
Harvie et al. [1984], and Møller [1988]. To extend the model to higher temperatures and
ionic strengths reliable hydrolysis constants of Fe(III) are needed. Since higher order
hydrolysis constants of Fe(III) are determined from solubility measurements, this will
require a significant effort due to the low solubility of Fe(III) near the pH of most natural
waters [Liu and Millero, 1999]. At the present time thermodynamic values for the first
hydrolysis constants are available [Stefánsson, 2007; Stefánsson and Seward, 2008; Zotov
2
This chapter was previously published as: Millero, F. J., and R. J. Woosley (2009), The hydrolysis of
Al(III) in NaCl solutions-A model for Fe(III), Environ. Sci. Technol., 43, 1818-1823.
DOI:10.1021/es802504u.
22
23
and Kotova, 1979, 1980] up to 200oC, but little data are available for the higher order
constants needed to model the behavior of Fe(III) in high temperature brines.
log Ki [Fe(III)]
0
-10
5o C
25oC
50oC
Stefansson [2007;
Stefansson and Seward [2008]
-20
-30
-30
-20
-10
0
log Ki [Al(III)]
Figure 2.1: Plot of the thermodynamic hydrolysis constants (Ki) for Fe(III) [Stefánsson,
2007; Stefánsson and Seward, 2008; Millero, 2001a] versus Al(III) [Millero and Pierrot,
2007; Benézéth et al., 2001; Palmer and Wesolowski, 1993; Wesolowski, 1992] as a
function of temperature in pure water. The dashed line is a second degree fit of the
results.
The limited hydrolysis constants for Fe(III) and Al(III) appear to be related over a
wide range of temperature and ionic strength. This is shown in Figure 2.1 where the
thermodynamic hydrolysis constants (Ki) at 25oC for Fe(III) [Stefánsson, 2007;
Stefánsson and Seward, 2008; Millero 2001a] are plotted versus the values for Al(III)
[Millero and Pierrot, 2007; Benézéth et al., 2001; Palmer and Wesolowski, 1993;
Wesolowski, 1992]. As shown in Figure 2.2, this behavior also appears to be the case at
24
high ionic strengths in NaCl solutions. This near linear relationship suggests that it may
be possible to use the known hydrolysis constants for Al(III) to estimate the values for
Fe(III) over a wide range of temperature and ionic strength. In this chapter, the published
hydrolysis constants for Al(III) in NaCl have been fitted to equations as a function of
ionic strength and temperature.
Correlations of the hydrolysis constants of Al(III)
complexes have been used to determine the values for Fe(III) complexes from 0 to 100oC
and 0 to 5 m in NaCl solutions. These results allow one to estimate the speciation of
Fe(III) for hydrothermal brines.
0
log i [Fe(III)]
-5
-10
-15
-20
I=0m
I = 0.7 m
I = 5.0 m
-25
-30
-30
-25
-20
-15
-10
-5
0
log i [Al(III)]
Figure 2.2: Plot of the thermodynamic and stoichiometric (i) hydrolysis constants for
Fe(III) versus Al(III) in NaCl solutions at different ionic strengths and 25°C [Millero and
Pierrot, 2007; Benézéth et al., 2001].
25
2.2 Hydrolysis Constants for Al(III) in NaCl Solutions
The speciation of Al3+ in natural waters is largely controlled by the formation of
hydroxide complexes. The formation of these complexes are normally expressed as the
stepwise hydrolysis of Al3+
Al3+ + H2O = AlOH2+ + H+
(2.1)
Al3+ + 2 H2O = Al(OH)2+ + 2 H+
(2.2)
Al3+ + 3 H2O = Al(OH)3 + 3 H+
(2.3)
Al3+ + 4 H2O = Al(OH)4- + 4 H+
(2.4)
The stoichiometric hydrolysis (formation) constants (i) are given by:
i = [Al(OH)j(3-j)] [H+]j/[Al3+]
(2.5)
where i and j equal 1 to 4, and i’s are related to the thermodynamic values (Ki) by
Ki = i γ(Al3+) a(H2O)j/ γ(Al(OH)j(3-j)) γ(H+])j
(2.6)
The hydrolysis constants for Al3+ have been determined by a number of workers
[Benézéth et al., 2001; Bourcier et al., 1993; Castet et al., 1993; Couturier et al., 1984;
Fink and Peech, 1963; Palmer and Bell, 1994; Palmer and Wesolowski, 1992, 1993;
Palmer et al., 2001; Schofield and Taylor, 1954; Volokhov et al., 1971; Wesolowski,
1992; Wesolowski and Palmer, 1994]. The earlier studies have been summarized by
Baes and Mesmer [1976] and Apps et al. [1988]. The most extensive studies have been
made by Palmer and co-workers (referenced above) over a wide range of temperature (0
to 300oC) in dilute solutions and to 100oC in NaCl to 5 m. Most of the estimates of the
hydrolysis constants have been determined from the solubility of the minerals Gibbsite
(Al(OH)3(s)) [Palmer and Wesolowski, 1992; Volokhov et al., 1971; Wesolowski, 1992]
and Boehmite (γ-AlOOH) [Benézéth et al., 2001; Bourcier et al., 1993; Castet et al.,
26
1993; Palmer et al., 2001] and potentiometry [Palmer and Wesolowski, 1993] as a
function of pH. The solubility for Gibbsite (Qsi) as a function of pH can be summarized
by the equations
Al(OH)3(s) + 3H+ = Al3+ + 3 H2O
Qs0
(2.7)
Al(OH)3(s) + 2H+ = Al(OH)2+ + 2 H2O
Qs1
(2.8)
Al(OH)3(s) + H+ = Al(OH)2+ + 2 H2O
Qs2
(2.9)
Al(OH)3(s) = Al(OH)3
Qs3
(2.10)
Al(OH)3(s) + H2O = Al(OH)4- + H+
Qs4
(2.11)
The stoichiometric hydrolysis constants (i) at a given temperature and concentration are
related to the solubility quotients by
i = Qsi/ Qs0
(2.12)
The effect of pH on the solubilities of Al(III) is related to the speciation by
log [Al(III)] = log Qs0 + 3 log[H] – log αAl
(2.13)
where αAl, the fraction of free Al3+, is given by
αAl = 1/(1 + 1/[H+] + 2/[H+]2 + 3/[H+]3 + 4/[H+]4 )
The value of Qs0
(2.14)
has been determined from solubility measurements of Gibbsite or
Boehmite in acidic solutions [Palmer and Wesolowski, 1992; Palmer et al, 2001].
Benézéth et al. [2001] have tabulated the thermodynamic hydrolysis constants
(Ki) as a function of temperature. These results have been fitted to equations of the form:
log Ki = A + B/T + C ln T + D T
(2.15)
and the coefficients are given in Table 2.1. The values of i for Al(III) as a function of
ionic strength (I) and temperature (T/K) have been fitted to equations of the form
log βi – log Ki = a0 I0.5 + a1 I2 + a2 I + a3 I0.5/T + a4 I2/T
(2.16)
27
The coefficients ai’s for eqn. 2.16 are given in Table 2.2. These equations for the
hydrolysis constants for Al(III) have been used to generate values of log i, as a function
of temperature and ionic strength.
Table 2.1: Values of the parameters for eqn. 2.15 for the Thermodynamic Hydrolysis
constants of Al(III) in Water [Zotov and Kitova, 1979; Benézéth et al., 2001; Palmer et
al., 2001].
log K1
log K2
log K3
log K4
Constant
1/T
ln T
T
4.615
-2888.30
0.02128
-185.22
915.62
32.03
151.38
-13211.03
-22.9244
-310.00
100.31
54.3931
-0.036755
0.023365
-0.077331
Std.Err.Fit
0.002
0.06
0.02
0.04
T. Range (°C)
0 to 200
2 to 300
2 to 300
2 to 300
Table 2.2: Vales of the parameters for eqn. 2.16 for the Thermodynamic (Ki) and
Stoichiometric (i) Hydrolysis constants of Al(III) in NaCl solutions [Benézéth et al.,
2001; Palmer and Wesolowski, 1993; Wesolowski 1992].
Variable
Parameter log 1 – K1
log 2 –
K2
log 3 – K3 log 4 – K4
a0
I0.5
-3.3789
-4.6161
-2.681
-1.7546
a1
a2
a3
I2
I
0.5
I /T
0.0432
0.833
622.5755
-0.0158
1.459
718.494
-0.4573
3.2979
-591.4436
-0.119
1.1875
-28.7545
a4
I2/T
-36.3802
-43.9861
33.5847
-10.0329
0.04
43
0.1
20
0.15
20
0 to 125
0 to 125
0 to 125
Std.Err.Fit
Number
T. Range
(°C)
0.09
20
0 to
125
28
2.3 Correlations of the Hydrolysis Constants of Fe(III) and
Al(III) in NaCl Solutions
As discussed earlier the thermodynamic and stoichiometric stepwise hydrolysis
constants correlate with one another (Figures 2.1 and 2.2). The recent log Ki results of
Stefánsson [2007] and Stefánsson and Seward [2008] at 25oC are in good agreement with
the tabulations of Millero and Pierrot [2007]. The values of log Ki for Fe(III) at higher
temperature are slightly lower and give a better fit if fit to a second degree equation ( =
0.53):
log Ki [Fe(III)] = 1.067 + 0.456 log Ki [Al(III)] - 0.0238(log Ki[Al(III)])2
(2.17)
Table 2.3: Estimated Thermodynamic hydrolysis constants for Fe(III) as a function of
temperature determined from eqn. 2.17. Literature values are in parenthesis below
calculated values.
Temp. (oC)
Log K1
Log K2
Log K3
Log K4
0
-1.8
-2.4
(-2.18)a,b,d
-1.4
(-1.71, -1.60)a,d
-0.5
(-0.68,-0.66)c,d
-0.5
-0.02
(-0.04,-0.07)c,d
-0.4
(-0.59,-0.65)c,d
-8.1
-6.5
(-5.76,-6.9)a,b
-5.2
(-6.4)b
-16.5
-13.1
(-14.3, -13.0)a,b
-10.5
(-12.0)b
-26.2
-21.7
(-21.71, -22.3)a,b
-18.1
(-19.4)b
-4.1
-6.9
-15.2
-3.1
-5.7
-12.9
-2.4
-4.6
-11
-1.8
-3.1
-9.5
25
50
100
125
150
200
a
Stefánsson, 2007
Millero and Pierrot, 2007
c
Stefánsson and Seward, 2008
d
Zotov and Kotova, 1979, 1980
b
29
Table 2.4: Estimated stoichiometric hydrolysis constants for Fe(III) as a function of
temperature and molality in NaCl solutions determined from eqn 2.18.
Temperature
(oC)
0
25
50
75
100
m NaCl
log 1
log 2
log 3
log 4
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
-2.7
-2.6
-2.6
-2.7
-2.9
-2.2
-2.2
-2.1
-2.2
-2.3
-1.8
-1.8
-1.8
-1.8
-1.9
-1.5
-1.5
-1.4
-1.5
-1.5
-1.2
-1.2
-1.2
-1.2
-1.2
-8.9
-8.8
-8.9
-9.2
-10
-7.5
-7.4
-7.5
-7.8
-8.4
-6.3
-6.3
-6.3
-6.6
-7.1
-5.3
-5.3
-5.4
-5.6
-6
-4.4
-4.5
-4.5
-4.7
-5.1
-21.1
-20.8
-20.7
-21.1
-21.9
-18.3
-18
-17.9
-18.2
-19.1
-16
-15.6
-15.5
-15.9
-16.8
-14
-13.6
-13.5
-13.9
-14.9
-12.4
-12
-11.9
-12.3
-13.3
-27.8
-27.9
-28.3
-29.1
-30.4
-23.2
-23.2
-23.5
-24.2
-25.4
-19.4
-19.5
-19.7
-20.3
-21.4
-16.5
-16.5
-16.7
-17.2
-18.2
-14
-14
-14.2
-14.7
-15.5
The values of log Ki [Fe(III)] estimated from this equation are tabulated in Table
2.3 along with literature data (Millero and Pierrot, 2007; Stefánsson, 2007; Stefánsson
and Seward, 2008; Zotov and Kotova, 1979, 1980]). The extrapolated values are in
reasonable agreement with the recent measurements log K1 to high temperatures by
Stefánsson and Seward [2008] and Zotov and Kotova [1979, 1980]. The values of i of
30
Fe(III) and Al(III) from 0 to 50oC as a function of ionic strength shown in Figure 2.2 can
also be represented by the thermodynamic values fit to the eqn 2.17.
The values of log i [Fe(III)] as a function of temperature and ionic strength can
be estimated by combining eqns 2.16 and 2.17 to create eqn 2.18:
log i [Fe(III)] = 1.067 + 0.456 (log i [Al(III)]) – 0.0238 (log i [Al(III)])2 (2.18)
This equation yields values of log i [Fe(III)] in NaCl solutions from 5 to 50oC and I =
0.1, 0.7, 1.3 and 5 m that agree with the measured values by ± 0.52, 1.22, 1.00 and 0.73,
respectively. The estimated values of log i [Fe(III)] as a function of temperature and
ionic strength are given in Table 2.4. The results are in reasonable agreement with
literature data [Stefánsson, 2007; Zotov and Kotova, 1979, 1980].
2.4 Causes of the Correlations of the Hydrolysis Constants of
Fe(III) and Al(III)
The correlations of the hydrolysis constants of Fe(III) and Al(III) in pure water
can be examined using the free energies of the ionic species tabulated in Table 2.5
[Millero, 2001a]. Although the values for the free ions and complexes are different for
Fe(III) and Al(III), the difference between them
ΔG0(Al3+) - ΔG0 (Al(OH)j(3-j))  ΔG0 (Fe3+) - ΔG0 (Fe(OH)j(3-j))
(2.19)
are similar (see Table 2.5).
The correlations of the hydrolysis constants of Fe(III) and Al(III) at higher ionic
strengths and temperatures are related to their similar behavior as functions of
temperature (K) and ionic strength (I0.5) (see Figure 2.3). The differences in the
enthalpies of the ions and complexes like the free energy are similar (see Table 2.5)
ΔH0(Al3+) - ΔH0 (Al(OH)j(3-j))  ΔH0 (Fe3+) - ΔH0 (Fe(OH)j(3-j))
(2.20)
31
-14
-1
-15
-2
Log3
Log1
-16
-3
-4
-17
-18
-5
-6
-19
0.0
0.5
1.0
1.5
2.0
-20
2.5
0.0
0.5
1.0
1.5
2.0
2.5
1.5
2.0
2.5
I0.5
I0.5
Al
Fe
-22.0
-6
-7
-22.5
-23.0
-9
Log4
Log2
-8
-10
-24.0
-11
-24.5
-12
-13
-23.5
0.0
0.5
1.0
0.5
I
1.5
2.0
2.5
-25.0
0.0
0.5
1.0
0.5
I
Figure 2.3: Comparison of the values of log i of Fe(III) and Al(III) as a function of
square root of ionic strength [Millero, 2001a; Benézéth et al., 2001].
32
Table 2.5: Free energy (kJ mol-1) and enthalpy (kJ mol-1) for Al3+, Fe3+, and their
complexes at 25°C.
ΔG0
ΔG0
ΔG0
ΔG0
ΔG0
Species
[M3+]
[M(OH)2+]
[M(OH)2+]
[M(OH)3]
[M(OH)4-]
Al(III)a
-487.2
-696
-900
-1110
-1306
Fe(III)b
Species
Al(III)a
Fe(III)d
-10.6
ΔH0
[M3+]
-539.4
209c
413c
623c
819c
-236
-449
-640
-832
c
c
630
c
821c
225
438
ΔH0
[M(OH)2+]
-769.7
ΔH0
[M(OH)2+]
-998.3
ΔH0
[M(OH)3]
-1270.7
ΔH0
[M(OH)4-]
-1503
209c
413c
623c
819c
-284.4
-521.4
-701
-938.6
-47.7b
c
237
474
c
a
Benézéth et al., 2001
b
Millero, 2001a
c
ΔG0[M3+] - ΔG0[M(OH)j(3-j)] or ΔH0[M3+] - ΔH0[M(OH)j(3-j)]
d
Estimated from the slopes of log Ki vs 1000/T
c
653
891c
The effect of ionic strength on the complexes are related for the activity coefficients of
the free ions and the complexes by
log K1 – log 1 = log γ(M3+) + log a(H2O) – log γ(M(OH)2+) – log γ(H+)
(2.21)
Since the activity coefficient of H+ (H) and activity of water (aH2O) at a given ionic
strength in NaCl solutions are the same, the differences of the free ions and complexes
are
log  (Fe3+) - log  (Fe(OH)j(3-j))  log  (Al3+) - log  (Al(OH)j(3-j))
(2.22)
(Fe3+)/(Fe(OH)j(3-j))  (Al3+)/(Al(OH)j(3-j))
(2.23)
or
To demonstrate that this relationship is valid, the activity coefficients for (Al(OH)j(3-j))
have been determined from
33
ln γ(M(OH)j(3-j)) = ln Ki - ln i + ln γ(M3+) + ln a(H2O) – ln γ(H+)
(2.24)
4
3
3+
ln (Fe3+ or Al3+)
2
Fe
3+
Al
1
0
-1
-2
-3
0.0
0.5
1.0
1.5
2.0
2.5
3.0
I0.5
Figure 2.4: Comparison of the activity coefficients of Fe3+ [Millero, 2001a] and Al3+
[Christov et al., 2007] in NaCl solutions at 25°C as a function of the square root of ionic
strength.
The values for ln γ(Fe(OH)j(3-j)) from 0 to 50oC are available [Millero, 2001a] and the
values for ln γ(Al(OH)j(3-j)) from 0 to 100oC have been determine using eqn. 2.24. The
literature Pitzer [1991] parameters for NaCl [Greenberg and Møller, 1989; Møller,
1988], HCl [Christov and Møller, 2004], and AlCl3 [Christov et al., 2007] were used in
these calculations. A comparison of the trace activity coefficients of Al3+ and Fe3+ in
NaCl solutions at 25oC calculated from the Pitzer [1991] equations are compared in
Figure 2.4. Below 1 m, the values are similar, but differ at higher ionic strengths. The
34
values for ln γ(Fe(OH)j(3-j)) (1) and ln γ(Al(OH)j(3-j)) at 25oC are shown in Figure 2.5.
The differences are quite large, but the ratios of γ(M3+)/γ(M(OH)j(3-j)) for the two systems
are the same order of magnitude (see Table 2.6).
In summary the correlations of the hydrolysis constants of Fe(III) and Al(III) are
related to a similarity of the differences in the thermodynamic properties of the free
metals and their complexes.
The results of this chapter demonstrate that the hydrolysis constants for Al3+ can
be used to make reasonable estimates of the values for Fe3+ in NaCl solutions over a wide
range of temperatures. These results should be useful in examining the speciation of
Fe(III) in NaCl brines over a wide range of ionic strength and temperature. Since it is
frequently easier to determine the stoichiometric hydrolysis constants log β1 and log β4
for Fe(III) and other trivalent metals, the correlations can be useful in estimating the
values of log β3 and log β3 needed to examine the speciation at the near neutral pH of
most natural waters.
Table 2.6: Log of the ratio of the activity coefficients of the free metal and the hydroxide
complex for Fe(III) and Al(III). The differences in the ratios are close to the standard
deviation of the fits.
log (γM3+/γM(OH)j(3-j))
I
M
0.7
5
j=1
Al
Fe
Al
Fe
-0.7
-1.1
-3.1
-1.7
j=2
-1.1
0.7
-0.5
1.6
j=3
-3.8
-2.3
-3.8
-1.1
j=4
-1.1
-2.3
0.4
-1.1
35
AlOH2+
FeOH2+
12
10
lnM(OH)3
8
lnMOH2+
Fe(OH)3
12
10
6
4
2
8
6
4
2
0
-2
Al(OH)3
14
0
0.0
0.5
1.0
1.5
2.0
2.5
0.0
0.5
0.5
I
I
Al(OH)2+
6
2.0
2.5
1.5
2.0
2.5
Fe(OH)4-
2.5
2.0
2
lnM(OH)4-
lnM(OH)2+
1.5
0.5
Al(OH)4-
3.0
Fe(OH)2+
4
0
-2
1.5
1.0
0.5
-4
-6
1.0
0.0
0.0
0.5
1.0
I0.5
1.5
2.0
2.5
-0.5
0.0
0.5
1.0
I0.5
Figure 2.5: Comparison of the activity coefficients of the Fe3+ and Al3+ complexes in
NaCl solutions at 25°C as a function of the square root of ionic strength.
Chapter 3:
The Hydrolysis of Al(III) in NaCl Solutions-A Model
for M(II), M(III), and M(IV) Ions3
3.1 Background
Most metal cations form soluble hydroxide complexes in aqueous solutions.
Trivalent metals (M3+) for example hydrolyze as follows
M3+ + H2O = MOH2+ + H+
(3.1)
M3+ + 2 H2O = M(OH)2+ + 2 H+
(3.2)
M3+ + 3 H2O = M(OH)3 + 3 H+
(3.3)
M3+ + 4 H2O = M(OH)4- + 4 H+
(3.4)
The resulting complexes at a given pH have a large influence over the chemical behavior
of the metal. The various hydrolysis products control the adsorption of the dissolved
metal onto particles, the formation of colloids, the solubility of the metal, the
complexation with other species in solution, and the oxidization or reduction of the metal
[Baes and Mesmer, 1976]. To identify and understand the stability of a metal as a
function of pH one needs to know the hydrolysis constants for the metal.
Ki = i γ(M3+) a(H2O)j/ γ(M(OH)j(3-j)) γ([H+])j
(3.5)
Ki is the thermodynamic and i are the stoichiometric constants, γ(i) is the activity
3
This paper was previously published as Woosley, R. J. and F. J. Millero (2010), The hydrolysis of Al(III)
in NaCl solutions: A model for M(II), M(III), and M(IV) ions, Aquat. Geochem., 16, 317-324. DOI:
10.1007/s10498-009-9075-2.
36
37
coefficient and a(H2O) is the activity of water in the solution. If the values of i or Ki are
known, the fraction α(i) of the various complexes at a given pH = - log[H+] are given by
α(M3+) = 1/(1 + 1/[H+] + 2/[H+]2 + 3/[H+]3 + 4/[H+]4)
(3.6)
α(MOH2+) = α(M3+)1/[H+]
(3.7)
α(M(OH)2+) = α(M3+) 2/[H+]2
(3.8)
α(M(OH)3) = α(M3+) 3/[H+]3
(3.9)
α(M(OH)4-) = α(M3+) 4/[H+]4
(3.10)
Similar equations can be derived for divalent and quadrivalent metals.
Despite the importance of the hydrolysis of metals in natural waters,
thermodynamic (Ki) and stoichiometric hydrolysis constants (βi) are only known over a
very limited range of temperature and ionic strength. This is partly due to the difficulty in
experimentally determining the hydrolysis constants of metals due to the precipitation of
oxides and low solubilities [Baes and Mesmer, 1976]. This is most significant when
determining the second and third hydrolysis constants due to the low solubilities at near
neutral pH where they are important.
Predicting hydrolysis constants has been difficult since few discernible patterns of
behavior between metals have been determined. As shown in Chapter 2, there is a near
linear relationship between the hydrolysis constants of Al(III) and Fe(III) over a wide
range of temperature and ionic strength allowing for an estimate of the Fe(III) hydrolysis
constants to high temperature and ionic strength in NaCl solutions, applicable to
hydrothermal brines. As will be shown in this chapter, this near linear relationship
appears to hold over a variety of metals of various charges.
38
3.2 Hydrolysis Constants for Al(III) in NaCl Solutions
As discussed in section 2.2, the hydrolysis constants of Al(III) are well known
over a wide range of temperature and ionic strength in NaCl solutions [Benézéth et al.,
2001; Bourcier et al., 1993; Castet et al., 1993; Couturier et al., 1984; Frink and Peech,
1963; Palmer and Wesolowski, 1993; Schofield and Taylor, 1954; Verdes et al., 1992;
Wesolowski, 1992; Wesolowski and Palmer, 1994]. The earlier work was tabulated by
Baes and Mesmer [1976]. The most extensive studies [Benézéth et al., 2001; Palmer and
Wesolowski, 1993; Palmer and Wesolowski, 1992] provide hydrolysis constants of Al(III)
in dilute solutions from 0-300°C and to 100°C in NaCl solutions up to 5 m. In Chapter 2
the thermodynamic hydrolysis constants were fit as a function of temperature and the
stoichiometric hydrolysis constants as a function of ionic strength (I) and temperature (K)
according to eqns 2.15 and 2.16. The coefficients for eqn. 2.15 are given in Table 2.1
and the coefficients for eqn. 2.16 are given in Table 2.2.
3.3 Al(III) Correlations with +2, +3, and +4 metals
The near linear relationship that was found between Al(III) and Fe(III) (Section
2.3) appears to hold for the limited thermodynamic hydrolysis constants for several +2,
+3, and +4 metals. This relationship is shown in Figures 3.1-3.3, where the
thermodynamic hydrolysis constants of Al(III) at 25°C are plotted verses several +2, +3,
and +4 metals, respectively. Using a second degree fit improved the standard error of
some of the fits (Be(II), Bi(III), Cr(III), Dy(III), Er(III), Sc(III), Yb(III), Hf(IV), Np(IV),
Pa(IV), Pu(IV), Sn(IV), Tl(IV), Zr(IV)). The hydrolysis constants have been fit to
equations of the form:
39
log βi [M] = a * log βi [Al(III)] + b * (log βi [Al(III)])2 + c
(3.11)
The adjustable coefficients a, b, and c for eqn. 3.11 for the various metals are given in
Table 3.1. Hg(II) has a much larger standard deviation than the other metals. This may be
caused by the very strong complex that Hg(II) forms with chloride, or because K4 has not
been determined. Ti(III) is also different in that the slope is much smaller than the other
+3 metals, resulting in a less negative estimated value for K4. Since K4 has not been
determined, it is difficult to determine the cause.
0
Be(II)a
Mn(II)a
Fe(II)a
Co(II)a
Ni(II)a
Cu(II)a,b,c
Zn(II)a,c
Pb(II)a
a
Hg(II)
Cd(II)c
Sn(II)a
log Ki [M(II)]
-10
-20
-30
-40
-50
-25
-20
-15
-10
-5
log Ki [Al(III)]
Figure 3.1: A plot of the thermodynamic hydrolysis constants of M(II) versus Al(III) at
25°C (a Baes and Mesmer [1976]; b Paulson and Kester [1980]; c Pivovarov [2005]).
40
0
Cr(III)c
Sc(III)a
Ti(III)a
Y(III)a,b
Nd(III)a,b
Gd(III)a,b
Dy(III)a,b
Er(III)a,b
Yb(III)a,b
Bi(III)a
log Ki [M(III)]
-10
-20
-30
-40
-25
-20
-15
-10
-5
0
log Ki [Al(III)]
Figure 3.2: A plot of the thermodynamic hydrolysis constants of M(III) versus Al(III) at
25°C (a Baes and Mesmer [1976]; b Klungness and Byrne [2000]; c Rai et al. [2001]).
log Ki [M(IV)]
0
Hf(IV)b
Th(IV)c
Zr(IV)d
Pa(IV)e
U(IV)f
Np(IV)h
Pu(IV)a,g
Tl(IV)a
Sn(IV)a
-5
-10
-15
-20
-25
-20
-15
-10
-5
0
log Ki [Al(III)]
Figure 3.3: A plot of the thermodynamic hydrolysis constants of M(IV) versus Al(III) at
25°C (a Baes and Mesmer [1976]; b Rai et al. [2001]; c Ekberg et al. [2000], d Ekberg et
al. [2004]; e Tarapcik et al. [2005]; f Manfredi et al. [2006]; g Choppin et al. [1997]; h
Neck and Kim [2001]).
41
Table 3.1: The Values of the parameters for eqn. 3.11. All coefficients and slopes were
determined from Ki at 25°C, except As(III) which was determined from K1 from 25300°C.
Ion
a
b
c
Be(II) 1.2814 -0.019 1.5788
1.6243
Cd(II) 2.1911
1.6677
Co(II) 2.0969
1.7473
Cu(II) 1.8101
0.8579
Fe(II) 2.0525
6.9209
Hg(II) 1.6491
-0.1426
Mn(II) 2.1414
0.4116
Ni(II) 1.9406
2.3236
Pb(II) 1.9283
1.283
3.9525
Sn(II)
0.3969
Zn(II) 1.8253
-6.8491
As(III) 0.4789
Bi(III) -0.3862 -0.0555 -1.6855
Cr(III) 0.7461 -0.0214 0.4772
Dy(III) 1.9264 0.0164 1.7551
Er(III) 1.8982 0.0171 1.6724
-0.682
Gd(III) 1.506
-0.058
Nd(III) 1.6424
0.772 -0.0163 0.0245
Sc(III)
-0.6091
Ti(III) 0.2407
1.631
0.2837
Y(III)
Yb(III) 1.9185 0.0171 2.0366
Hf(IV) 0.1995 -0.0153 1.2588
Np(IV) 0.176 -0.0125 0.5227
Pa(IV) 0.0801 -0.0083 1.4939
Pu(IV) 0.2333 -0.0101 1.002
Sn(IV) -0.1393 -0.0079 0.0651
0.371
Th(IV) 0.7282
Tl(IV) -1.0406 -0.0656 -4.4137
2.6942
U(IV) 0.6551
Zr(IV) 0.0615 -0.0065 0.8338
std
error
0.75
1.18
1.55
1.09
0.31
5.75
1.3
1.03
1.3
2.99
0.84
0.08
0.2
0.04
0.93
0.95
1.03
0.91
0.45
1.06
0.93
0.87
0.42
0.64
0.42
0.44
0.04
0.7
1.12
0.48
0.36
r2
n
0.999
0.9967
0.9937
0.9958
0.9997
0.8198
0.9957
0.9967
0.9919
0.9107
0.9976
0.9927
0.9998
1
0.9977
0.9974
0.9946
0.9964
0.9992
0.7389
0.9962
0.9979
0.9974
0.9915
0.9901
0.9958
0.9991
0.9895
0.9907
0.9938
0.988
4
4
4
4
4
3
4
4
3
3
4
7
4
4
4
4
4
4
4
3
4
4
4
4
4
4
4
4
4
4
4
42
The reason for the correlation in pure water is related to the Gibb’s free energy
(Section 2.4). Although the free energies of the individual species are very different, the
difference between the free ions and complexes are similar
ΔG°(Al3+) – ΔG°(Al(OH)j(3-j))  ΔG°(Mn+) – ΔG°(M(OH)j(n-j))
(3.12)
The mean free energy differences by charge on the metal are shown in Figure 3.4. The
values for aluminum are also shown for reference. There is a trend of increasing values
with increasing charge. This indicates that plotting two metals of the same charge would
give a stronger correlation; however, there are currently only limited hydrolysis constants
for M2+ and M4+ over a wide range of temperatures and ionic strengths. The difference
between the charges is small enough that Al(III) provides an adequate fit for all three
n+
n-j
G(M )-G(M(OH)j ) (Kj/mol)
charges.
1000
Al(OH)4+
M(II)
M(III)
M(IV)
800
Al(OH)3
600
Al(OH)2-
400
200
0
Al(OH)2-
M(OH)
M(OH)2 M(OH)3 M(OH)4
Figure 3.4: The mean and standard deviations of the difference between the free energies
of the free metal and the complex by charge. Reference lines represent the values of
Al(III).
43
A similar relationship is found for the enthalpies of the free ions and complexes
ΔH°(Al3+) – ΔH°(Al(OH)j(3-j))  ΔH°(Mn+) – ΔH°(M(OH)j(n-j))
(3.13)
which explains the correlation at other temperatures in pure water. There is no literature
data for the enthalpies of many of the complexes, but those that are available agree with
eqn. 3.13. For example for the first hydrolysis, the enthalpy difference for aluminum is
230 KJ/mol, while the values for uranium and cobalt are 240 and 222 KJ/mol,
respectively. The values for the enthalpy differences for the second hydrolysis for Al and
Co are 459 and 460 KJ/mol, respectively.
Section 2.4 showed that the correlation between Fe(III) and Al(III) at higher ionic
strengths to be related to the ratio of the activity of the free ion and complexes
(Mn+)/(M(OH)j(n-j))  (Al3+)/(Al(OH)j(3-j))
(3.14)
The equation results from the activity of water and activity coefficients in NaCl being the
same at a given ionic strength [Millero and Pierrot, 2007]. There is very little literature
data to confirm this relationship for most of the metals. Klungness and Byrne [2000]
determined the β1 for Yttrium and the rare earth metals from 25-55°C up to 5 m in
NaClO4. Their values are in good agreement with those calculated from eqn. 3.11
(standard deviations Y(III) = ±0.78, Nd(III) = ±0.78, Gd(III) = ±0.74, Dy(III) = ±0.82,
Er(III) = ±0.81, Yb(III) = ±0.82). Only K1 has been experimentally determined for
As(III). Zakaznova-Herzog et al. [2006] determined K1 from 25-300°C. This data was fit
to eqn. 3.11 and used to predict the undetermined hydrolysis constants at 25°C, K2 = 11.49, K3 = -14.79, K4 = -17.77.
The results of this chapter show that the hydrolysis of Al(III) can be used as a
model for the hydrolysis of a variety of other metals in the +2, +3, and +4 oxidation states
44
(i.e. Mn(II), Cr(III), U(IV), Pu(IV)) over a wide range of temperature and ionic strength.
This makes it possible to estimate unknown hydrolysis constants under a variety of
conditions. This should be useful in examining the speciation of metals in natural brines.
The model is most useful for determining the second and third hydrolysis constants,
which are the most difficult to determine experimentally.
Further experimental
measurements would be useful to examine the reliability of these correlations in NaCl
solutions over a wide range of ionic strengths and temperature.
Chapter 4:
Pitzer Model for the Speciation of Lead Chloride and
Carbonate Complexes in Natural Waters4
4.1 Background
Lead (Pb2+) has been widely studied in the environment due to its toxicity to
organisms [Borgmann et al., 1993; Bryan, 1971; Hannan and Patouillet, 1972] and
because of its large anthropogenic input into the environment [Boyle et al., 1994]. Since
the chemical form, and not the total concentration, is important in determining
bioavailability, behavior, and fate of the metal, accurate knowledge of the speciation of
Pb2+ is essential. Speciation is largely controlled by complexation with organic and
inorganic ligands. This complexation is a function of temperature, ionic strength, and
type of media; therefore, ionic interaction models require reliable formation constants
over a range of temperature, ionic strength, and media. Lead is a somewhat unusual metal
because the inorganic speciation is not dominated by one ligand, but by both chloride and
carbonate in most natural waters. The formation of lead complexes can be expressed by:
Pb2+ + nCl- ↔ PbCln2-n
(4.1)
and
Pb2+ + nCO32- ↔ PbCO32‐2n 4
(4.2)
This chapter is currently under review: Woosley, R. J. and F. J. Millero (Submitted), Pitzer model for the
speciation of lead chloride and carbonate complexes in natural waters, Mar. Chem..
45
46
Where n is the number of chloride or carbonate ions, and values typically range from 1 to
3 for chloride and 1 for carbonate, although dicarbonato species exist at high pH [Easley
and Byrne, 2011]. The stoichiometric formation constants (i) are then given by:
PbCln = [PbCln2-n]/[Pb2+][Cl-]n
(4.3)
PbCO3 = [PbCO3]/[Pb2+][CO32-]
(4.4)
Where brackets denote concentration in molality (m). These constants are related to the
thermodynamic (pure water) constants (Ki) through the activity coefficients () of the
species by:
KPbCln = PbCln{PbCln2-n)/(Pb2+)/n(Cl-)}
(4.5)
KPbCO3 = PbCO3{(PbCO3)/(Pb2+)/(CO32-)}
(4.6)
Determination of activity coefficients requires reliable formation constants, which are
often lacking [Byrne et al., 1988]. Powell et al. [2009] critically compiled and reviewed
the most reliable constants available for all the lead complexes available in the literature.
Byrne et al. [2010] then used these stoichiometric values for chloride to determine the
best thermodynamic constants, and fit the stoichiometric constants as a function of ionic
strength. As shown by Millero and Byrne [1984] and Byrne and Miller [1984], the
stoichiometric constants vary in different media at the same ionic strength, particularly at
high ionic strengths.
Very few values for the thermodynamic formation constants of the PbCO3 complex
have been published; many instead rely on correlations with other metals. Thus, Powell et
al. [2009] were unable to recommend a reliable thermodynamic value and instead gave
an “indicative value” of log K = 6.45 ± 0.72. Since then Easley and Byrne [2011] have
determined the PbCO3 in NaClO4 up to 5 m at 25°C. We have further extended the
47
measured constants by determining the PbCO3 in NaCl up to 3 m at 25°C. The constants
recommended by Powell et al. [2009] and these recently published stoichiometric and
thermodynamic constants are used in the ionic interaction model of Pitzer [1991] to
determine a complete set of Pitzer coefficients for PbCln2-n in NaCl, NaClO4, HCl,
HClO4, MgCl2, and CaCl2 media at 25°C and PbCO3 in NaCl and NaClO4. From this
model the activity coefficients of the lead-chloro and lead-carbonate complexes can be
calculated in a variety of media relevant to natural waters including brines and seawater.
4.2 Determination of PbCO3 in NaCl
4.2.1 Methods
Measurements of PbCO3 were made using a spectrophometric technique developed
by Byrne and coworkers [Byrne and Yao, 2008; Soli et al., 2008; Easley and Byrne,
2011]. All the solutions were made using Milli-Q water. Lead stock solutions (1 x 10-3 m)
were made using PbCl2 (Alfa Aesar, 99.999%, metal basis). A standard solution of 0.2 N
NaCO3 was made from reagent grade NaCO3 purchased from Sigma Aldrich (St. Louis,
MO) and was dried at 110°C for two hours prior to use. The NaCl solutions were made
gravimetrically from reagent grade NaCl purchased from BDH (VWR), exact
concentrations were determined by density using an Anton-Par DMA-5000 densitometer
and the equations of Lo Surdo et al. [1982]. The values of pH of the solutions were
monitored by Orion Ross (8101) glass and reference pH electrode and an Orion pH meter
(model 720A). The filling solution of the reference electrode was 3m NaCl. The electrode
was calibrated by titration of 0.7 m NaCl with standardized HCl (~0.12 m).
48
Solutions were housed in a thermostated cell containing the electrodes and circulated
through a 10 cm quartz microflow cell (Starna Cells, Inc., Asascadero, CA) using a
syringe pump (Norgren Kloehn, Inc., Las Vegas, NV). The absorbance was measured at
1 nm intervals between 210-350 nm using an HP 8453 spectrophotometer. Experimental
solutions with added sodium carbonate (2 x 10-4 – 1 x 10-3 m) were used as a blank for
the spectroscopic measurements. Sufficient stock Pb2+ solution was then added to give a
final concentration of 5 mol/kg or 10 mol/kg. Concentrations of lead and carbonate
were increased at higher ionic strengths to help minimize potential interference of the
chloride ion. Measurements were made at 4 different carbonate concentrations for each
NaCl solution. The [CO32-] was calculated from the total alkalinity and pH using the
dissociation constants of Millero et al. [2007] using the MIAMI model [Millero and
Pierrot, 1998]. The temperature was held at 25 ± 0.1°C throughout the experiment using a
Neslab RTE7 temperature bath. The solution was constantly stirred using a magnetic
stirrer. The pH was kept between 7.85 and 8.5 in order to preclude the formation of
Pb(CO3)22- at higher pH and minimize PbCln2-n formation as much as possible. This
narrow pH range limited the number of different carbonate concentrations possible for
each NaCl solution.
The absorbance of PbCO3 in NaCl can be described according to the following
equation:
A/(l[Pb]T)
= (Pb + PbCO3’PbCO3[CO32-]T)/(1 + ’PbCO3[CO32-]T)
(4.7)
where A is the absorbance at wavelength , l is the path length (cm), [Pb]T is the total
lead concentration, i is the molal absorptivity of species i at wavelength  It is
49
important to note that the ’PbCO3 is slightly different from that defined in eqn. 4.4. Here
’PbCO3 is defined as:
'PbCO3 = [PbCO3]/[Pb2+T’][CO32-]
(4.8)
where [Pb2+T’] is the total concentration of lead which is not associated with PbCO3, this
includes the free lead as well as any lead associated with chloride. These values then
must be corrected to the free lead for use in equation 4.4. Derivation of this equation can
be found in Byrne [1981] and Soli et al. [2008]. A baseline correction was made by
subtracting the average of the wavelengths from 305-315 nm from each wavelength and
was always less than 0.001. The 4 spectra obtained at each [Cl-] were fit to eqn. 4.7 using
nonlinear least squares analysis with the global curve-fitting function in OriginPro 8.6
(OriginLab, Northampton, MA). The model stipulated that molal absorbances and ’PbCO3
were greater than or equal to 0. The wavelengths used in the analysis were 225 ≤  ≤ 250
nm. There was too much noise in the NaCl media below ~215 nm to include the free Pb2+
peak as Easley and Byrne [2011] did in perchlorate media.
4.2.2 PbCO3 Formation Results
Measurements were made from 0.05-3 m NaCl. Typical absorbance spectra at 1.026 m
NaCl is shown in Figure 4.1. The formation constant results are given in Table 4.1.
Including all 50 molal absorptivities for each experiment would be excessive and not
very useful so only the values at three representative wavelengths are given in Table 4.2.
Interference with chloride ions prevented measurements at higher concentrations and the
low solubility of lead prevented measurements at lower concentrations. The results are
plotted in Figure 4.2 along with the values in NaClO4 determined by Easley and Byrne
[2011]. In order to test the reliability of the method two measurements were made in
50
seawater (S = 35). The log ’PbCO3 = 4.12 ± 0.01 was found to be in excellent agreement
with the value of Byrne and Yao [2008]. The seawater result (corrected to free Pb2+) is
also shown in Figure 4.2 for comparison. The large difference in formation constants
between NaCl and NaClO4 at high ionic strengths highlights the importance of using
constants for the media of interest, not just ionic strength. The model results will be
discussed in the next section along with the chloride complexes.
0.5
Absorbance
0.4
0.3
0.2
Increasing [CO32-]
0.1
0.0
220
240
260
280
300
Wavelength (nm)
Figure 4.1: Absorbance spectra for PbCO3 at 1.026 m NaCl. The height of the peak
increases with increasing carbonate concentration.
51
Table 4.1: Measured formation constants of PbCO3 in NaCl.
I (m)
0.05012
0.10015
0.19901
0.4017
0.49636
0.59852
0.69803
0.70237
1.00453
2.05551
3.14222
log'PbCO3 St'd error logPbCO3 St'd error
6.32
6.01
5.46
5.01
4.63
4.67
4.37
4.31
3.91
3.19
2.95
0.05
0.08
0.02
0.04
0.04
0.10
0.09
0.10
0.13
0.27
0.31
6.55
6.37
6.01
5.87
5.60
5.77
5.58
5.53
5.43
5.62
6.21
0.20 0.21 0.19 0.19 0.19 0.21 0.21 0.21 0.23 0.33 0.36 Table 4.2: Molal absorbtivities determined from equation 4.7 at three representative
wavelengths.
m (I)
0.0501
0.1001
0.1990
0.4017
0.4964
0.5985
0.6980
0.7024
1.0045
2.0555
3.1422
225Pb
225PbCO3
236Pb
236PbCO3
240Pb
240PbCO3
3805.042
4213.384
3885.521
3284.068
1453.226
1721.014
3334.386
2862.593
2416.751
1687.246
1388.486
2649.066
2541.902
1927.641
1541.299
1132.019
542.0124
142.4727
4.42E-13
302.479
9.00E-13
0
2041.121
2815.639
3299.021
1600.4
1083.132
1888.935
3502.328
3301.078
2777.352
2744.016
1808.643
2058.285
2162.8
2043.62
4365.419
2009.727
2861.329
1361.247
1106.324
3559.96
3109.915
5137.14
1355.721
2133.3
2787.145
878.9851
928.772
1800.626
3375.364
3191.135
2733.506
3358.884
2445.433
1597.884
1736.906
1711.43
4625.652
1984.906
2945.97
1415.251
1181.878
4092.433
3488.42
6802.699
52
PbCO3 Formation Constants
8
Log PbCO3
7
6
5
4
NaClO4 Model
NaClO4 Meas
3
NaCl Model
NaCl Meas
Seawater
2
0
1
2
3
4
5
I (m)
Figure 4.2: Comparison of the measured and modeled logPbCO3 in NaCl, NaClO4 and
seawater (I=0.723). Measured values in NaClO4 are from Easley and Byrne [2011].
4.3 The Pitzer Model
Since activity coefficients vary not only with ionic strength but also with ionic media
[Millero and Byrne, 1984] estimates of stability constants for brines and seawater using
an extended Debye-Hückel equation such as the Specific Ion Interaction model [Easley
and Byrne, 2011; Powell et al., 2009] can lead to large errors, particularly at higher ionic
strengths (see Figure 4.2 for example). The differences in activity coefficients in various
53
ionic media can be estimated by using the equations of Pitzer [1991]. Though seemingly
complex, these equations allow one to account for all the possible ionic interactions in
multi-component electrolyte solutions with relatively simple equations which can be
applied to natural waters [Whitfield, 1975; Harvie and Weare, 1983; Millero, 1983;
Harvie et al., 1984, Millero and Hawke, 1992, Millero and Pierrot, 2002]. For the
variety of media considered in this chapter, the activity coefficients for lead, chloride, and
carbonate are given by:
lnPb2+ = 4Pbf + 2mCl(BPbCl + ECPbCl) + 2mClO4(BPbClO4 + ECPbClO4)
+ 4PbR + 2S
(4.9)
lnCl- = f + 2mH(BHCl + ECHCl) + 2mNa(BNaCl + ECNaCl) + 2mMg(BMgCl2 + ECMgCl2)
+ 2mCa(BCaCl2 + ECCaCl2) + R + S
(4.10)
lnCO3 = 4f + 2mNa(BNaCO3 + ECNaCO3) + 4R + 2S + mClO4(2ΘClO4CO3
+ mNaNaClO4CO3) + mCl(2ΘClCO3 + mNaNaClCO3)
(4.11)
where mi is the molality, and E = ½ miZi. B and C are the second and third virial terms.
The Debye-Hückel limiting law (f is given by:
f = A[I1/2/(1 + 1.2I1/2) + 2/1.2ln(1 + 1.2I1/2)]
(4.12)
where I is the ionic strength (I = ½ ∑ Z2i mi ) and the limiting slope, A is a function of
temperature given by Møller [1988] and has a value of 0.3915 at 25°C. The media terms
R and S are given by:
R = mM mX B’MX
(4.13)
S = mM mX CMX
(4.14)
M is the cation and X is the anion. The second and third viral coefficients are given by:
BMX = 0MX + (1MX/2I)[1 - (1 + 2I1/2)exp(-2I1/2)]
(4.15)
54
B’MX = (1/2I2)[-1 + (1 + 2I1/2+2I)exp(-2I1/2)]
(4.16)
CMX = CMX/(2|ZMZX|1/2)
(4.17)
The values of 0, 1, C and the higher order terms Θ and  used in this study are given
in Table 4.2. The values of 0, 1, and C for PbCl2 are not available so the values of
ZnCl2 are used as in earlier studies [Millero and Byrne, 1984] since the values should be
equal within experimental error.
Table 4.3: Pitzer coefficients for chloride and perchlorate saltsa used in this study.
°
1
C
HCl 0.17750 0.29450
0.00080 HClO4 NaCl 0.17470 0.07650 0.29310 0.26640
0.00879
0.00127
NaClO4 0.05540 0.27550 ‐0.00118 MgCl2 0.35235 1.68150 0.00519 CaCl2 0.31590 1.61400 -0.00034
PbCl2b 0.26018 1.64250 ‐0.08798 Pb(ClO4)2 0.33323 1.72200 -0.00880
Na2CO3 0.03620 1.51000 0.00520 Higher Order Terms ClO4CO3c ClCO3 Θ

‐0.2618 0.1356 ‐0.02 0.0085 a
Taken from Pitzer [1991] unless otherwise
noted
b
Values for ZnCl2 (see section 4.3 for details)
ClO4- values from Millero et al. [2010]
c
55
4.3.1 Determination of Pitzer Parameters for Pb-Cln and Pb-CO3
Interactions
The activity coefficients for the complexes can be determined by the following
equations:
lnPbCl+ = f +2mClO4(BPbCl-ClO4 + mClO4CPbCl-ClO4) + 2mCl(BPbCl-Cl + mClCPbCl-Cl)
2mMgPbCl-Mg + 2mCaPbCl-Ca + R +S
+
(4.18)
lnPbCl2 = 2mClO4PbCl2-ClO4 + 2mNaPbCl2-Na + 2mClPbCl2-Cl + 2mHPbCl2-H
+ 2mMgPbCl2-Mg + 2mCaPbCl2-Ca + mNamClO4PbCl2-ClO4-Na
+ mNamClPbCl2-Cl-Na + mHmClPbCl2-Cl-H + mMgmClPbCl2-Cl-Mg
+ mCamClPbCl2-Cl-Ca
(4.19)
lnPbCl3- = f + 2mNa(BPbCl3-Na + mNaCPbCl3-Na) + 2mH(BPbCl3-H + mHCPbCl3-H) +
2mMg(BPbCl3-Mg + mMgCPbCl3-Mg) + 2mCa(BPbCl3-Ca + mCaCPbCl3-Ca)
+R-S
(4.20)
lnPbCO3 = 2mClPbCO3-Cl + 2mClO4PbCO3-ClO4 +mNamClO4PbCO3-ClO4
+ mNamClPbCO3-Cl
(4.21)
The  term is due to the interactions between ions of the same charge. The  and  terms
represent the double and triple interactions with the neutral species respectively. In eqn
4.18 PbCl-Na = 0, and in eqn 4.20 PbCl3-Cl = 0 and PbCl3-ClO4 = 0 [Luo and Millero, 2007].
We found PbCO3-Na = 0 in eqn 4.21. These terms have been omitted from the equations.
Further rearrangement of these equations gives:
lnKPbCl - ln(PbCl/Pb2+Cl-) - ideal = 2mClO40PbCl-ClO4 + 2mClO41PbCl-ClO4f1
+ 2m2ClO4CPbCl-ClO4 + 2mCl0PbCl-Cl + 2mCl1PbCl-Clf1 + 2m2ClCPbCl-Cl
+ 2mMgPbCl-Mg + 2mCaCa
(4.22)
56
lnKPbCl2 - ln(PbCl2/Pb2+2Cl-) = 2mClO4PbCl2-ClO4 +2mNaPbCl2-Na + 2mClPbCl2-Cl
+ 2mHPbCl2-H + 2mMgPbCl2-Mg + 2mCaPbCl2-Ca + mNamClO4PbCl2-ClO4-Na
+ mNamClPbCl2-Cl-Na + mHmClPbCl2-Cl-H + mMgmClPbCl2-Cl-Mg
+ mCamClPbCl2-Cl-Ca
(4.23)
lnKPbCl3 - ln(PbCl3/Pb2+3Cl-) - ideal = 2mNa0PbCl3-Na + 2mNa1PbCl3-Naf1
+ 2m2CPbCl3-Na + 2mH0PbCl3-H + 2mH1PbCl3-Hf1 + 2mNa2HCPbCl3-H
+ 2mMg0PbCl3-Mg + 2mMg1PbCl3-Mgf1 + 2m2MgCPbCl3-Mg + 2mCa0PbCl3-Ca
+ 2mCa1PbCl3-Caf1 + 2m2CaCPbCl3-Ca
(4.24)
–ln(PbCO3/Pb2+CO3=) =- lnKPbCO3 + 2mClPbCO3-Cl + 2mClO4PbCO3-ClO4
+ mNamClO4PbCO3-ClO4-Na + mNamClPbCO3-Cl-Na
(4.25)
where f1 = [1 – (1 + 2I1/2)exp(-2I1/2)]/2I and ideal =Z2 f +Z2R + ZS. All terms on the left
hand side of eqns. 4.22-4.25 are known or can be calculated using eqns. 4.4 and 4.5.
The fits were made using a nonlinear least squares regression of the left hand size as a
function of 2m, 2mf1, and 2m2 which yields the Pitzer parameters 0, 1, C,, and  for
all the interactions as well as lnKPbCO3 in eqn. 4.25. The results of these fits are
summarized in Table 4.3. This data analysis discovered an error in Table 1 of Luo and
Millero [2007]. A corrected version of the Table was made using the original
experimental data and is given in Table 4.4-4.7. Although the constants at temperatures
other than 25°C were correct, they are included here for completeness. The differences
between the measured logPbCln and those calculated from the Pitzer parameters are
shown in Figure 4.3. It is important to note that the values in CaCl2, MgCl2, and HCl
were determined from measurements only up to 1.0 m, so the coefficients should be used
with caution at high ionic strengths.
57
logPbCl
0.4
0.2
0.0
-0.2
-0.4
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
logPbCl

0.6
0.4
0.2
0.0
-0.2
-0.4
logPbCl

-0.6
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
I (m)
Figure 4.3: Difference between the measured logPbCln and calculated logPbCln as a
function of ionic strength in all media (HCl, MgCl2, CaCl2, NaCl, NaClO4).
58
Table 4.4: Pitzer coefficients for lead chloride and lead carbonate complexes for Eqs.
4.20-4.24. The standard deviation () for PbCl- = 0.16, PbCl20 = 0.14, PbCl3+ = 0.19,
PbCO3 = 0.13.
PbCl-
Parameter
Coefficient
0PbCl-ClO4 0.13
1PbCl-ClO4 CPbCl-ClO4 0PbCl-Cl 0.40
-0.03
1PbCl-Cl
1.16
CPbCl-Cl -0.19
-0.51
-0.52
PbCl-Mg
PbCl-Ca
PbCl20
0.0014
PbCl2-H
PbCl2-Ca
PbCl2-Mg
PbCl2-ClO4
PbCl2-Na
PbCl2-Cl
PbCl2-ClO4-Na
PbCl2-Cl-Na
PbCl2-ClO4-H
PbCl2-Cl-H
PbCl2-Cl-Ca
PbCl2-Cl-Mg
0.29
0.19
0.28
-0.14
0.28
-0.23
-0.014
-0.34
0.29
-0.008
-0.18
-0.32
59
Table 4.4 cont.
Parameter
PbCl3-
Coefficient
0PbCl3-H -2.22
1PbCl3-H CPbCl3-H 0PbCl3-Ca 1PbCl3-Ca CPbCl3-Ca 0PbCl3-Mg 1PbCl3-Mg CPbCl3-Mg 0PbCl3-Na 1PbCl3-Na 4.73
1.05
2.07
-2.30
-3.32
2.79
-3.48
-4.00
-0.21
0.90
CPbCl3-Na 0.029
PbCO3 ClO4‐PbCO3 -0.160
-0.020
Cl‐PbCO3 ClO4‐PbCO3 Cl‐PbCO3 0.069
-0.145
60
Table 4.5: Stoichiometric formation constants for lead chloride at 15.1 °C determined by
Luo and Millero [2007].
I(m)
log
PbCl1
log
PbCl2
log
PbCl3
0.80
1.30 1.20 1.12 1.09 1.05 1.11 1.10 1.66
[NaClO4](m)
[NaCl] (m) 0.0504
0.0504
0.0504
0.0504
0.0504
0.0504
0.0504
0.0530
0.1114
0.1730
0.4142
0.7968
1.4663
2.1867
2.9580
3.7802
4.1915
4.6534
5.5609
5.8184
0.0765
0.1340
0.1917
0.2688
0.3269
0.3851
0.4435
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.1269
0.1844
0.2421
0.3193
0.3773
0.4355
0.4939
0.3798
0.4383
0.4999
0.7411
1.1237
1.7932
2.5136
3.2849
4.1071
4.5184
4.9802
5.8878
6.1453
0.59
0.63
0.70
0.79
0.88
0.97
1.07
1.45
1.84
1.24 1.43 1.61 1.75 1.90 2.39
2.80
0.93
1.02
1.23
1.48
1.72
1.91
2.10
2.67
3.10
6.0034
0.3269
6.3303
2.30
3.29
3.60
0.73
0.68
0.65
0.63
0.64
0.64
0.63
0.62
0.62
0.60
1.05
1.05
1.04
1.03
1.03
1.11
1.17
0.96
0.97
0.88
0.99
0.98
0.87
0.89
0.91
0.89
61
Table 4.6: Corrected stoichiometric formation constants for lead chloride at 25 °C
determined by Luo and Millero [2007].
I(m)
[NaClO4](m)
[NaCl] (m) 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0472
0.0948
0.1449
0.3446
0.6523
1.1973
1.7749
2.3876
3.0384
3.7214
0.0608
0.1066
0.1524
0.2136
0.2597
0.3058
0.3521
0.3985
0.4449
0.3521
0.3521
0.3521
0.3521
0.3521
0.3521
0.3521
0.3521
0.3521
0.3521
0.0608
0.1066
0.1524
0.2136
0.2597
0.3058
0.3521
0.3985
0.4449
0.3993
0.4469
0.4970
0.6967
1.0044
1.5494
2.1270
2.7397
3.3905
4.0735
4.4393
0.3521
4.7914
log
PbCl
0.98
log
PbCl2
log
PbCl3
1.69
0.90
0.85
0.80
0.79
0.74
0.76
0.73
0.71
0.76
0.77
1.46
1.34
1.27
1.20
1.19
1.12
1.15
1.11
1.08
1.15
1.16
0.77
0.76
0.71
0.76
0.80
0.85
0.97
1.04
1.16
1.14
1.11
1.19
1.27
1.37
1.56
1.70
0.91
0.93
0.88
1.03
1.15
1.31
1.54
1.73
1.23
1.97
2.07
1.19
1.12
0.91
0.99
0.87
0.89
0.86
0.83
0.88
0.92
62
Table 4.7: Stoichiometric formation constants for lead chloride at 34.7 °C determined by
Luo and Millero [2007].
I(m)
log
PbCl
[NaClO4](m)
[NaCl] (m) 0.0541
0.0541
0.0541
0.0541
0.0541
0.0541
0.0541
0.0541
0.0541
0.0568
0.1142
0.1748
0.4168
0.7922
1.4636
2.1827
2.9526
3.7771
4.6488
5.5711
0.0765
0.1340
0.1917
0.2688
0.3269
0.3851
0.4435
0.5020
0.5802
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.1306
0.1881
0.2458
0.3230
0.3810
0.4392
0.4976
0.5561
0.6344
0.3837
0.4411
0.5017
0.7437
1.1191
1.7904
2.5096
3.2795
4.1040
4.9757
5.8980
1.00
0.94
0.91
0.89
0.87
0.88
0.88
0.87
0.82
0.87
0.85
0.82
0.78
0.78
0.87
0.92
1.01
1.06
1.51
1.51
6.0059
0.3269
6.3328
1.86
log
PbCl2
1.45
1.35
1.29
1.24
1.19
1.23
1.21
1.19
1.14
1.19
1.17
1.12
1.14
1.12
1.26
1.38
1.55
1.68
2.23
2.33
2.75
log
PbCl3
1.34
1.21
1.12
1.10
1.01
1.08
1.07
1.06
0.99
1.05
1.01
0.96
1.01
0.97
1.20
1.37
1.61
1.81
2.44
2.61
3.08
63
Table 4.8: Stoichiometric formation constants for lead chloride at 44.5 °C determined by
Luo and Millero [2007].
I(m)
log
PbCl
log
PbCl2
log
PbCl3
[NaClO4](m)
[NaCl] (m) 0.0541
0.0541
0.0541
0.0541
0.0541
0.0541
0.0541
0.0568
0.1142
0.1748
0.4168
0.7922
1.4636
2.1827
2.9526
3.7771
4.1944
4.6488
5.5711
5.8209
0.0765
0.1340
0.1917
0.2688
0.3269
0.3851
0.4435
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.3269
0.1306
0.1881
0.2458
0.3230
0.3810
0.4392
0.4976
0.3837
0.4411
0.5017
0.7437
1.1191
1.7904
2.5096
3.2795
4.1040
4.5213
4.9757
5.8980
6.1478
1.03
0.99
0.96
0.93
0.97
0.95
1.00
0.97
0.96
0.94
0.91
0.92
0.96
1.04
1.15
1.22
1.22
1.29
1.21
1.16
1.43
1.33
1.27
1.22
1.25
1.22
1.32
1.28
1.27
1.26
1.27
1.24
1.34
1.48
1.68
1.88
1.84
2.01
2.05
2.03
1.29
1.23
1.18
1.09
1.10
1.07
1.23
1.14
1.15
1.11
1.10
1.17
1.31
1.52
1.77
2.06
1.99
2.23
2.32
2.33
6.0059
0.3269
6.3328
1.16
2.06
2.38
64
The Pitzer coefficients for PbCO3 determined from the fit of the combined NaCl
and NaClO4 data are given in Table 4.3. Including a PbCO3-Na term did not improve the
fit, and is assumed to be 0 and excluded from the model. The logKPbCO3 = 6.87 ± 0.09.
This is in good agreement with value of 6.789 ± 0.022 determined by Easley and Byrne
[2011] and slightly lower than the value of 7.0 estimated by Turner et al. [1981]. Our
value and the value of Easley and Byrne [2011] are considerably larger than the value of
6.45 ± 0.72 of Powell et al. [2009], although well within their large estimated error.
These results show that our study and Easley and Byrne [2011] have considerably
improved the uncertainty in the thermodynamic formation constant of PbCO3. The
residuals for the logPbCO3 are shown in Figure 4.4. The standard deviation is 0.13.
Interference with Cl- prevented measurements above 3 m, so use of the Pitzer coefficients
above this should be done with caution.
0.4
logPbCO
3
0.3
0.2
0.1
0.0
-0.1
-0.2
0
1
2
3
4
5
6
I (m)
Figure 4.4: Difference between the measured logPbCO3 and calculated logPbCO3 as a
function of ionic strength for NaCl and NaClO4 media.
65
4.3.2 Pb(CO3)Cl- Formation
The difference in the PbCO3 formation constants in NaCl and NaClO4 can be
interpreted in two different ways. Thermodynamically, the difference is easiest to explain
by differences in the activities of the species in the two media. Another interpretation is
the formation of the mixed ligand complex Pb(CO3)Cl-. Using this second interpretation
the first direct measurements of the Pb(CO3)Cl- can be determined by comparing the PbCO3
in the two different media. This makes several controversial assumptions. It assumes that
there are no or insignificant ionic interactions of the perchlorate ion with any of the lead
species and that the activities of the species do not vary between the two media. From
this the PbCO3 values in NaClO4 determined by Easley and Byrne [2011] are assumed be
the same in NaCl media at the same ionic strength. The PbCO3 values determined here in
NaCl then include both the PbCO3 and Pb(CO3)Cl- ions. The formation constant of the
Pb(CO3)Cl- is then defined as:
Pb(CO3)Cl- = [Pb(CO3)Cl-]/([Pb2+][CO32-][Cl-])
(4.26)
The ratio of Pb(CO3)Cl- to PbCO3 is:
Pb(CO3)Cl-/PbCO3 = *PbCO3/PbCO3-1
(4.27)
Where PbCO3 is the value determined by Easley and Byrne [2011] and *PbCO3 is the
value in NaCl. The formation of the mixed ligand complex can then be calculated by:
Pb(CO3)Cl- = (*PbCO3 - PbCO3)/[Cl-]
(4.28)
These values are given in Table 4.8 along with the values estimated through statistical
methods determined using the equations of Byrne [1980]. The statistical methods appear
to under estimate the complex in dilute solutions and overestimate the complex at high
ionic strengths. This is in contrast to Byrne and Young [1982] which found that the
66
statistical methods typically under estimate the formation constants. It is important to
note that the measured values are very poorly constrained.
Table 4.9: Measured and theoretical Pb(CO3)Cl-. Theoretical constants were calculated
using the equations of Byrne [1980].
I (m) 0.0501 0.1001 0.1990 0.4017 0.4964 0.5985 0.6980 0.7024 1.0045 2.0555 3.1422 meas. Pb(CO3)Cl‐ St'd Error Theoretical Pb(CO3)Cl‐ 7.65
7.16
6.37
5.97
5.18
5.69
5.15
4.93
4.34
4.86
5.59
0.20
0.21
0.19
0.20
0.20
0.22
0.21
0.21
0.23
0.33
0.37
5.94 5.77 5.58 5.37 5.31 5.25 5.20 5.20 5.10 4.94 4.94 4.3.3 Activity Coefficients and Speciation in Seawater
Using these Pitzer coefficients, the activity and formation constants can be
calculated in a variety of media including seawater. A comparison of the activity
coefficients and stoichiometric constants for the chloride complexes in the various media
and in seawater at an ionic strength of 0.723 are given in Table 4.5. The activity
coefficient for chloride is held constant at 0.667 [Millero, 1983] so that a valid
comparison can be made. Differences in our values and those calculated by Millero and
Byrne [1984] are likely a result of the thermodynamic constants used and the method
used to fit the data. Millero and Byrne [1984] used a linear fit to determine a single Pitzer
virial coefficient (B) for each interaction rather than the extended eqns 4.15-4.17 (0, 1,
and C) that we determined. The largest differences tend to be in the neutral PbCl20
67
species. This is most likely due to Millero and Byrne [1984] neglecting all triple ion
interactions ( = 0), while we do not.
Such extensive comparisons of activity coefficients and formation constants are
not currently possible for PbCO3. Only NaCl and NaClO4 can be compared. In 0.723 m
the lnPbCO3 is -0.20 and -0.105 in NaClO4 and NaCl respectively; logPbCO3 is 5.45 and
5.48 in NaClO4 and NaCl, respectively. There are currently no measurements of PbCO3
in MgCl2 or CaCl2, so the interactions with Mg2+ and Ca2+ are currently unknown. Our
measurements in seawater (S = 35, I = 0.723) and those of Byrne and Yao [2008] give a
logPbCO3 = 5.27 ± 0.01 (Figure 4.2). The difference between NaCl and seawater is less
than 2 of our fit indicating that magnesium and calcium ion interactions are small, but
still measureable. As would be expected, the stability constants in NaCl are close to the
values in seawater, though directly measured values in seawater should be used.
The speciation of lead in seawater is shown in Table 4.6 as a function of pH on
the free scale, at a salinity of 35 (I = 0.723) and total alkalinity of 2300 mol/kg. The
[CO32-] was calculated using excel CO2Sys_v2.1 [Pierott et al., 2006], using the
constants of Millero et al. [2006]. CO2Sys is used here instead of the MIAMI model
because the seawater medium. The formation constants for the Cl- and CO32- complexes
were calculated using our Pitzer model. The formation constant for PbOH+ was
calculated according to eqn 3.11. The Pb(CO3)22- and Pb(OH)2 complexes are
insignificant (contributing a maximum of 1.5% and 0.5% respectively). The only mixed
ligand complex found to be significant was Pb(CO3)Cl-, which was estimated using the
equation of Byrne [1980].
0.435 PbCl3‐ 1.24 1.19 log PbCl2 log PbCl3 b
a
0.90 1.35 0.88 0.688 1.083 0.734 1.10 1.20 0.86 0.396 0.697 0.641 MB84 0.96 1.12 0.82 0.628 0.898 0.737 This Study NaCl Composition [Na]=0.4967 [Mg]=0.0547 [Ca]=0.0107 [Cl]=0.6275 Cl‐ = 0.667 for all media 0.92 log PbCl 0.853 PbCl2 Constant 0.747 PbCl+ This Study MB84 HCl Speciesa 0.99 1.11 0.87 0.489 0.817 0.599 MB84 0.90 1.37 1.05 0.529 0.811 0.474 This Study MgCl2 0.93 1.09 0.86 0.529 0.817 0.583 MB84 0.92 1.35 1.04 0.509 0.788 0.475 This Study CaCl2 1.06 1.16 0.86 0.428 0.745 0.628 MB84 0.83 1.08 0.80 0.698 0.910 0.671 This Study Seawaterb Table 4.10: Comparison of the activity coefficients and stoichiometric constants in various media and seawater at I=0.723 and
25°C. Values calculated by Millero and Byrne [1984] (MB84) are given for comparison.
68
69
Table 4.11: Speciation of lead as a percent in seawater at 25°C and S=35 (I=0.723), total
alkalinity = 2300 mol/kg. pH is on the free scale.
pH Pb2+ PbCO3 PbCl+ PbCl2 PbCl3- PbOH+a Pb(CO3)Cl8.1 3.3 50.8
11.9
12.8
4.1
2.3
13.2 8 3.8 47.8
13.5
14.6
4.6
2.1
12.4 7.9 4.2 44.4
15.3
16.4
5.2
1.9
11.5 7.8 4.8 40.8
17.2
18.5
5.9
1.7
10.6 7.7 5.3 36.9
19.1
20.5
6.5
1.5
9.6 7.6 5.8 33.0
21.1
22.7
7.2
1.3
8.6 7.5 6.4 29.1
23.0
24.7
7.9
1.1
7.6 7.4 6.9 25.3
24.9
26.7
8.5
1.0
6.6 a
Calculated using eqn. 3.11 There is general agreement between this model and those of Millero et al. (2009)
and Easley and Byrne (2011), although some differences do exist. The differences with
Millero et al. [2009] can be attributed to the larger constants for the chloride complexes
used here and the inclusion of Pb(CO3)Cl- in this model. The differences with the
speciation of Easley and Byrne [2011] are a result of the exclusion of other mixed ligand
complexes in this model; differences in the constants used are close to the uncertainty of
the measurements.
4.4 Conclusion
Lead is an environmentally important element because of its known toxicity to
organisms. The behavior of lead in the environment, including bioavailability, is
dependent upon its speciation, but determination of lead speciation is difficult due to its
low solubility in natural waters. An accurate knowledge of formation constants under a
70
wide variety of conditions and in a variety of media is required to fully model speciation
in natural waters. Lead chloride speciation has been extensively measured, but lead
carbonate measurements are few, leaving values of formation constants uncertain. We
use a Pitzer model to combine the best available published formation constants and new
measurements of PbCO3 in NaCl to model lead speciation in natural waters. This model
allows lead speciation and activity coefficients to be calculated for a wide variety of
media relevant to natural waters. It also helps to further constrain the thermodynamic
formation constant of PbCO3. Calculations of lead speciation in seawater show a general
agreement with previously published estimates. This also represents the first direct
measurements of the Pb(CO3)Cl- constants.
Chapter 5:
The Solubility of Fish-produced High Magnesium
Calcite in Seawater5
5.1 Background
The oceans play a major role in the earth’s carbon cycle [Millero, 2007]. In order
to determine the full impact of humans on the carbon cycle, it is important to fully
understand the natural cycle. Until recently, it was thought that marine biogenic
production of calcium carbonate was dominated by coccolithophores and foraminifera
[Feely et al., 2004].
However, Wilson et al. [2009] showed that teleost fish also
contribute to carbonate production by up to 15% or higher of the global carbonate
production. These bony fish continually produce a high magnesium calcite (defined as >
4% Mg) as a byproduct of osmoregulation [Grosell, 2011]. The solubility plays an
important role in determining the behavior of CaCO3 in seawater. The dissolution of high
magnesium calcite occurs according to the following reaction:
Ca(1-x)MgxCO3 = (1- x)Ca2+ + xMg2+ + CO32-
(5.1)
where x is the mole fraction of Mg2+. The stoichiometric solubility product constant
(pK*sp) is defined as:
pK*sp = - Log ([Ca2+](1-x) [Mg2+]x [CO32-])
5
(5.2)
This chapter was previously published as: Woosley, R. J., F. J. Millero, and M. Grosell (2012), The
solubility of fish-produced high magnesium calcite in seawater, J. Geophys. Res., 117, C04018,
doi:10.1029/2011JC007599.
71
72
Where brackets denote concentration (mol/kg-sw). By definition, the activity of pure
solid CaCO3 is taken as 1 and is thus left out of eqn. 5.2. We assume that the activity of
the mixed solid is also 1 for comparison with aragonite, although the increased solubility
could be related to variations in the activity of the mixed solid. The saturation state, 
is:
i = [Ca2+](1-x)[Mg2+]x [CO32-] / K*sp
(5.3)
The subscript i refers to the crystalline form (aragonite, calcite, or fish-produced
magnesium calcite). For pure aragonite or calcite eqn. 5.3 simplifies to:
i = [Ca2+][CO32-]/K*sp
(5.4)
Thorstenson and Plummer [1977] showed that this equation can also be applied to high
magnesium calcites. The depth at which i = 1 is the saturation horizon for that
crystalline form. Surface waters are supersaturated ( > 1) with respect to calcite and
aragonite. Saturation state decreases with depth as a result of the effects of pH,
temperature and pressure. As biogenic calcium carbonate particles fall through the water
column they should begin to dissolve below the depth at which  = 1. Since biogenic
high Mg calcites with Mg greater than about 10 mol % are known to be more soluble
than aragonite [Morse and Mackenzie, 1990; Morse et al., 2007; Morse et al., 2003], this
fish-produced CaCO3 was hypothesized to dissolve higher in the water column than other
biogenic carbonates and thus play an active role in the carbon cycle in near surface
waters [Plummer and Mackenzie, 1974; Bishoff et al., 1987; Wilson et al., 2009]. It has
long been held that since the surface ocean is supersaturated with respect to both calcite
and aragonite, carbonate dissolution can only occur at great depth [Sverdrup et al,. 1941;
Broecker, 1977]. However, there are several lines of evidence that suggest that 50-71% of
73
calcium carbonates exported from the surface is dissolved above the aragonite saturation
horizon [Feely et al,. 2002; Milliman et al., 1999; Milliman and Droxler, 1996]. The
dissolution of a more soluble form of CaCO3 has been proposed as a possible explanation
[Byrne et al., 1984], but no probable source was identified until recently [Wilson et al.
2009]. Shoal water containing biogenic high magnesium calcites (a portion of which is
likely fish-produced) can contribute as a source and may be significant locally; this is
reviewed in chapter 5 of Morse and Mackenzie [1990]. A higher solubility of fishproduced CaCO3 would mean that surface waters would become under-saturated sooner
and would respond quicker to ocean acidification than currently expected based on
aragonite solubility. This was demonstrated for high magnesium calcites by Morse et al.
[2006]. To test the above hypothesis and to better understand the role of fish in the
carbon cycle, we have determined the solubility of carbonates produced by the gulf
toadfish (Opsanus beta).
5.2 Methods
The carbonates were collected directly from the fish intestines following
euthanasia and dissection as detailed previously [Taylor and Grosell, 2006] or from the
bottom of the fish tanks (SP = 34, 25°C) after the precipitates have been excreted by the
fish. In the latter case, precipitates were collected, using disposable Pasteur pipettes, from
the bottom of the holding tanks. The fish were not fed for at least 72 hours prior to
collection in order to ensure only carbonates were collected. Following collection, the
carbonates were rinsed to remove any organic coatings with milli-Q, or cleaned with 3
sequential treatments of excess sodium hypochlorite (commercial bleach) for ~3 hours
(agitated every 10-15 min.), the hypochlorite is then siphoned off after particles have
74
settled by gravity [Gaffey and Bronniman 1993] and finally rinsed 3 times with milli-Q
water, to eliminate any microbes that could potentially create microenvironments and
influence solubility. After cleaning, the precipitates were filtered through 0.45 m filter
and dried. The magnesium and calcium content of the precipitates was determined after
acid digestion by flame atomic adsorption spectrometry [Heuer et al., 2012]. In brief,
precipitates were sonicated using a rod sonicator in 10 ml deionized water, after which
pH was lowered to 4.00 by addition of HCl under continuous gassing with N2. HCl was
added continuously until pH remained stable at 4.00 after which the resulting solution
was recovered for analysis of Ca2+ and Mg2+ using certified elemental standards.
The solubility of the fish-produced high magnesium calcite was determined using
the method developed by Garrels et al. [1960] and first applied to high magnesium
calcites by Chave et al., [1962] then later by Plummer and Mackenzie [1974], Bischoff et
al [1987] and Busenberg and Plummer [1989]. Three main disadvantages of this method
should be pointed out. The first is that we assume the solids have a fixed composition and
only one component, whereas the solids are actually a series of at least two components.
Second, the magnesium calcite phases dissolve incongruently causing the composition of
the solid to change as the reaction proceeds. Third, the solubilities are relative since the
reaction is not reversible. Extrapolation to infinite time helps to overcome the second and
third problem. The problems are discussed in greater detail in Morse and Mackenzie
[1990] and references therein. The measurements were made in a closed cell
thermostated to 25°C with a Neslab temperature bath using Gulf Stream seawater
(Practical Salinity, SP ≈ 36.5) equilibrated with the lab atmosphere. The seawater was
filtered through 0.45 m Pall Science Supor® filter before use and again after
75
equilibration to remove any undissolved particles. The pH (on the seawater scale) was
monitored as a function of time (t) during the dissolution of fish-produced CaCO3. The
pH was determined with a Orion pH meter using Ross glass and Ag,AgCl reference
electrodes and recorded every half hour for the duration of the experiment. Measured
pH’s were plotted as a function of the inverse of the square root of time (t
-0.5
) and a
linear equation was fitted to the linear portion. The pH extrapolated to t -0.5 = 0 equals the
equilibrium pH. The experiment was stopped when the measured pH was within 0.1
units of the extrapolated (metastable-equilibrium) pH. The extrapolation assumes that the
reaction order is the same as for calcite and aragonite. This analysis takes ~15 days for
aragonite and up to 40 days for fish-produced carbonates, depending on the amount of
solid used and their surface area.
The electrodes were calibrated with TRIS seawater
buffers before and after each experiment to account for any drift, which was found to be
less than 0.006 pH units over 40 days. The difference between the initial and final total
alkalinity (TA) was used to determine the amount of carbonate solid dissolved. The initial
and final total alkalinity was measured by potentiometric titration with a ~0.25m HCl
solution in an open cell at 25oC [Millero et al., 1993]. The HCl was calibrated using A.
Dickson CO2 standards (Scripps, San Diego, CA). The precision was 2 mol kg-1. The
changes in TA and equilibrium pH were used to determine the mineral solubility product.
The CO2sys program of Pierrot et al. [2006] was used to calculate the [CO32-] from pH
and TA using the CO2 constants of Millero et. al., [2006]. The initial Ca2+ concentration
was determined from the Practical Salinity (SP) using the ratio of Ca2+ to SP ([Ca2+] =
2.934 x 10-4 * SP). The Practical Salinity was measured with a Guiline Portosal
salinometer calibrated with standard seawater. The final Ca2+ concentration for the pure
76
aragonite and calcite can be determined from changes in TA and were found to change
the pK*sp by less than 0.003. This is insignificant compared to the precision of the
method, and would be even less for the mixed solids. The reliability of the solubility
methods were demonstrated by measuring the solubility of aragonite and calcite (both
from Alfa Aesar) which are well known [Mucci, 1983, Morse et al., 1980]. Aragonite is
shown in Figure 5.1.
pH
8.2
8.0
7.8
pK*sp = 6.10
7.6
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
t-0.5
Figure 5.1: Aragonite solubility measurement in seawater.
5.3 Results
An example measurement of the aragonite solubility is shown in Figure 5.1.
These measurements yield a value of pK*sp = 6.17 ± 0.2 (n = 3), which is in good
agreement with the value determined by Morse et al. [1980] for equilibration times in
77
excess of 2 months (pK*sp = 6.18). The single run of the calcite equilibration experiment
yielded a value of pK*sp = 6.40, which is in excellent agreement with the result of Morse
et al., [1980] (pK*sp = 6.35). The standard deviation for aragonite of 0.2 is assumed to be
the precision of the method.
Five solubility measurements of the fish-produced calcium carbonate were made.
The precipitates were crystalline with elipsoidal morphology similar to those of other
marine telosts classified by Perry et al. [2011]. A Scanning Electron Microscope (SEM)
picture of the precipitates produced by a gulf toadfish is shown in Figure 5.2. Powder Xray diffraction spectra (XRD) and (SEM) pictures of precipitates produced by another
marine teleost, the European flounder, are given in the supplemental material of Wilson et
al. [2009]. Perry et al. [2011] give XRD and Energy-dispersion X-Ray (EDX) of 11
different fish species in their supplemental material confirming that it is a high
magnesium calcite with a maximum of 48.9 mol%. The magnesium content of the
toadfish precipitates analyzed in the present study was found to be 47.9 mol % ± 0.7 (n =
8) [Heuer et al., 2012].
Figure 3 of Perry et al. [2011] shows that fish-produced
carbonates with ellipsoidal morphology, similar to the gulf toadfish, had a high Mg
content of greater than 40 mol%. Although the high magnesium content approaches,
compositionally, that of a protodolomite, the conditions of the experiments are
unfavorable for dolomite formation, and the high solubility of our results exclude this
possibility (a review of dolomite formation can be found in Morse and Mackenzie
[1990]). Results are shown in Table 5.1. The average pK*sp for the fish-produced
carbonate is 5.56 ± 0.09. This is 4.17 times more soluble that aragonite (pK*sp = 6.18).
An example run of the fish carbonate is shown in Figure 5.3. There does not appear to
78
be a difference in solubility between samples collected from the tank and those collected
directly from the intestine, based on a student t-test at a 99% confidence interval. To
examine if bacteria on or within the carbonates influences solubility by the creation of
microenvironments, two experiments were done with precipitates cleaned using the
methods of Gaffey and Bronniman [1993]. The difference between values obtained from
cleaned and un-cleaned precipitates was not statistically significant at the 99%
confidence interval, as determined by a student t-test, ruling out a role of bacteria in the
high solubility of fish-produced CaCO3. It should be noted that a clear inflection occurs
in the pH versus t-0.5 graph for the fish carbonates which does not occur for either
aragonite or calcite. The cause of the observed inflection for the fish-produced carbonates
(Fig 5.3) can only be speculated at this time, but it may be due to changes in the Mg2+
content as the crystals dissolve. Plummer and Mackenzie [1974] showed that during the
dissolution of high magnesium calcites there is a stage where the magnesium and calcium
dissolve incongruently causing changes in the magnesium content of the crystals over
time. Determining the cause is beyond the scope of this current work. However, these
observations may indicate more complexity of the fish-produced CaCO3 precipitates and
illustrates difficulties in determining their solubility as discussed in the methods (section
5.2) concerning the problems associated with this method. Perry et al. [2011] showed
that different species produce carbonates with highly varied morphologies and Mg2+
content. Dissolution rates are highly dependent upon surface area [Morse et al., 2007].
This implies that solubilities and rates of dissolution may vary by fish species and/or
environmental factors and clearly additional work is needed.
79
Figure 5.2: Scanning Electron Microscope picture of precipitates produced by the gulf
toadfish (Opsanus beta).
Table 5.1: Equilibrium [CO32-], [Ca2+], [Mg2+], and pK*sp for individual fish-produced
solubility experiments.
Run Collection* [CO32‐]mol/kg [Ca2+]mol/kg [Mg2+]mol/kg pK*sp 1 2 3 4 T T I I, C 106 114 131 89 0.0111 0.0126 0.0123 0.0112 0.0574 0.0586 0.0570 0.0540 5.58 5.52 5.47 5.67 5
I,C
145
0.0110
0.0560
5.46
Mean = 5.56 ± 0.09
*T indicates precipitates were collected from the tank in which the fish were held.
I indicates precipitates were collected directly from the fish intestines.
C indicates precipitates were cleaned by methods of Gaffey and Bronniman [1993]
80
pH
8.2
8.0
7.8
pK*sp = 5.47
7.6
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
-0.5
t
Figure 5.3: Fish-produced carbonate solubility measurement in seawater.
5.4 Discussion and Conclusion
The solubility of the fish carbonates was, on average, 4.17 times greater than
aragonite, and as much as 5.13 times that of aragonite. This has strong implications for
the marine carbonate system. These more soluble carbonates will begin to dissolve much
higher in the water column than other biogenic carbonates. Sediment trap data have
shown that 50-71% of calcium carbonate produced in surface waters dissolves in the
upper ocean [Feely et al., 2004] well above the saturation horizon of aragonite (the less
stable polymorph of the more commonly recognized carbonate polymorphs) where,
thermodynamically, dissolution should begin. Dissolution above the saturation horizon is
also supported by total alkalinity profiles (Figure 1.7) which show an increase in
81
normalized total alkalinity (NTA) above the aragonite saturation horizon [Feely et al.,
2004]. Many different explanations have been proposed: dissolution in the guts of
zooplankton [Langer et al., 2007], dissolution in microenvironments formed by bacterial
oxidation of organic matter [Jansen et al., 2002] and dissolution of more soluble forms of
CaCO3 such as pteropods or high magnesium calcite [Byrne et al., 1984]. Dissolution in
guts of zooplankton or microenvironments was shown to be limited [Langer et al., 2007;
Jansen et al., 2002], but a source of more soluble CaCO3 has been lacking. Our results
show that fish-produced calcium carbonates are likely a major source of the more soluble
CaCO3 that Byrne et al. [1984] originally proposed. This is illustrated in Figure 5.4
which shows plots of TA normalized to a salinity of 35 from the North Pacific, North
Atlantic and Southern Ocean along with the saturation horizons for both aragonite and
fish-produced CaCO3 (i = 1). The ’s were calculated using the CO2sys program
[Pierrot et al., 2006] using the CO2 constants of Millero et al., [2006] from pH and TA at
in situ conditions. The saturation horizon for the fish-produced high magnesium calcite is
nearly coincident with the depth at which the NTA starts to increase. In some polar
regions, such as the Southern Ocean, surface waters are already under-saturated with
respect to fish-produced high magnesium calcite. The surface NTA in the Southern
Ocean is also higher than in the North Atlantic and North Pacific. This further supports
the hypothesis that the fish-produced material is dissolving in the upper ocean causing the
increase in normalized total alkalinity. The present study represents the first
measurements of fish-produced CaCO3 solubility and provides further support to the
hypothesis (Wilson et al. [2009]) that a more soluble form of CaCO3 produced by teleost
fish is a likely contributor to carbonate dissolution above the aragonite saturation horizon.
3000
2500
2000
1500
1000
500
2250
0
2300
2350
NTA (mol kg )
-1
2300
Aragonite Saturation
Fish CaCO3 Saturation
2400 2200
2400
NTA (mol kg )
-1
North Pacific
2500 2350
2360
2370
NTA (mol kg-1)
2380
Southern Ocean
Figure 5.4: Depth profile of the normalized total alkalinity of seawater for the North Atlantic (30°N and 23°E) North Pacific
(31°N and 151°W) and Southern Ocean (67°S and 151°W) showing the saturation horizons for aragonite (solid line) and fishproduced (dashed line) calcium carbonates. (Data taken from CLIVAR P16N, A16N, and S4P, http://cdiac.ornl.gov/
oceans/RepeatSections/). No dashed line is given for the Southern Ocean station since the surface waters are under-saturated
with respect to fish-produced calcium carbonate.
Depth (db)
North Atlantic
82
Chapter 6:
Effect of Composition on the Density of Seawater
6.1 Background6
Minor and trace components of seawater are highly variable. Changes in the
composition of seawater, in both oceanic and estuarial waters, result in variations of the
conductance-density relationship [Brewer and Bradshaw, 1975; Conners and Weyl,
1968]. This has implications for neutral density surfaces and ocean circulation. The
limitations of the Practical Salinity Scale [UNESCO, 1981a,b] for estuarine systems
[Parsons, 1982; Sharp and Culberson, 1982; Gieskes, 1982; Millero, 1984] were
thoroughly discussed in earlier publications. The limitations of the conductivity method
to determine the salinity or density of seawater have been examined by several workers
[Brewer and Bradshaw, 1975; Millero et al., 1976 a,b,c, 1978a; Millero and Kremling,
1976; Poisson et al., 1980,1981; Millero, 2000]. Studies to examine the limitations of the
International Equation of State of Seawater [Millero and Poisson, 1981] have also been
discussed [Millero, 1975, 1978, 2000; Millero et al., 1976a, b, c, d; Millero and
Kremling, 1976; Poisson et al., 1980]. Brewer and Bradshaw [1975] were the first to
6
The background and experimental methods of this chapter is a combination of 3 previously published
papers:
Millero, F. J., J. Waters, R. Woosley, F. Huang, and M. Chanson (2008), The effect of composition on the
density of Indian Ocean waters, Deep-Sea Res. I, 55, 460-470, DOI:10.1016/j.dsr.2008.01.006.
Millero, F. J., F. Huang, N. Williams, J. Waters, and R. Woosley (2009), The effect of composition on the
density of South Pacific Ocean waters, Mar. Chem., 114, 56-62. DOI:10.1016/j.marchm.2009.04.001.
Millero, F. J., F. Huang, R. J. Woosley, R. T. Letscher, and D. A. Hansell (2011), Effect of dissolved
organic carbon and alkalinity on the density of Arctic Ocean waters, Aqat. Geochem., 17, 311-326.
DOI: 10.1007/s10498-010-9111-2.
83
84
estimate the relationship between changes in the calculated density or sigma-T and
changes in the composition of ocean water. Their estimates show changes in salinity of
0.015 could result in changes in σT of 0.012 due to changes in the composition of
seawater due to the oxidation of plant material. Poisson et al. [1979] estimated these
changes in conductance and density via partial molar conductance and volume changes
for the addition of salts to seawater. Brewer and Bradshaw [1975] suggested that the
excess density, Δρ = ρ(meas) – ρ(calc), could be estimated by
Δρ = 5.37 x 10-4 ΔNTA – 9.6 x 10-5 ΔNTCO2 + 4.2 x 10-5 ΔSiO2
(6.1)
All density values are given in units of kg m-3 unless otherwise stated. Where ΔNTA,
ΔNTCO2 and ΔSi(OH)4 are, respectively, the differences in normalized total alkalinity,
normalized total carbon dioxide and silica (mol kg-1) relative to the estimated values
[Millero et al., 2008] for the surface seawater used to determine the equation of state of
seawater (NTA = 2332 x 35/S and NTCO2 = 2226 x 35/S mol kg-1 where Sp is the
practical (conductivity) salinity). This normalization factor is necessary as TA and TCO2
contribute to salinity as major constituents (HCO3- and CO32). Millero et al. [1976c]
modified this equation by using a more reliable partial molar volume for Si(OH)4 and
considering the effect of added NO3- as HNO3. They obtained
Δρ = 5.37 x 10-4 ΔNTA – 9.6 x 10-5 ΔNTCO2 + 4.5x10-5 ΔSi(OH)4
+ 24 ΔNO3
(6.2)
This theoretical equation was checked by Millero et al. [1976b] by measuring the
density and conductivity of samples of seawater collected during the GEOSECS cruises.
All measurements were made relative to Gulf Stream seawater. They reported that the
excess densities in deep waters were 0.005 ± 0.0015 kg m-3 in the North Atlantic and
85
0.016 ± 0.0036 kg m-3 in the North Pacific. The differences between the measured and
calculated excess densities using eqn. 6.2 were found to be ± 0.0027 kg m-3 in the North
Atlantic and ± 0.004 kg m-3 in the North Pacific.
Millero et al. [1978] made density measurements on 124 samples collected in the
North Pacific along 35° N. The excess densities were 0.0038 ± 0.0030 kg m-3 from 0 490 m, 0.0125 ± 0.0042 kg m-3 from 490 - 1000 m, and 0.0176 ± 0.0026 kg m-3 from
1000-5834 m. The maximum excess density found was 0.021 kg m-3. The values of the
excess density calculated from eqn 6.2 agree with the measured value over the entire
depth range to 0.0052 kg m-3.
Since the densities of rivers, lakes and estuaries have densities that are similar to
seawater at the same absolute salinity (SA), Millero et al. [1978] have examined the
changes in the densities in the North Pacific due to changes in salinity. The absolute
salinity is defined by
SA = Sp + ΔSA = Sp + Σ Mi Δni
(6.3)
where Sp is the Practical salinity and Mi is the molecular weight and Δni is the change in
moles of added nutrients and carbonates SA is the change in salinity as a result of the
added constituents. It should be pointed out that this equation assumes that the practical
salinity is not affected by small changes in the composition. The change in the salinity
due to the addition of CaCO3, Si(OH)4 and HNO3 (mol kg-1) can be estimated by
[Millero et al., 1978]:
ΔS = 50 x 10-6 ΔNTA + 64 x 10-6 ΔSiO2 + 63 x 10-6 ΔNO3
+ 82 x 10-6 H3PO4
(6.4)
86
Silica in this equation has been modified from Millero et al., [1978] converting Si(OH)4
to SiO2 since Si entering the oceans is SiO2(s) not Si(OH)4 as used in the earlier studies.
This assumption is valid as long as the amounts of added salts are small and the partial
molar volume of the salt is similar to sea salt. Since the changes in density are a linear
function of salinity near S = 35 (Δρ = 0.757 kg m-3∆S), this leads to the equation [Millero
et al., 1978]
Δρ = 3.79 x 10-5 ΔNTA + 4.84 x 10-5ΔSiO2 + 4.77 x 10-5ΔNO3
+ 6.2 x 10-5 PO4
(6.5)
The measured excess densities in the Pacific agreed with those calculated from eqn 6.5
on the average of ± 0.043 kg m-3.
This chapter will present new measurements of conductivity and density from a
wide range of locations throughout the world’s oceans collected on various CLIVAR and
other cruises of opportunity.
These measurements expand the excess density
measurements into all major oceans. The combination of these measurements with those
made in the North Pacific [Millero et al., 1978] provide equations that can be used to
examine the effect of nutrients and carbonates on the density of world ocean waters. The
potential influence of dissolved organic carbon (DOC) will also be discussed.
6.2 Experimental Methods
The samples were collected in 500 cm3 glass bottles similar to those used to
collect TA samples or 150 ml HDPE bottles. The HDPE bottle caps were wrapped with
parafilm™ to prevent gas exchange. The Practical Salinities were measured with an
Autosal salinometer calibrated with standard seawater. The densities were measured on
the Anton Paar 500 densimeter at 25oC. The measurements on standard seawater were
87
reproducible to 1 ± 0.003 kg m-3. All of the measurement were made relative to the
density of pure water which is based on the equations of Kell [1975] adjusted to the 1990
temperature scale [Spieweck and Bettin, 1992]. Since the density of water in the original
equation of state of seawater are based on the less reliable water equations of Bigg
[1967], the equation of state of seawater [Millero and Poisson, 1981] was used to
determine the differences in the density of seawater and pure water (ρ – ρ0).
The measurements on standard seawater of known Practical Salinity yielded
densities at 25oC that agreed with the equation of state to ± 3 x 10-6 kg m-3. To examine
the effect of the composition of the major components of seawater, densities were made
on artificial seawater of known composition. The composition of the artificial seawater is
based on the recent analysis of Millero et al. [2008]. The Practical Salinity of this sample
was 34.698 and had a measured relative density (ρ – ρ0) = 23.113 kg m-3. This relative
density (23.112) was in good agreement with the value calculated from the equation of
state. These results indicate that the salinity/density relationship for seawater may not be
affected by the dissolved organic carbon in surface waters (~65 μM). Over 1700
measurements have been made. A comprehensive table of the results appears in the
appendix table A.1.
The DOC analysis for Arctic samples from cruise ARKXXXIII/3 were filtered
inline between the Niskin bottles and 60-ml HDPE bottles and then stored frozen until
analysis in the laboratory. DOC measurements were taken by high-temperature
combustion using the methods of Farmer and Hansell [2007], with a precision of 2 mol
kg-1. DOC in standard seawater collected in the North Atlantic was 57.2 ± 2 mol kg-1.
The TA measurements for this cruise were measured in the laboratory, and not at sea as
88
with the CLIVAR cruises, but all were done using methods developed by Millero et al.,
[1993]. The titration system was calibrated using seawater of known TA (provided by Dr.
Andrew G. Dickson, UCSD-SIO-Marine Physical Laboratory, San Diego, CA), and had a
precision of ± 2 mol kg-1. The surface layer data considered on this cruise exhibited
little dilution by sea ice melt, as assessed by 18O measurements and as reported by
Letscher et al. [2011].
6.3 Indian Ocean7
The Indian Ocean data was collected on CLIVAR cruise I9 in 2007. The values of
Δρ, as a function of depth, shown in Figure 6.1, appear to be a smooth function of depth
with an uncertainty of ~0.005 kg m-3 in the excess density as judged by a linear fit. Part
of the scatter is related to changes in the composition of seawater not being directly
related to depth. Millero [2000] suggested that the excess densities should be
Δρ = a + b ΔNTA + c ΔSiO2 + d ΔNO3
(6.6)
This equation can be generalized for each component by:
 = a + b [i]
(6.7)
Where [i] is the concentration of the added constituent. The experimental values of
ΔNTA, ΔTCO2, ΔSiO2, and ΔNO3, as a function of depth shown in Figure 6.2, are quite
similar to the excess densities (Δρ). The values of Δρ, as a function of ΔNTA, ΔTCO2,
ΔSiO2, and ΔNO3, are shown in Figure 6.3. The values of the slopes and intercepts are
given by (N = 124):
7
This section was previously published as: Millero, F. J., J. Waters, R. Woosley, F. Huang, and M.
Chanson (2008), The effect of composition on the density of Indian Ocean waters, Deep-Sea Res. I, 55,
460-470, DOI:10.1016/j.dsr.2008.01.006. The equations and figures have been modified in order to have
consistent units through the chapter.
89
Δρ = 1.04 x 10-3 + 8.4 x 10-5ΔNTA
(σ = 0.0041 kg m-3)
(6.8a)
Δρ = 9.0 x 10-4 + 2.7 x 10-5ΔNTCO2
(σ = 0.0048 kg m-3)
(6.8b)
Δρ = -6.0 x 10-4 + 8.9 x 10-5ΔSiO2
(σ = 0.0041 kg m-3)
(6.8c)
Δρ = 4.7 x 10-4 + 2.41 x 10-4ΔNO3
(σ = 0.0053 kg m-3)
(6.8d)
kg m-3)
-0.01
0
0.00
0.01
0.02
Depth (m)
2000
4000
6000
Figure 6.1: The measured  for the Indian Ocean (28° S - 18° N) as a function of depth
(m). The solid line is a linear fit and has a  = 0.041 kg m-3.
90
The linear correlations with ΔNTA and ΔSi(OH)4 are slightly better than with ΔNTCO2
and ΔNO3. The intercept is close to zero except for TA and TCO2, which is due to the
difference in the surface values. The excess densities as a function of ΔNTA, ΔSi(OH)4
and ΔNO3 (eqn 6.6) were also examined. The values of a and c were not needed and the
value of b = 8.9 x 10-5 gave calculated values of the excess density that had a standard
error of 0.0041 kg m-3. This indicates that only changes in Si(OH)4 are needed to
estimate the excess density of seawater. The individual slopes are larger than the
theoretical values because they include changes due to all the constituents in the solution.
The experimentally derived equations for waters in the Indian and Pacific oceans
can be used to estimate the changes in density of deep waters due to the oxidation of
plant material. Density changes for estuarine waters may be different due to influences
from terrestrial inputs [Poisson et al., 1980, 1981; Millero, 1984]. Changes in density for
both the North Pacific [Millero, 2000] and the Indian Ocean can be accurately estimated
using the total salinity equation, eqn 6.3, and using SA in the equation of state within an
error of 0.0041 kg m-3 for the combined North Pacific and Indian Ocean data. Empirical
equations of measured excess densities in the North Pacific and Indian Ocean, as a
function of changes in TA, SiO2 and NO3, indicate that changes in SiO2 are only needed
to represent the results (4.1 x 10-6 g cm3). Estimates of excess density from the equation
of state using an input of SA also give estimates that are a good as correlations of changes
in SiO2.
91
NTA (mol/kg)
0
0
20
40
60
80
NTCO2 (mol/kg)
100
120
140
0
100
4000
6000
30
40
 (mol/kg)
0
20
40
60
80
100
120
140
0
0
10
20
2000
Depth (m)
Depth (m)
6000
400
6000
2000
4000
300
4000
SiO2 (mol/kg)
0
200
2000
Depth (m)
Depth (m)
2000
0
4000
6000
Figure 6.2: Profiles of the changes in normalized total alkalinity (NTA), normalized
total carbon (NTCO2), silicate (Si(OH)4), and nitrate (NO3) for the Indian Ocean
stations.
92
NTA
0
100
150
200
0.015
0.015
0.010
0.010

0.020
0.005
0.000
-0.005
-0.005
-0.010
-0.010
SiO2
20
40
60
80 100 120 140 160
0.025
0.020
0.020
0.015
0.015
0.010
0.010
0.005
100
200
300
400
500
0.005
0.000
0
0
0.025
0.020
0.025

50


0.025
NTCO2
NO3
0
10
20
30
40
0.005
0.000
0.000
-0.005
-0.005
-0.010
-0.010
Figure 6.3: The excess density due to changes in normalized total alkalinity (NTA),
normalized total carbon (NTCO2), silicate (SiO2), and nitrate (NO3) for the Indian
Ocean
93
6.4 South Pacific8
The samples in this section were collected on CLIVAR cruise P18 in 2007/2008.
The measured values of Δρ along with accompanying metadata and nutrient data are
given in Table A.1. The values of Δρ as a function of depth (db) are show in Figure 6.4.
The surface values show a scatter of ± 0.005 kg m-3 and the deep waters have an average
of ~0.011 kg m-3. Part of the scatter is related to changes in the composition of seawater
not being directly related to depth. The values of Δρ as a function of SiO2, NO3, PO4 and
ΔNTA (μmol kg-1) are shown as a function of Δρ in Figure 6.5. The results have been
fitted to eqn 6.7.
The values of a and b from eqn 6.7 are given in Table 6.1 along with the standard
error of the fits. The intercepts are close to zero except for NO3 and PO4. As shown in
earlier studies (section 6.3) the results as a function of Si(OH)4 or ΔNTA give the best fit.
Since the values of Si(OH)4 are more readily available, the equation for silicate is
suggested as the best to use for the South Pacific
Δρ = -0.0027 + 7.66 x 10-5 ΔSiO2
(1σ = 0.0027 kg m-3)
(6.9)
The excess densities calculated at the absolute salinity using eqn 6.4 were also
examined. This is shown, along with Indian Ocean data from Section 6.3 in Figure 6.6.
The differences between the measured and calculated values using this equation yielded
standard error in the differences of ±0.0041 kg m-3.
8
This section was previously published as: Millero, F. J., F. Huang, N. Williams, J. Waters, and R.
Woosley (2009), The effect of composition on the density of South Pacific Ocean waters, Mar. Chem., 114,
56-62. DOI:10.1016/j.marchm.2009.04.001.
94
-3
kg m )
-0.010 -0.005
0
0.000
0.005
0.010
0.015
0.020
DEPTH (m)
1000
2000
3000
4000
5000
Figure 6.4: Measured  for the South Pacific (28° S-18° N) from CLIVAR cruise P18,
as a function of depth.
0.020
0.020
0.015
0.015
0.010
0.010
 (kg m-3)
 (kg m-3)
95
0.005
0.005
0.000
0.000
-0.005
-0.005
-0.010
0
20
40
60
80
-0.010
100 120 140 160 180
0
10
-1
0.015
0.015
0.010
0.010
 (kg m-3)
 (kg m-3)
0.020
0.005
0.000
-0.005
-0.005
-0.010
100
50
0.005
0.000
50
40
-1
NO3 (mol kg )
0.020
0
30
-
SiO2 (mol kg )
-0.010
20
150
200
0
1
2
3
PO43- (mol kg-1)
NTA( mol kg-1)
Figure 6.5: Measured  for samples collected on CLIVAR cruise P18 as a function of
SiO2, NO3-, NTA, and PO43-, all in mol kg-1.
Table 6.1: Values of a and b from eqn. 6.7 for CLIVAR P18 samples.
Parameter Intercept
Si(OH)4
NO3
PO4
NTA
-0.0025
-0.0049
-0.0049
-0.0027
Slope
Number
Stdev
0.000077
0.000277
0.003804
0.000093
331
331
331
320
0.0025
0.0037
0.0039
0.0027
96
0.04
 = 0.0041 kg m-3
0.03
(g kg-1)
0.02
A
0.01

S
0.00
-0.01
-0.02
North Pacific
Indian Ocean
South Pacific
0
50
100
150
200
-1
SiO2 (mol kg )
Figure 6.6: The values of SA determined from density measurements plotted as a
function on SiO2.
6.5 Arctic Ocean9
Another potential contributor to excess density that has not been determined in
detail is dissolved organic carbon (DOC). Salinity (SP), TA, DOC and excess density (Δρ
= ρMeas - ρCalc) were determined for all the Arctic seawaters collected aboard the German
icebreaker FS Polarstern during cruise ARKXXIII/3 (Aug. 12 to Oct. 17, 2008) and
returned to the laboratory. The hydrographic data and the laboratory measurements as a
function of location and depth are tabulated in Table A.1. NTA results are shown as a
9
This section was previously published as: Millero, F. J., F. Huang, R. J. Woosley, R. T. Letscher, and D.
A. Hansell (2011), Effect of dissolved organic carbon and alkalinity on the density of Arctic Ocean waters,
Aqat. Geochem., 17, 311-326. DOI: 10.1007/s10498-010-9111-2.
97
function of depth in Figure 6.7. All of the deep waters have NTA of 2305 ± 6 μmol kg-1,
similar to the values for Standard Seawater of 2306 ± 3 μmol kg-1 collected in the North
Atlantic. The surface values increase to concentrations as high as 2650 μmol kg-1.
Dissolved organic carbon (DOC) concentrations are shown as a function of depth in
Figure 6.8. The deep waters below 150 m have values between 44 (the deep Arctic basin
waters) and 51 μM (the Atlantic water layer), which are lower by 6 to 13 μmol kg-1 than
the values in North Atlantic Standard Seawater (57.2 ± 2 μmol kg-1). The surface water
concentrations of DOC are as high as 130 μmol kg-1, much higher than surface waters in
the other oceans (commonly <80 μmol kg-1; Hansell et al., [2009]).
The surface distributions of NTA and DOC at 10 m depth are shown in Figures
6.9 and 6.10. The high values of NTA and DOC originate from Arctic rivers [Anderson
et al., 2004; Letscher et al., 2011]. The measured excess densities Δρ = ρmeas - ρcalc are
shown as a function of depth in Figure 6.11.
The deep waters have values of
Δρ = -0.004 ± 0.002 kg m-3, while the surface waters have values as high as Δρ = 0.008 ±
0.002 kg m-3.
Unlike other oceans, the deep waters of the Arctic have values of Δρ that are
negative. Most deep ocean waters have values of Δρ that are positive due to the addition
of nutrients and calcium carbonate. Determinations of nutrients in Arctic deep water are
sparse and concentrations very low compared to most other deep ocean waters. The
silicate concentrations, for example, have maximum values in deep water of ~15 μmol
kg-1 [Middag et al., 2009]. Based upon our work in other oceans (Sections 6.3 and 6.4)
this Si concentration will increase the density by ~0.001 kg m-3, which is within the
experimental error of our measurements.
98
NTA (mol kg-1)
2200
0
2300
2400
2500
2600
2700
1000
Depth (db)
2000
3000
4000
5000
Figure 6.7: Normalized total alkalinity as a function of depth in the Arctic Ocean from
cruise ARKXXIII/3.
99
DOC (mol kg-1)
20
0
40
60
80
100
120
140
1000
Depth (db)
2000
3000
4000
5000
Figure 6.8: Dissolved organic carbon as a function of depth in the Arctic Ocean (cruise
ARKXXIII/3).
100
Figure 6.9: Distribution of normalized total alkalinity (NTA) for surface waters in the
Arctic Ocean (cruise ARKXXIII/3).
Figure 6.10: Distribution of dissolved organic carbon (DOC) for surface waters in the
Arctic Ocean (cruise ARKXXIII/3).
101
 (kg m-3)
-0.008
0
-0.006
-0.004
-0.002
0.000
0.002
0.004
0.006
0.008
1000
Depth (db)
2000
3000
4000
5000
Figure 6.11: Values of  as a function of depth in the Arctic Ocean (cruise
ARKXXIII/3).
102
Since the values of NTA are the same as for Standard Seawater, the decrease
cannot be attributed to lower values of TA. It appears that the decrease in density of the
deep Arctic may be caused by the slightly lower concentrations of DOC (44 to 51 μmol
kg-1) below 150 m compared to the values of standard seawater of 57 ± 2 μmol kg-1.
Since the maximum changes in DOC from the surface to depth in the open ocean are ~30
μmol kg-1 [Hansell et al., 2009], one might estimate that the effect of DOC in the world
ocean waters may be as much 0.012 kg m-3. This is unfortunately very difficult to prove
at the present time.
The Δρ values for most of the surface waters have positive values. These elevated
densities can be attributed to the higher concentrations of NTA and DOC from the input
of river waters to the Arctic [Anderson et al., 2004; Hansell et al., 2004]. Evidence for
this is shown in plots of all measured surface NTA as a function of salinity in Figure
6.12. As shown elsewhere [Amon, 2004; Letscher et al., 2011], DOC shows a linear
behavior as a function of salinity near the major river inputs (Figure 6.13). Figures 6.12
and 6.13 also give previously reported values of NTA [Bates et al., 2009] and DOC
[Hansell et al., 2004] for surface waters in the western Arctic Ocean. At a given salinity,
the values of NTA are lower and DOC higher in the eastern sector of the Arctic compared
to the western sector. The differences in NTA are due to the differences in NTA
concentrations between eastern and western Arctic rivers [Cooper et al., 2008], while the
differences in DOC are due both to differences in riverine concentrations [Cooper et al.,
2008] and in the greater DOC removal in the western sector [Hansell et al., 2004;
Letscher et al., 2011]. As shown in Figure 6.14 the values of DOC and NTA in this
region correlate very well with one another. At an NTA around 2300 μmol kg-1 the
103
values of DOC are near 60 μmol kg-1, similar to the values in Standard Seawater from the
North Atlantic. At the present time, it is not possible to determine how much of the NTA
from the rivers is due to organic compounds that can accept a proton. An over
determination of the Arctic estuaries of pCO2 or pH with TA and TCO2 may allow one to
estimate the contribution of increases in TA due to organic compounds. This is also true
of other estuarine systems that contribute alkalinity to the world oceans.
2800
Eastern Basin
Western Basin
-1
NTA (mol kg )
2700
2600
2500
2400
2300
2200
24
26
28
30
32
34
Practical Salinity (Sp)
Figure 6.12: Normalized total alkalinity (NTA) as a function of salinity for surface
waters in the eastern and western Arctic Ocean.
104
140
Eastern Basin
Western Basin
-1
DOC (mol kg )
120
100
80
60
40
26
27
28
29
30
31
32
33
34
Practical Salinity (Sp)
Figure 6.13: DOC as a function of salinity for surface waters in the eastern and western
Arctic Ocean.
140
-1
DOC (mol kg )
120
Eastern Basin
Western Basin
100
80
60
40
2300
2350
2400
2450
2500
2550
2600
2650
NTA (mol kg-1)
Figure 6.14: Correlation of the values of DOC and NTA for waters in the eastern and
western Arctic Ocean.
105
6.6 Global Oceans
A total of 1,750 density measurements have been made on 9 different cruises
covering the Atlantic, Pacific, Indian, Arctic, and Southern Ocean. A comprehensive
table consisting of all measurements and all available accompanying metadata, nutrient,
and carbon data are given in Table A.1. A plot of the data versus depth is given in Figure
6.15 broken down by ocean. Plots of  versus silicate and NTA are given in Figure
6.16. A plot of nitrate is not shown, but the data is given in Table A.1. The older
measurements in the North Pacific [Millero et al., 1978] were done using the older
equation of state of Millero et al. [1976b]. The data has been recalculated to use the
equation of state of Millero and Poisson [1981]. The difference (0.003-0.004 kg m-3) is
close to experimental error but caused the values in the North Pacific to be offset from
the rest of the data. The global dataset was fit according to eqn. 6.7, the results are given
in Table 6.2. As was found in other oceans, silica provides the best fit of the data. There
is a clear split in the NTA data in the Arctic Ocean compared to the other oceans
(Figure 6.16). This is probably a result of DOC and the insignificant silicate
concentrations (see Section 6.5). Excluding this data from the fit provides a slightly
better fit of the changes in alkalinity. More work is needed to determine the exact
influence of DOC on the density-conductivity relationship.
Since the changes in density are a result of both silica and TA an equation using
both is theoretically more correct. The combined equation is:
 = -0.002 + 6.67 x 10-5 SiO2 + 8.71 x 10 -6 NTA
(6.9)
The standard error is 0.0037 kg m-3 and is not significantly different than the individual
fits.
106
-3
 (kg m )
-0.015-0.010-0.005 0.000 0.005 0.010 0.015 0.020 0.025
0
Depth (db)
2000
4000
6000
Southern Ocean
Pacific
Arctic
Indian
Atlantic
Figure 6.15: All available density measurements versus depth broken down by ocean.
107
0.025
0.020
-3
 (kg m )
0.015
0.010
0.005
0.000
-0.005
-0.010
-0.015
0
20
40
60
80 100 120 140 160 180 200
Silicate (mol kg-1)
Southern Ocean
Pacific
Arctic
Indian
Atlantic
0.025
0.020
-3
 (kg m )
0.015
0.010
0.005
0.000
-0.005
-0.010
-0.015
-50
0
50
100
150
200
250
300
NTA
Figure 6.16: All Available density data versus silicate (top) and NTA (bottom) by
ocean.
108
Table 6.2: Slope and intercept of global density dataset fit to eqn 6.7. NTA is fit with
and without Arctic data because of divergence at high NTA in the Arctic compared to
the other oceans.
Parameter
Intercept
SiO2
NO3
NTA
NTA (exclude Arctic)
NTA (only Arctic)
-0.002
-0.003
-0.001
-0.002
-0.003
Slope
Number
Stdev
0.000073
0.000209
0.000051
0.000071
0.000037
1454
1541
1454
1273
268
0.0036
0.0046
0.0043
0.0041
0.0022
6.7 Effect of Ocean Acidification
The continued burning of fossil fuels will result in the continued increase of
pCO2. This increase will result in an increase in SA and in the density of seawater.
Estimates have been made of the pCO2 up until the year 3000 [Millero, 2007]. Based on
these estimates SA and densities are calculated. These predicted changes in salinity (S)
are shown in Figure 6.17 as a function of time and TCO2. The deltas are relative to a
pCO2 of 333, the atmospheric concentration when the original equation of state was
determined. The maximum SA is 0.017 and the maximum predicted increase in the
density is 0.014 kg m-3. The effect, if any, this increase of pCO2 will have on conductivity
is unknown and needs to be examined.
109
0.020
0.015
S
0.010
0.005
0.000
-0.005
1600 1700 1800 1900 2000 2100 2200 2300 2400
Year
0.020
0.015
S
0.010
0.005
0.000
-0.005
1900
2000
2100
2200
2300
TCO2
Figure 6.17: Predicted changes in salinity as a result of increased TCO2 from the burning
of fossil fuels as a function of time (top) and TCO2 (bottom).
110
6.8 Conclusions
The experimentally derived equations for the global oceans can be used to
estimate the changes in density and absolute salinity of deep waters due to the oxidation
of plant material and dissolution of SiO2 and CaCO3. These density equations may or
may not be valid for estuarine waters to due to the input of terrestrial organic material
[Poisson et al., 1980, 1981; Millero, 1984]. Empirical equations of measured excess
density as a function of changes in NTA, SiO2, and NO3 indicate that SiO2 adequately
represents the results ( = 0.0036 kg m-3). It is recommended that the absolute salinity or
silicate empirical equations be used to estimate the changes in the density of seawater due
to the addition of nutrients and carbonate.
The effect of DOC is still uncertain. Currently measurements are limited to the
Arctic Ocean, more measurements from the remaining oceans will be essential in
determining the effect. The increase in pCO2 (and TCO2) as a result of the oceanic uptake
of anthropogenic CO2 will increase the absolute salinity by 0.017 and the density by
0.014 by the year 2300. The effect this will have on the conductivity-density relationship
is currently unknown, and should be determined.
Chapter 7:
Conclusions
Many basic physical chemical properties of trace and minor components of
natural waters aren’t currently well understood. This is particularly true for trace metals
since it is only over the last 3 to 4 decades that methods and techniques were developed
to measure them at the low concentrations that they are present at in seawater and other
natural waters. The explosion of research into these components has mainly focused on
distribution and geochemical cycling with very little focus on basic physical chemical
properties. This is mainly because measurements are difficult and time consuming due to
the low solubility of these components and the vast number of components. This
dissertation helps to fill in some of the gaps in a variety of these physical chemical
properties. The major findings are briefly outlined below.
One method of estimating physical chemical properties is through correlations
with known properties. Although less desirable than actual measurements, correlations
allow for quick reasonable estimates of unknown properties. This was done for the
hydrolysis constants of nearly all +2, +3, and +4 metals relevant to natural waters in
NaCl. The hydrolysis of aluminum in NaCl is well known for a wide range of
temperatures and ionic strengths. These constants were found to be linearly related to the
hydrolysis constants of a wide variety of metals that appears to be independent of
temperature and ionic strength. This provides estimates of nearly all trace metal
hydrolysis constants over a wide range of conditions applicable to many natural waters,
particularly brines.
111
112
Speciation is an extremely important physical chemical property. It determines
the behavior and fate of an element in the environment. This is relevant to organisms
since it is typically the free form of a metal that is bioavailable. Lead is known to be toxic
to organisms but the low solubility makes speciation measurements difficult so
correlations are often used. Combining the best available published formation constants
of lead chloro and lead carbonate complexes along with new measurements of lead
carbonate in NaCl a full Pitzer model was created for lead in NaCl solutions. Chloride
complexes can be fully modeled in seawater, but magnesium and calcium interactions
with the carbonate complex is currently unknown, although they will be small. The
speciation of lead in seawater was estimated using this model, and is in reasonable
agreement with previous estimates. The first direct measurements of the mixed ligand
complex Pb(CO3)Cl- were also determined, although there is still large uncertainty in the
values.
Calcium carbonate has been well studied in seawater, but there are still some
gaps. It was recently discovered that boney fish produce a high magnesium calcite as a
byproduct of osmoregulation. High magnesium calcite is known to be more soluble than
aragonite or calcite and could therefore play a role in carbon cycling in the upper ocean.
The solubility of this material in seawater was determined and found to be approximately
four times as soluble as aragonite. This means that it likely dissolves higher in the water
column than calcite or aragonite and could potentially at least partially explain the
increase in normalized total alkalinity above the aragonite saturation horizon. This form
of calcium carbonate will also likely respond sooner to ocean acidification than the other
113
crystalline forms. The kinetics of this dissolution is likely complex and currently
unknown. Kinetics will play an important role and should be studied in the future.
Minor components of seawater, mainly nutrients and CO2 as a result of organic
matter decomposition, can cause variations in the conductivity-density relationship
causing the equation of state to underestimate the density of seawater and the absolute
salinity. This effect was examined using 1750 conductive and density measurements from
samples collected from all of the major oceans. Empirical relationships for this excess
density were determined for the three main added components, silicate, nitrate, and total
alkalinity. Silicate was found to provide the best fit of the data due to the high
concentrations in deep water and because it is mainly in a neutral form and likely has
little effect on the conductivity. These empirical relationships can be used to estimate the
excess density and SA of seawater. The effect of dissolved organic carbon and increased
pCO2 due to uptake of anthropogenic emissions of CO2 are still not understood.
Appendix
This section includes an extensive table A.1 listing all the available density
measurements made to date. The purpose is to provide the 1750 measurements in one
place so that it is available for future use and refinement as more data becomes available.
It combines all published and unpublished measurements into one table, which would not
be possible in a journal due to the large size. The best was done to put all data into the
same format and to be as complete as possible, but due to the different sources that isn’t
always possible. Where available as much metadata and ancillary data is included. The
published values of Millero et al. [1978] were corrected to the equation of state of
Millero and Poisson [1981]. The difference is within experimental error but caused a
slight offset in this data from the other data.
114
Stn
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
44
44
44
44
44
44
Cruise
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
depth
4.5
19.1
91.1
117.5
140.3
191
215.7
285.5
334.6
434.6
565
764.7
963.2
1164.8
1365.1
1665.2
2735.9
2883.9
4.6
19.9
39.5
64.9
88.3
134.5
170.657
170.657
170.657
170.657
170.657
170.657
170.657
170.657
170.657
170.657
170.657
170.657
170.657
170.657
170.657
170.657
170.657
170.657
-151.14
-151.14
-151.14
-151.14
-151.14
-151.14
-69.238
-67
-67
-67
-67
-67
-67
-69.238
-69.238
-69.238
-69.238
-69.238
-69.238
-69.238
-69.238
-69.238
-69.238
-69.238
-69.238
-69.238
-69.238
-69.238
-69.238
-69.238
Lat (N)
Long (E)
69.66
59.16
54.89
45.45
43.61
43.37
98.26
98.47
119.1
119.34
118.97
114.48
109.41
104.39
98.05
92.95
88.07
71.31
70.69
69.74
69.97
68.71
69.21
68.29
Si
30.76
28.84
27.64
22.54
22.32
22.11
32.09
32.22
32.72
32.91
33.01
32.81
32.72
32.63
32.72
32.54
32.32
30.93
30.95
30.65
30.62
28.89
28.99
28.91
NO3
2306.50
2.07
2317.40
2302.00
2
2.13
2285.80
2285.40
2284.50
2347.10
2353.10
2355.00
2355.50
2355.40
2353.70
2353.20
2349.20
2344.70
2342.70
2335.30
2320.70
2321.00
2317.90
2316.60
2296.20
2291.80
2291.20
TA
1.62
1.59
1.56
2.22
2.21
2.22
2.22
2.23
2.2
2.2
2.21
2.22
2.17
2.16
2.05
2.05
2.04
2.03
1.91
1.88
1.91
PO4
2341.08
2362.46
2361.30
2369.41
2364.16
2369.74
2355.45
2371.46
2369.01
2373.54
2363.03
2370.63
2366.72
2367.94
2365.04
2357.59
2322.82
2358.16
2363.68
2360.11
2358.51
2353.15
2361.71
2351.12
NTA
34.646
34.171
34.121
33.765
33.834
33.741
34.876
34.729
34.793
34.734
34.887
34.75
34.8
34.723
34.699
34.779
35.188
34.444
34.368
34.374
34.378
34.153
33.964
34.108
Sp
1023.07
1022.71
1022.67
1022.4
1022.45
1022.39
1023.25
1023.13
1023.19
1023.14
1023.26
1023.16
1023.19
1023.13
1023.12
1023.18
1023.48
1022.92
1022.86
1022.87
1022.87
1022.7
1022.56
1022.66
 26.031
25.671
25.63
25.36
25.408
25.346
26.2
26.089
26.143
26.099
26.212
26.11
26.147
26.088
26.073
26.132
26.436
25.876
25.819
25.821
25.821
25.656
25.51
25.617
 Meas 26.028
25.669
25.631
25.362
25.414
25.344
26.202
26.090
26.139
26.094
26.210
26.106
26.144
26.086
26.068
26.128
26.437
25.875
25.818
25.822
25.825
25.655
25.512
25.621
 Calc Table A.1: All available density measurements. All nutrients are in units of mol kg-1, density is in kg m-3. Cruise M78 is Millero et al. [1978a]
0.003
0.002
-0.001
-0.002
-0.006
0.002
-0.002
-0.001
0.004
0.005
0.002
0.004
0.003
0.002
0.005
0.004
-0.001
0.001
0.001
-0.001
-0.004
0.001
-0.002
-0.004

115
Stn
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
64
64
64
Cruise
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
Table A.1 cont.
-75.607
-75.607
-75.607
-66.9998
-66.9998
-66.9998
-66.9998
-66.9998
-66.9998
-66.9998
-66.9998
-66.9998
-66.9998
-66.9998
-66.9998
-66.9998
-66.9998
-66.9998
-66.9998
-66.9998
-66.9998
-66.9998
-66.9998
Lat (N)
-66.9998
depth
183.8
234.5
284.4
335.2
384.3
464.4
563.3
764.7
963.5
1164
1264.1
1365.4
1563.4
2164.6
2663.1
3199.7
3799.7
4099.4
4399.6
4445.5
4494.8
2.1
35
59.8
Long (E)
-151.1435
-151.1435
-151.1435
-151.1435
-151.1435
-151.1435
-151.1435
-151.1435
-151.1435
-151.1435
-151.1435
-151.1435
-151.1435
-151.1435
-151.1435
-151.1435
-151.1435
-151.1435
-151.1435
-151.1435
-151.1435
-150.0134
-150.0134
-150.0134
67.89
64.15
60.92
126.91
127.26
128.95
126.06
125.36
132.42
132.12
127.98
123.87
121.62
120.15
118.41
114.6
110.61
106.79
104.09
100.8
97.48
94.8
90.35
84.33
Si
24.75
23.76
23.13
31.75
31.82
31.83
31.84
31.82
31.92
31.94
31.97
31.98
32.08
32.07
32.03
31.95
32.17
32.27
32.21
32.07
31.99
32.06
32.37
32.4
NO3
1.73
1.62
1.54
2.24
2.24
2.24
2.24
2.24
2.24
2.24
2.24
2.24
2.24
2.24
2.23
2.23
2.23
2.24
2.24
2.24
2.22
2.24
2.24
2.23
PO4
2277.50
2274.00
2273.60
2355.80
2356.40
2356.20
2356.50
2355.60
2358.60
2358.60
2357.70
2358.30
2357.60
2357.40
2356.50
2353.30
2352.60
2350.50
2349.40
2350.50
2346.80
2342.80
2333.30
TA
2371.62
2374.19
2373.56
2374.11
2376.70
2372.40
2376.80
2322.82
2371.61
2378.37
2375.00
2349.31
2376.75
2377.30
2375.03
2371.60
2354.21
2369.05
2362.43
2368.84
2365.66
2364.01
2361.50
NTA
33.611
33.523
33.526
34.73
34.701
34.761
34.701
35.494
34.808
34.709
34.745
35.134
34.718
34.725
34.707
34.727
34.73
34.976
34.726
34.807
34.729
34.721
34.686
34.582
Sp
1022.289
1022.227
1022.225
1023.139
1023.119
1023.165
1023.12
1023.732
1023.2
1023.123
1023.149
1023.447
1023.134
1023.134
1023.128
1023.137
1023.141
1023.325
1023.141
1023.2
1023.143
1023.136
1023.106
1023.032

25.246
25.184
25.182
26.094
26.076
26.122
26.077
26.689
26.157
26.08
26.106
26.404
26.091
26.091
26.085
26.094
26.098
26.282
26.098
26.157
26.1
26.093
26.063
25.987
 Meas 25.246
25.179
25.182
26.091
26.069
26.114
26.069
26.669
26.150
26.075
26.102
26.397
26.082
26.087
26.074
26.089
26.091
26.277
26.088
26.149
26.090
26.084
26.058
25.979
 Calc 0.000
0.005
0.000
0.003
0.007
0.008
0.008
0.020
0.007
0.005
0.004
0.007
0.009
0.004
0.011
0.005
0.007
0.005
0.010
0.008
0.010
0.009
0.005
0.008

116
Stn
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
66
66
66
66
66
66
66
Cruise
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
Table A.1 cont.
-75.7506
-75.7506
-75.7506
-75.7506
-75.7506
-75.7506
-75.7506
-75.607
-75.607
-75.607
-75.607
-75.607
-75.607
-75.607
-75.607
-75.607
-75.607
-75.607
-75.607
-75.607
-75.607
-75.607
-75.607
Lat (N)
-75.607
depth
84.8
110.1
160.5
209.6
265.1
314.6
364.4
415.1
534.9
634.7
834.7
1034.9
1234.5
1434.5
1535.2
1620
1677.2
2.2
24.7
49.8
75
100.1
125.1
150.1
Long (E)
-150.0134
-150.0134
-150.0134
-150.0134
-150.0134
-150.0134
-150.0134
-150.0134
-150.0134
-150.0134
-150.0134
-150.0134
-150.0134
-150.0134
-150.0134
-150.0134
-150.0134
-149.9689
-149.9689
-149.9689
-149.9689
-149.9689
-149.9689
-149.9689
81.33
80.93
80.02
72.6
64.58
61.96
58.25
120.57
119.42
117.84
116.32
114.15
109.75
104.29
95.05
87.76
82.61
83.51
83.15
82.42
82.43
82.66
81.06
75.57
Si
29
28.88
28.62
25.91
23.1
22.67
21.88
32.06
31.86
31.82
31.89
31.88
31.91
31.83
31.78
32.32
31.47
30.94
30.64
30.61
30.23
30.05
29.15
27.16
NO3
2.1
2.09
2.1
1.95
1.63
1.58
1.51
2.24
2.25
2.25
2.24
2.24
2.23
2.22
2.21
2.24
2.18
2.14
2.12
2.12
2.1
2.1
2.06
1.93
PO4
2304.50
2303.30
2301.70
2285.60
2245.00
2271.20
2269.50
2358.80
2357.90
2358.50
2357.30
2357.30
2355.70
2353.30
2347.90
2341.60
2314.60
2310.70
2309.30
2308.00
2304.90
2301.10
2296.40
2288.50
TA
2361.72
2342.93
2368.42
2370.60
2342.86
2373.25
2371.97
2378.17
2336.01
2377.79
2368.13
2290.67
2374.08
2371.39
2346.43
2354.65
2364.80
2366.48
2364.15
2363.99
2366.84
2366.83
2369.03
2371.71
NTA
34.152
34.408
34.014
33.745
33.538
33.495
33.488
34.715
35.328
34.716
34.84
36.018
34.729
34.733
35.022
34.806
34.257
34.175
34.188
34.171
34.084
34.028
33.927
33.772
Sp
1022.701
1022.896
1022.598
1022.398
1022.236
1022.203
1022.199
1023.132
1023.6
1023.132
1023.227
1024.115
1023.142
1023.146
1023.366
1023.2
1022.78
1022.72
1022.73
1022.717
1022.654
1022.609
1022.532
1022.414

25.655
25.85
25.552
25.352
25.19
25.157
25.153
26.086
26.557
26.086
26.184
27.072
26.096
26.103
26.32
26.154
25.734
25.674
25.687
25.671
25.608
25.563
25.489
25.368
 Meas 25.655
25.848
25.550
25.347
25.191
25.158
25.153
26.080
26.543
26.080
26.174
27.065
26.044
26.093
26.312
26.149
25.734
25.672
25.682
25.669
25.603
25.561
25.485
25.367
 Calc 0.000
0.002
0.002
0.005
-0.001
-0.001
0.000
0.006
0.014
0.006
0.010
0.007
0.010
0.008
0.005
0.000
0.002
0.005
0.002
0.005
0.002
0.004
0.001

117
Stn
66
66
66
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
Cruise
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
Table A.1 cont.
-72.3893
-72.3893
-72.3893
-72.3893
-72.3893
-72.3893
-72.3893
-72.3893
-72.3893
-72.3893
-72.3893
-72.3893
-72.3893
-72.3893
-72.3893
-72.3893
-72.3893
-72.3893
-72.3893
-72.3893
-72.3893
-75.7506
-75.7506
Lat (N)
-75.7506
depth
179.8
209
235.5
5.5
25
49.1
75.3
98.7
125.3
149.4
200.7
250.3
299.7
350.2
399
450.5
499.7
700
899.5
1199.9
1501.3
1799.5
2248.6
2748.7
Long (E)
-149.9689
-149.9689
-149.9689
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
130.4
125.84
122.41
117.69
112.29
106.48
101.48
95.37
93.51
91.45
89.83
87.82
85.84
81.59
74.5
68.35
62.67
58.36
53.98
49.9
49.84
83.63
82.19
81.88
Si
32.26
32.09
32.09
31.92
31.91
32.02
32.04
32.06
32
32.15
32.3
32.64
32.84
32.86
32.24
31.58
30.82
29.53
26.53
23.64
23.62
29.9
29.6
29.4
NO3
2.26
2.24
2.24
2.23
2.23
2.22
2.21
2.2
2.19
2.2
2.21
2.24
2.25
2.26
2.23
2.18
2.14
2.09
1.92
1.73
1.72
2.12
2.1
2.1
PO4
2358.30
2357.50
2357.40
2356.80
2358.20
2352.80
2351.50
2348.50
2347.40
2345.60
2344.50
2341.70
2339.20
2332.10
2321.40
2315.20
2311.00
2307.20
2297.70
2291.20
2290.40
2308.30
2306.90
2305.90
TA
2365.33
2376.65
2376.96
2345.54
2375.64
2356.71
2369.58
2366.08
2354.13
2363.97
2352.70
2361.88
2347.11
2359.61
2351.43
2360.11
2358.16
2351.06
2365.00
2368.97
2368.21
2366.79
2367.30
2367.04
NTA
34.896
34.718
34.712
35.168
34.743
34.942
34.733
34.74
34.9
34.728
34.878
34.701
34.882
34.592
34.553
34.334
34.3
34.347
34.004
33.851
33.85
34.135
34.107
34.096
Sp
1023.268
1023.133
1023.128
1023.422
1023.148
1023.299
1023.144
1023.147
1023.267
1023.139
1023.253
1023.117
1023.256
1023.035
1023.005
1022.838
1022.81
1022.846
1022.587
1022.468
1022.473
1022.69
1022.671
1022.66

26.222
26.087
26.082
26.376
26.102
26.253
26.098
26.101
26.221
26.093
26.207
26.071
26.21
25.989
25.959
25.792
25.764
25.8
25.541
25.422
25.427
25.644
25.625
25.614
 Meas 26.217
26.082
26.078
26.422
26.101
26.251
26.093
26.099
26.220
26.090
26.203
26.069
26.206
25.987
25.957
25.792
25.766
25.802
25.543
25.427
25.426
25.642
25.621
25.612
 Calc 0.005
0.005
0.004
0.001
0.002
0.005
0.002
0.001
0.003
0.004
0.002
0.004
0.002
0.002
0.000
-0.002
-0.002
-0.002
-0.005
0.001
0.002
0.004
0.002

118
Stn
89
89
89
89
89
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
Cruise
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
Table A.1 cont.
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
-72.3893
-72.3893
-72.3893
-72.3893
Lat (N)
-72.3893
depth
3300.4
3601.3
3899.4
3976.1
4022.6
4.6
23.8
48.9
74.1
100
149.2
199.8
251.5
300.1
349.1
401.1
448
500.3
702
900.3
1099.8
1298.4
1498.5
1799.3
Long (E)
-169.9999
-169.9999
-169.9999
-169.9999
-169.9999
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
118.28
113.15
107.57
102.82
98.07
91.59
86.6
85.52
84.45
83.34
81.92
80.34
78.27
71.39
57
49.25
36.14
26.6
26.45
127.31
127.04
125.28
135.02
134.47
Si
32.04
31.78
31.49
31.56
31.44
31.44
31.92
31.97
32.27
32.75
33.28
33.69
34.16
33.95
31.66
30.14
26.07
23.32
23.34
32.61
32.59
32.4
32.54
32.42
NO3
2.23
2.22
2.21
2.19
2.17
2.17
2.2
2.21
2.21
2.23
2.25
2.28
2.32
2.31
2.16
2.09
1.84
1.6
1.6
2.27
2.27
2.26
2.26
2.26
PO4
2358.70
2357.60
2359.60
2352.70
2352.50
2349.40
2344.00
2342.80
2342.30
2339.20
2337.90
2335.90
2335.60
2320.70
2303.00
2293.20
2275.80
2263.90
2264.00
2356.20
2356.00
2359.10
2358.50
2358.70
TA
2372.46
2376.07
2378.08
2299.48
2359.38
2367.46
2361.14
2350.86
2320.68
2359.83
2356.01
2353.99
2362.19
2356.38
2356.87
2357.60
2313.75
2363.29
2363.26
2352.17
2363.70
2375.53
2375.88
2359.44
NTA
34.797
34.728
34.728
35.81
34.898
34.733
34.746
34.88
35.326
34.694
34.731
34.731
34.606
34.47
34.2
34.044
34.426
33.528
33.53
35.06
34.886
34.758
34.744
34.989
Sp
1023.191
1023.145
1023.14
1024.009
1023.268
1023.141
1023.152
1023.255
1023.59
1023.114
1023.139
1023.14
1023.046
1022.941
1022.736
1022.618
1022.898
1022.226
1022.227
1023.39
1023.262
1023.175
1023.151
1023.342

26.144
26.098
26.094
26.962
26.221
26.095
26.106
26.209
26.543
26.067
26.092
26.093
25.999
25.894
25.689
25.571
25.851
25.179
25.18
26.344
26.216
26.129
26.105
26.296
 Meas 26.142
26.090
26.090
26.908
26.218
26.093
26.103
26.205
26.542
26.064
26.092
26.092
25.998
25.895
25.691
25.573
25.861
25.183
25.185
26.341
26.209
26.112
26.102
26.287
 Calc 0.002
0.008
0.004
0.003
0.002
0.003
0.004
0.001
0.003
0.000
0.001
0.001
-0.001
-0.002
-0.002
-0.010
-0.004
-0.005
0.003
0.007
0.017
0.003
0.009

119
Stn
101
101
101
101
101
101
101
101
109
109
109
109
109
109
109
109
109
109
109
109
109
109
109
109
Cruise
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
Table A.1 cont.
-67.0002
-67.0002
-67.0002
-67.0002
-67.0002
-67.0002
-67.0002
-67.0002
-67.0002
-67.0002
-67.0002
-67.0002
-67.0002
-67.0002
-67.0002
-67.0002
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
-67.0011
Lat (N)
-67.0011
depth
2248.2
2747.8
3299.8
3600
3899.2
4200
4476.1
4528.1
3.8
24.2
49.7
74.2
99.4
123.7
149.5
199.2
250.2
300
350.1
400.3
449.8
498.5
699
899.6
Long (E)
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-138.4961
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
91.66
87.14
83.37
81.88
81.07
79.66
78.46
77.08
74.85
66.5
60.57
52.16
45.56
28.98
28.61
28.71
123.19
123.34
124.06
127.7
132.93
132.17
127.35
123.49
Si
31.38
31.67
32.43
32.7
32.95
33.37
33.88
34.31
34.65
34.22
33.14
31.78
29.86
25.67
25.27
25.28
32.55
32.6
32.43
32.46
32.96
32.64
32.56
32.24
NO3
2.17
2.18
2.23
2.24
2.26
2.28
2.31
2.34
2.36
2.32
2.25
2.16
2.06
1.74
1.73
1.73
2.24
2.24
2.23
2.25
2.26
2.26
2.25
2.24
PO4
2350.00
2346.80
2342.60
2341.60
2338.00
2337.30
2335.60
2332.70
2329.20
2314.20
2311.70
2300.20
2292.00
2271.80
2271.70
2271.20
2355.30
2356.20
2355.70
2356.40
2363.10
2359.40
2362.70
2360.30
TA
2368.13
2365.11
2357.35
2362.66
2358.89
2360.43
2360.55
2359.74
2355.51
2350.53
2356.95
2358.28
2360.11
2362.03
2364.38
2363.51
2375.53
2366.07
2374.42
2374.45
2383.26
2379.46
2373.01
2380.02
NTA
34.732
34.729
34.781
34.688
34.69
34.657
34.63
34.599
34.609
34.459
34.328
34.138
33.99
33.663
33.628
33.633
34.702
34.854
34.724
34.734
34.704
34.705
34.848
34.71
Sp
1023.144
1023.14
1023.181
1023.108
1023.11
1023.084
1023.063
1023.041
1023.044
1022.933
1022.835
1022.688
1022.578
1022.329
1022.304
1022.307
1023.123
1023.235
1023.139
1023.145
1023.123
1023.125
1023.233
1023.126

26.096
26.092
26.133
26.061
26.062
26.036
26.015
25.993
25.997
25.885
25.787
25.641
25.531
25.281
25.257
25.259
26.076
26.189
26.092
26.098
26.077
26.078
26.186
26.079
 Meas 26.093
26.090
26.130
26.059
26.061
26.036
26.016
25.992
26.000
25.886
25.787
25.644
25.532
25.285
25.259
25.262
26.070
26.185
26.087
26.094
26.072
26.072
26.180
26.076
 Calc 0.003
0.002
0.003
0.002
0.001
0.000
-0.001
0.001
-0.003
-0.001
0.000
-0.003
-0.001
-0.004
-0.002
-0.003
0.006
0.004
0.005
0.004
0.005
0.006
0.006
0.003

120
Stn
109
109
109
109
109
109
109
109
109
109
114
114
114
114
114
114
114
114
114
114
114
114
114
114
Cruise
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
Table A.1 cont.
-67.0004
-67.0004
-67.0004
-67.0004
-67.0004
-67.0004
-67.0004
-67.0004
-67.0004
-67.0004
-67.0004
-67.0004
-67.0004
-67.0004
-67.0002
-67.0002
-67.0002
-67.0002
-67.0002
-67.0002
-67.0002
-67.0002
-67.0002
Lat (N)
-67.0002
depth
1099
1301.2
1500.1
1798.3
2250.1
2749.8
3600.4
3900.4
4151.1
4273.8
4.2
19.2
39.9
65
90.2
133.7
184.9
235.3
284.3
334.6
383.4
465.5
564.7
663.4
Long (E)
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
-125.0647
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
82.09
80.39
77.96
75.5
72.91
69.33
64.72
55.3
46.91
40.89
20.26
13.8
13.8
13.86
142.46
139.52
136.91
134.59
125.99
120.2
113.04
107.15
102.09
96.76
Si
32.51
32.96
33.53
33.92
34.28
34.27
34
32.43
30.76
29.3
24.78
23.59
23.63
23.64
32.95
32.96
32.87
32.78
32.41
32.21
32.07
31.69
31.36
31.25
NO3
2.26
2.3
2.34
2.37
2.39
2.4
2.37
2.27
2.15
2.1
1.78
1.65
1.62
1.63
2.25
2.24
2.24
2.25
2.24
2.24
2.22
2.21
2.19
2.17
PO4
2339.10
2337.80
2334.20
2331.10
2328.10
2321.50
2312.20
2303.20
2293.00
2285.50
2261.70
2256.90
2258.70
2255.30
2359.30
2360.30
2361.30
2360.50
2361.20
2360.60
2360.90
2357.20
2354.50
2352.80
TA
2360.14
2360.12
2359.28
2358.46
2359.04
2356.17
2352.46
2345.35
2353.17
2356.67
2345.68
2357.53
2356.60
2340.15
2379.56
2380.29
2366.71
2380.63
2381.00
2380.12
2379.94
2361.32
2372.67
2370.75
NTA
34.688
34.669
34.628
34.594
34.541
34.485
34.401
34.371
34.105
33.943
33.747
33.506
33.546
33.731
34.702
34.706
34.92
34.704
34.709
34.713
34.72
34.939
34.732
34.735
Sp
1023.109
1023.095
1023.066
1023.036
1022.999
1022.956
1022.893
1022.867
1022.665
1022.543
1022.395
1022.215
1022.242
1022.381
1023.122
1023.128
1023.289
1023.126
1023.127
1023.129
1023.136
1023.302
1023.145
1023.148

26.062
26.048
26.019
25.988
25.951
25.909
25.846
25.82
25.618
25.496
25.347
25.168
25.194
25.334
26.075
26.08
26.242
26.078
26.079
26.082
26.088
26.254
26.097
26.1
 Meas 26.059
26.045
26.014
25.988
25.948
25.906
25.843
25.820
25.619
25.497
25.349
25.167
25.197
25.336
26.070
26.073
26.235
26.072
26.075
26.078
26.084
26.249
26.093
26.095
 Calc 0.003
0.003
0.005
0.000
0.003
0.003
0.003
0.000
-0.001
-0.001
-0.002
0.001
-0.003
-0.002
0.005
0.007
0.007
0.006
0.004
0.004
0.004
0.005
0.004
0.005

121
Stn
114
114
114
114
114
114
114
114
114
114
114
114
120
120
120
120
120
120
120
120
120
120
120
120
Cruise
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
Table A.1 cont.
-67.0001
-67.0001
-67.0001
-67.0001
-67.0001
-67.0001
-67.0001
-67.0001
-67.0001
-67.0001
-67.0001
-67.0001
-67.0004
-67.0004
-67.0004
-67.0004
-67.0004
-67.0004
-67.0004
-67.0004
-67.0004
-67.0004
-67.0004
Lat (N)
-67.0004
depth
865.6
1063.6
1264.6
1464.4
1934.3
2414.9
2914.8
3498.8
4100.7
4401.9
4600.6
4721.7
2.6
34.8
59.5
85
114.6
164.5
214.5
265.5
315
364.2
434.8
634.3
Long (E)
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
-112.2678
-99.4874
-99.4874
-99.4874
-99.4874
-99.4874
-99.4874
-99.4874
-99.4874
-99.4874
-99.4874
-99.4874
-99.4874
78.43
74.37
71.81
68.89
62.64
54.43
47.76
42.89
38.89
35.55
17.78
17.98
142.69
141.79
137.43
135
130.13
124.27
119.03
110.01
100
95.35
90.17
85.78
Si
33
34.22
34.49
34.57
33.91
32.46
30.93
30.2
29.05
27.82
23.97
23.95
32.71
32.74
32.64
32.6
32.58
32.39
32.15
31.9
31.61
31.32
31.43
31.8
NO3
2.29
2.38
2.4
2.41
2.36
2.25
2.16
2.11
2.07
2.07
1.64
1.64
2.27
2.26
2.26
2.26
2.26
2.25
2.24
2.23
2.21
2.2
2.2
2.22
PO4
2331.10
2324.80
2315.90
2306.20
2300.10
2290.90
2289.10
2286.40
2259.20
2259.80
2358.40
2359.10
2358.70
2357.60
2357.70
2358.10
2356.50
2356.10
2349.90
2350.20
2348.20
2343.40
TA
2359.55
2360.13
2350.14
2352.17
2348.82
2357.17
2353.04
2354.76
2362.40
2358.10
2375.91
2375.25
2376.28
2377.91
2365.47
2377.87
2375.91
2374.90
2367.83
2368.20
2364.48
2357.34
NTA
34.661
34.578
34.528
34.476
34.49
34.316
34.274
34.016
34.049
33.984
33.471
33.541
34.742
34.762
34.741
34.701
34.885
34.709
34.714
34.723
34.735
34.734
34.759
34.793
Sp
1023.091
1023.03
1022.984
1022.945
1022.955
1022.827
1022.789
1022.601
1022.624
1022.566
1022.18
1022.239
1023.153
1023.167
1023.154
1023.123
1023.265
1023.127
1023.134
1023.139
1023.149
1023.146
1023.164
1023.188

26.044
25.983
25.938
25.899
25.909
25.78
25.743
25.554
25.577
25.52
25.134
25.192
26.106
26.12
26.107
26.076
26.218
26.079
26.086
26.092
26.101
26.098
26.116
26.14
 Meas 26.039
25.976
25.939
25.899
25.910
25.778
25.747
25.552
25.577
25.528
25.140
25.193
26.100
26.115
26.099
26.069
26.208
26.075
26.079
26.086
26.095
26.094
26.113
26.139
 Calc 0.005
0.007
-0.001
0.000
-0.001
0.002
-0.004
0.002
0.000
-0.008
-0.006
-0.001
0.006
0.005
0.008
0.007
0.010
0.004
0.007
0.006
0.006
0.004
0.003
0.001

122
Stn
120
120
120
120
120
120
120
120
120
120
120
120
120
127
127
127
127
127
127
127
127
127
127
127
Cruise
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
Table A.1 cont.
-67
-67
-67
-67
-67
-67
-67
-67
-67
-67
-67
-67.0001
-67.0001
-67.0001
-67.0001
-67.0001
-67.0001
-67.0001
-67.0001
-67.0001
-67.0001
-67.0001
-67.0001
Lat (N)
-67.0001
depth
834.9
1035.1
1235.1
1434.3
1664.8
2084.9
2585.3
3100.8
3698.6
4300
4599.9
4699.6
4779.2
3.3
19.7
39.1
64.9
89.7
115.4
140.4
184.9
235
285
334.1
Long (E)
-99.4874
-99.4874
-99.4874
-99.4874
-99.4874
-99.4874
-99.4874
-99.4874
-99.4874
-99.4874
-99.4874
-99.4874
-99.4874
-81.633
-81.633
-81.633
-81.633
-81.633
-81.633
-81.633
-81.633
-81.633
-81.633
-81.633
74.97
73.31
70.5
66
56.63
52.4
46.48
20.63
21.06
20.05
19.48
144.86
143.27
140.24
134.88
127.74
123.01
116.25
106.32
101.64
94.97
90.08
85.34
82.3
Si
34.23
34.69
34.76
34.76
33.39
31.48
30.01
24.04
23.52
23.26
23.14
32.7
32.68
32.56
32.43
32.43
32.32
32.1
31.74
31.5
31.44
31.45
31.5
32.14
NO3
2.35
2.38
2.38
2.37
2.28
2.17
2.13
1.64
1.57
1.55
1.52
2.24
2.24
2.24
2.24
2.24
2.23
2.2
2.19
2.18
2.18
2.18
2.19
2.23
PO4
2332.20
2327.20
2325.60
2318.20
2304.60
2295.70
2289.30
2273.80
2269.10
2266.80
2267.50
2361.10
2360.50
2360.20
2358.00
2355.80
2351.80
2350.20
2349.10
TA
2360.32
2358.53
2356.85
2340.54
2352.32
2349.47
2358.85
2362.92
2363.15
2359.63
2362.75
2379.94
2380.77
2378.14
2347.54
2362.48
2370.08
2358.62
2304.33
NTA
34.583
34.535
34.536
34.666
34.29
34.199
33.968
33.68
33.607
33.623
33.589
34.723
34.701
34.702
34.879
35.306
34.736
34.719
35.156
34.901
34.862
34.73
34.875
35.68
Sp
1023.027
1022.991
1022.994
1023.093
1022.805
1022.732
1022.559
1022.338
1022.283
1022.295
1022.27
1023.141
1023.125
1023.128
1023.254
1023.583
1023.149
1023.138
1023.461
1023.269
1023.245
1023.139
1023.252
1023.865

25.984
25.948
25.951
26.047
25.759
25.686
25.513
25.295
25.24
25.252
25.224
26.094
26.078
26.081
26.208
26.536
26.102
26.091
26.415
26.223
26.198
26.093
26.205
26.818
 Meas 25.980
25.944
25.945
26.043
25.759
25.690
25.515
25.298
25.243
25.255
25.229
26.086
26.069
26.070
26.204
26.526
26.096
26.083
26.413
26.220
26.191
26.091
26.201
26.809
 Calc 0.004
0.004
0.006
0.004
0.000
-0.004
-0.002
-0.003
-0.003
-0.003
-0.005
0.008
0.009
0.011
0.004
0.010
0.006
0.008
0.002
0.003
0.007
0.002
0.004
0.009

123
Stn
127
127
127
127
127
127
127
127
127
127
127
127
127
138
138
138
138
138
138
138
138
138
138
138
Cruise
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
Table A.1 cont.
-66.9989
-66.9989
-66.9989
-66.9989
-66.9989
-66.9989
-66.9989
-66.9989
-66.9989
-66.9989
-66.9989
-67
-67
-67
-67
-67
-67
-67
-67
-67
-67
-67
-67
Lat (N)
-67
depth
385.6
434.4
485.5
665.4
964.5
1265
1565.1
2165.3
2915
3499.7
3799.6
4100
4218.3
5.7
24.6
64.8
88.8
99.7
125.6
175.2
225.5
301
449.6
900.6
Long (E)
-81.633
-81.633
-81.633
-81.633
-81.633
-81.633
-81.633
-81.633
-81.633
-81.633
-81.633
-81.633
-81.633
-73.0125
-73.0125
-73.0125
-73.0125
-73.0125
-73.0125
-73.0125
-73.0125
-73.0125
-73.0125
-73.0125
103.45
91.78
93.4
94.38
89.14
78.93
73.73
44.31
39.93
35.07
34.58
146.12
141.93
135.36
131.83
124.71
113.79
102.53
95.83
89.06
83.16
79.04
77.82
76.92
Si
31.64
31.5
32.84
33.52
33.19
31.31
28.95
23.12
21.85
22.55
22.54
32.79
32.68
32.46
32.31
32.21
31.77
31.31
31.26
31.52
32.32
33.14
33.5
33.85
NO3
2.18
2.18
2.28
2.34
2.31
2.19
2.08
1.62
1.5
1.54
1.52
2.25
2.25
2.24
2.24
2.24
2.22
2.19
2.19
2.2
2.24
2.28
2.3
2.32
PO4
2354.90
2349.20
2346.90
2333.40
2322.60
2307.10
2301.50
2299.60
2295.80
2298.50
2362.90
2361.90
2359.50
2358.60
2356.10
2351.00
2347.10
2342.50
2338.10
2336.00
2333.30
TA
2366.80
2358.77
2369.58
2365.02
2363.39
2365.08
2366.75
2361.96
2372.95
2375.89
2383.12
2382.11
2378.53
2377.62
2356.64
2369.21
2361.95
2356.10
2361.38
2360.62
2354.15
NTA
34.824
34.858
34.665
34.532
34.396
34.142
34.035
34.076
33.855
33.862
33.86
34.703
34.705
34.703
34.704
34.72
34.72
34.992
34.731
34.78
34.798
34.655
34.635
34.69
Sp
1023.21
1023.236
1023.09
1022.989
1022.881
1022.692
1022.613
1022.639
1022.476
1022.475
1022.477
1023.122
1023.123
1023.123
1023.121
1023.136
1023.133
1023.338
1023.14
1023.176
1023.192
1023.083
1023.069
1023.108

26.167
26.193
26.047
25.946
25.838
25.649
25.57
25.596
25.433
25.432
25.434
26.079
26.077
26.077
26.075
26.09
26.09
26.295
26.097
26.133
26.149
26.037
26.023
26.062
 Meas 26.162
26.188
26.042
25.942
25.839
25.647
25.566
25.597
25.430
25.435
25.434
26.071
26.072
26.071
26.072
26.084
26.084
26.289
26.092
26.129
26.143
26.035
26.019
26.061
 Calc 0.005
0.005
0.005
0.004
-0.001
0.002
0.004
-0.001
0.003
-0.003
0.000
0.008
0.005
0.006
0.003
0.006
0.006
0.006
0.005
0.004
0.006
0.002
0.004
0.001

124
Stn
138
138
138
140
140
140
140
140
140
140
140
140
2
2
2
2
2
2
2
2
2
2
2
2
Cruise
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
S4P
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
Table A.1 cont.
22.799
22.799
22.799
22.799
22.799
22.799
22.799
22.799
22.799
22.799
22.799
22.799
-67.0008
-67.0008
-67.0008
-67.0008
-67.0008
-67.0008
-67.0008
-67.0008
-67.0008
-66.9989
-66.9989
Lat (N)
-66.9989
depth
1199.9
1518.8
1641.4
4.4
60.1
84.5
110
158.8
209.7
313.4
349.4
371.7
10.4
24.9
48.4
93.5
149.7
200.5
249.6
324.4
400.6
501.3
600.2
700.6
Long (E)
-73.0125
-73.0125
-73.0125
-72.6794
-72.6794
-72.6794
-72.6794
-72.6794
-72.6794
-72.6794
-72.6794
-72.6794
-110.0015
-110.0015
-110.0015
-110.0015
-110.0015
-110.0015
-110.0015
-110.0015
-110.0015
-110.0015
-110.0015
-110.0015
84.5
77.3
63.6
51.6
44
42.4
38.6
32
27.4
3.8
3.3
2.9
97.72
102.6
104.67
95.72
88.22
74.06
40.5
36.01
30.62
115.83
114.16
109.86
Si
38.65
36.6
32.8
28.89
26.55
26.06
25.67
25.28
21.57
1.07
0.88
0.49
32.03
32.79
33.53
34.2
33.55
30.17
23
22.64
22.16
32.18
31.95
31.79
NO3
3.1
3.05
2.92
2.79
2.67
2.62
2.55
2.41
2.16
0.68
0.59
0.53
2.23
2.31
2.4
2.4
2.37
2.23
1.67
1.63
1.5
2.2
2.2
2.19
PO4
2343.70
2336.00
2324.80
2313.50
2312.80
2297.60
2297.70
2297.70
2319.50
2353.50
2349.70
2342.70
2351.70
2336.50
2320.40
2304.00
2298.00
2295.90
2360.90
2358.90
TA
2376.91
2368.83
2355.97
2340.79
2337.04
2316.33
2314.43
2320.78
2333.37
2342.92
2341.27
2336.62
2369.64
2347.70
2350.62
2360.17
2375.65
2374.11
2368.55
2377.79
NTA
34.511
34.515
34.537
34.592
34.637
34.717
34.747
34.652
34.792
35.158
35.126
35.091
34.735
34.753
34.691
34.833
34.55
34.167
34.168
33.856
33.847
34.887
34.718
34.722
Sp
1023.144
1023.158
1023.11
1023.22
1023.002
1022.712
1022.711
1022.48
1022.468
1023.259
1023.132
1023.135

26.101
26.115
26.067
26.177
25.959
25.669
25.668
25.437
25.425
26.216
26.089
26.092
 Meas 25.926
25.929
25.945
25.987
26.021
26.081
26.104
26.032
26.138
26.415
26.390
26.364
26.095
26.109
26.062
26.169
25.955
25.666
25.667
25.431
25.424
26.210
26.082
26.085
 Calc 0.004
0.002
0.003
0.000
0.001
0.002
0.000
0.000
-0.002
0.002
-0.002
-0.008
0.006
0.006
0.005
0.008
0.004
0.003
0.001
0.006
0.001
0.006
0.007
0.007

125
Stn
2
2
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
17
17
17
17
Cruise
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
Table A.1 cont.
15
15
15
15.583
20.2488
20.2488
20.2488
20.2488
20.2488
20.2488
20.2488
20.2488
20.2488
20.2488
20.2488
20.2488
20.2488
20.2488
20.2488
20.2488
20.2488
20.2488
22.799
Lat (N)
22.799
depth
799.3
855.4
5.3
19.8
40.9
91.3
116
182.8
249.5
399.1
475
568.1
700.4
849.3
1150.9
1333.1
1861.7
2667.2
3066.5
3285.8
5.2
13.7
28.2
47.9
Long (E)
-110.0015
-110.0015
-109.9988
-109.9988
-109.9988
-109.9988
-109.9988
-109.9988
-109.9988
-109.9988
-109.9988
-109.9988
-109.9988
-109.9988
-109.9988
-109.9988
-109.9988
-109.9988
-109.9988
-109.9988
-110.0002
-110.0005
-110.0005
-110.0005
9.1
1.4
1.2
1.1
169.9
169.7
166.9
156.1
132.6
122.3
96.1
84.1
73.1
62
51.9
37.7
33.8
26.8
19.2
2.4
1.7
1.6
96.6
94.2
Si
14.54
0.29
0.1
0
38.63
38.73
38.92
41.17
43.71
44.2
43.03
40.29
36.2
32.68
30.54
23.31
24.48
24.68
20.88
0.1
0
0
41.19
40.7
NO3
1.36
0.16
0.14
0.12
2.57
2.59
2.6
2.85
3.13
3.23
3.24
3.16
3.06
2.95
2.81
2.57
2.51
2.31
1.83
0.34
0.18
0.15
3.17
3.16
PO4
2281.60
2244.90
2242.80
2430.80
2434.30
2433.00
2429.80
2422.10
2390.90
2362.70
2337.10
2331.70
2331.70
2319.90
2314.20
2304.40
2297.80
2271.50
2271.00
2303.70
2303.70
2298.40
2354.60
2351.80
TA
2319.64
2319.45
2318.38
2513.09
2457.54
2456.23
2453.28
2447.98
2420.22
2393.33
2369.05
2364.88
2364.12
2350.25
2343.26
2323.99
2314.93
2299.22
2317.62
2320.34
2328.99
2324.17
2387.82
2385.12
NTA
34.426
33.875
33.859
33.854
34.669
34.669
34.665
34.63
34.576
34.552
34.528
34.509
34.52
34.548
34.566
34.705
34.741
34.578
34.296
34.749
34.62
34.612
34.513
34.511
Sp

 Meas 25.861
25.445
25.433
25.429
26.045
26.045
26.042
26.015
25.975
25.957
25.938
25.924
25.932
25.954
25.967
26.072
26.099
25.976
25.763
26.105
26.008
26.002
25.927
25.926
 Calc 0.002
-0.005
0.002
0.001
0.014
0.012
0.011
0.012
0.009
0.009
0.008
0.006
0.005
0.001
0.003
0.002
0.000
-0.007
0.000
0.002
0.001
0.000
0.004
0.005

126
Stn
17
17
17
17
17
17
17
17
17
17
17
17
17
17
26
26
26
26
26
26
26
26
26
26
Cruise
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
Table A.1 cont.
9.7517
9.7517
9.7517
9.7517
9.7517
9.7517
9.7517
9.7517
9.7517
9.7517
15
15
15
15
15
15
15
15
15
15
15
15
15
Lat (N)
15
depth
67.6
88.2
108.7
134.1
183.3
267.5
317.1
633.7
833.7
1033
1467.8
2665.9
3580.3
3757.5
4.9
12.4
27.1
46.7
66.9
86.3
107.1
133.2
183.6
267.2
Long (E)
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0007
-110.0007
-110.0007
-110.0007
-110.0007
-110.0007
-110.0007
-110.0007
-110.0007
-110.0007
33.4
29.2
27.2
25.7
22
9.7
2.9
1.2
1.1
1.1
163.5
163.8
164.3
135.6
106.8
92.6
75.2
38.1
35.3
32
28.5
26.6
24.9
19.9
Si
32.31
32.6
31.72
30.94
28.99
14.84
3.22
0.1
0
0
37.37
37.28
38.74
43.23
44.79
43.62
38.65
28.59
26.44
24.98
24.69
25.76
25.76
25.27
NO3
2.54
2.4
2.42
2.41
2.36
1.25
0.4
0.13
0.14
0.09
2.45
2.43
2.58
3.05
3.25
3.24
3.13
2.59
2.53
2.47
2.42
2.39
2.36
2.23
PO4
2323.80
2298.00
2309.30
2298.20
2271.40
2190.40
2190.40
2190.00
2175.50
2430.50
2430.50
2402.90
2371.60
2338.50
2304.60
2303.30
2303.40
2301.50
2295.20
2295.20
2291.50
TA
2342.00
2313.20
2322.91
2315.47
2298.99
2241.64
2320.55
2321.39
2306.86
2452.86
2452.79
2430.89
2402.28
2369.10
2326.74
2322.81
2319.77
2316.46
2309.92
2311.78
2315.58
NTA
34.728
34.77
34.793
34.795
34.739
34.58
34.2
33.037
33.019
33.007
34.681
34.682
34.668
34.597
34.553
34.542
34.548
34.667
34.706
34.753
34.774
34.777
34.749
34.636
Sp

 Meas 26.090
26.121
26.139
26.140
26.098
25.978
25.691
24.812
24.799
24.790
26.054
26.055
26.044
25.991
25.957
25.949
25.954
26.043
26.073
26.108
26.124
26.127
26.105
26.020
 Calc -0.002
-0.003
-0.002
-0.001
0.000
-0.002
0.000
-0.001
0.000
-0.003
0.012
0.013
0.008
0.005
0.002
0.005
0.005
-0.003
-0.001
0.002
0.001
0.000
-0.005
0.002

127
Stn
26
26
26
26
26
26
26
26
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
Cruise
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
Table A.1 cont.
5.0345
5.0345
5.0345
5.0345
5.0345
5.0345
5.0345
5.0345
5.0345
5.0345
5.0345
5.0345
5.0345
5.0345
5.0345
5.0345
9.7517
9.7517
9.7517
9.7517
9.7517
9.7517
9.7517
Lat (N)
9.7517
depth
317.3
632.8
1033.3
1467.6
2667.5
3034.5
3583.8
3694.1
4.8
9.8
25.4
49.8
73.9
99.7
123.6
150.3
200.7
300.6
351
701.9
1095.9
1606
2798.1
3249.7
Long (E)
-110.0007
-110.0007
-110.0007
-110.0007
-110.0007
-110.0007
-110.0007
-110.0007
-109.9905
-109.9905
-109.9905
-109.9905
-109.9905
-109.9905
-109.9905
-109.9905
-109.9905
-109.9905
-109.9905
-109.9905
-109.9905
-109.9905
-109.9905
-109.9905
160.3
162.4
137
100.9
68.4
34.4
35.1
28
23.8
16
10.6
6.4
3
2.7
2.6
2.5
161.1
161.2
162.6
162.3
131.4
108
72.3
37.4
Si
37.19
38.46
40.9
41.78
42.76
34.06
34.26
30.74
28.01
23.13
14.93
8.59
2.93
2.34
2.34
2.25
36.99
36.99
37.77
38.36
41.39
43.63
40.7
31.23
NO3
2.52
2.64
2.93
3.03
3.16
2.36
2.5
2.11
1.99
1.57
1.09
0.63
0.29
0.24
0.23
0.22
2.52
2.5
2.61
2.66
3
3.24
3.27
2.69
PO4
2434.80
2434.50
2393.20
2364.80
2321.60
2302.90
2299.30
2300.30
2288.10
2297.00
2016.80
2243.60
2237.70
2237.70
2237.70
2239.30
2454.40
2454.40
2455.80
2395.70
2326.80
TA
2456.98
2457.46
2419.54
2394.21
2350.89
2323.01
2318.38
2316.72
2308.95
2303.98
2034.12
2279.62
2302.57
2305.62
2305.68
2307.54
2476.76
2476.83
2478.82
2423.19
2347.32
NTA
34.684
34.673
34.619
34.57
34.564
34.697
34.712
34.752
34.684
34.894
34.702
34.447
34.014
33.969
33.968
33.965
34.684
34.683
34.675
34.671
34.603
34.568
34.565
34.694
Sp

 Meas 26.056
26.048
26.007
25.970
25.966
26.066
26.077
26.108
26.056
26.215
26.070
25.877
25.550
25.516
25.515
25.513
26.056
26.056
26.049
26.046
25.995
25.969
25.966
26.064
 Calc 0.007
0.006
0.004
-0.001
-0.003
0.000
-0.005
-0.007
-0.005
-0.007
-0.005
-0.003
-0.005
0.008
0.007
0.007
0.007
0.004
0.006
0.001
-0.002

128
Stn
34
34
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
55
55
55
55
Cruise
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
Table A.1 cont.
-5.0125
-5.0125
-5.0125
-5.0125
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.4998
5.0345
Lat (N)
5.0345
depth
3749.2
4005.2
5.6
12.9
26
55.3
68.2
89.7
107.4
130.2
183
266.7
317.7
629
1032.7
1467.5
2665.4
3067.5
3586.1
3857.4
5
13
26.8
46.4
Long (E)
-109.9905
-109.9905
-110.004
-109.9775
-109.9775
-109.9775
-109.9775
-109.9775
-109.9775
-109.9775
-109.9775
-109.9775
-109.9775
-109.9775
-109.9775
-109.9775
-109.9775
-109.9775
-109.9775
-109.9775
-110.0005
-110.0005
-110.0005
-110.0005
6.3
6.1
6.2
6.2
154.4
155.8
154.6
154
119.7
84.9
50.8
25.8
24.2
20.7
17.9
17.1
16.3
17.8
18.3
10.2
3.8
3.7
158.9
158.4
Si
12.01
11.82
11.82
11.82
36.04
36.23
37.11
37.89
40.04
39.75
39.17
30.66
29.1
25
21.78
20.41
19.72
20.99
22.46
13.97
4.3
4.2
36.31
36.41
NO3
0.89
0.85
0.84
0.84
2.45
2.42
2.52
2.64
2.86
2.82
2.73
2.1
1.99
1.71
1.49
1.4
1.35
1.43
1.51
1.02
0.42
0.41
2.42
2.42
PO4
2309.80
2312.30
2312.30
2309.70
2427.30
2430.90
2426.30
2417.70
2388.40
2342.60
2310.80
2291.00
2306.00
2307.60
2305.30
2305.40
2303.60
2303.60
2304.50
2244.20
2244.20
2435.00
2438.50
2435.50
TA
2308.35
2311.24
2311.77
2309.24
2448.64
2452.48
2448.83
2440.92
2416.15
2372.70
2338.46
2299.87
2314.13
2314.54
2310.12
2310.09
2306.96
2309.87
2310.71
2271.65
2311.02
2508.17
2460.22
2457.19
NTA
35.022
35.016
35.008
35.007
34.695
34.692
34.678
34.667
34.598
34.556
34.586
34.865
34.877
34.895
34.927
34.929
34.949
34.905
34.906
34.577
33.988
33.979
34.691
34.691
Sp

 Meas 26.312
26.307
26.301
26.300
26.065
26.062
26.052
26.043
25.991
25.960
25.982
26.193
26.202
26.216
26.240
26.241
26.257
26.223
26.224
25.975
25.530
25.524
26.062
26.062
 Calc -0.002
-0.006
-0.008
-0.001
0.004
0.005
0.007
0.007
0.008
0.001
-0.008
-0.008
0.002
-0.003
-0.006
-0.006
-0.005
-0.005
-0.002
-0.003
0.005

129
Stn
55
55
55
55
55
55
55
55
55
55
55
55
55
55
67
67
67
67
67
67
67
67
67
67
Cruise
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
Table A.1 cont.
-5.833
-5.833
-5.833
-5.833
-5.833
-5.833
-5.833
-5.833
-5.833
-5.833
-5.0125
-5.0125
-5.0125
-5.0125
-5.0125
-5.0125
-5.0125
-5.0125
-5.0125
-5.0125
-5.0125
-5.0125
-5.0125
Lat (N)
-5.0125
depth
66.9
86.2
107.8
133.5
182.9
266.3
317.5
632.4
1033.6
1431.6
2466.6
2832.9
3299.3
3589.6
7.1
14.7
33.3
59.1
80.6
107.4
133.6
157.1
216.7
317.2
Long (E)
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-110.0005
-108.84
-108.84
-108.84
-108.84
-108.84
-108.84
-108.84
-108.84
-108.84
-108.84
31.9
23.8
11.5
3.8
1.5
1.7
2.4
1.5
1.3
1.3
151.3
151.2
150.6
149.5
117.8
84.9
54.6
28.4
27
23.5
18.8
12.4
9.6
7.5
Si
35.07
28.42
21.39
12.3
2.54
2.83
6.54
7.52
7.52
7.52
36.15
36.15
36.83
37.91
39.67
38.99
42.99
32.73
32.82
31.94
29.21
22.76
18.46
12.4
NO3
2.54
2.5
1.99
1.08
0.52
0.53
0.71
0.64
0.64
0.6
2.49
2.45
2.52
2.64
2.82
2.75
2.98
2.4
2.36
2.22
2.03
1.79
1.54
1.05
PO4
2374.60
2374.60
2374.60
2374.60
2374.60
2374.60
2374.60
2374.60
2374.60
2374.60
2431.10
2429.20
2423.40
2420.00
2376.50
2351.00
2317.20
2301.20
2299.00
2300.80
2306.30
2312.60
2314.00
2309.80
TA
2391.34
2387.42
2366.96
2323.03
2319.85
2328.63
2333.33
2333.53
2333.40
2452.83
2450.98
2445.76
2443.25
2404.18
2381.48
2345.62
2311.04
2306.64
2305.41
2304.59
2306.41
2302.88
2304.53
NTA
34.755
34.812
35.113
35.777
35.826
35.691
35.619
35.616
35.618
34.69
34.689
34.68
34.667
34.597
34.552
34.576
34.851
34.884
34.93
35.026
35.094
35.169
35.08
Sp

 Meas 26.110
26.153
26.381
26.882
26.920
26.817
26.763
26.761
26.762
26.061
26.060
26.053
26.043
25.991
25.957
25.975
26.182
26.207
26.242
26.315
26.366
26.423
26.356
 Calc 0.001
0.001
0.004
-0.008
-0.006
-0.006
-0.007
-0.003
-0.004
-0.007
0.013
0.007
0.011
0.008
0.009
0.006
0.001
-0.001
0.001
-0.003
-0.004
-0.005
-0.003
-0.008

130
Stn
67
67
67
67
67
67
67
67
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
Cruise
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
Table A.1 cont.
-15.2498
-15.2498
-15.2498
-15.2498
-15.2498
-15.2498
-15.2498
-15.2498
-15.2498
-15.2498
-15.2498
-15.2498
-15.2498
-15.2498
-15.2498
-15.2498
-10.0002
-10.0002
-10.0002
-10.0002
-10.0002
-10.0002
-5.833
Lat (N)
-5.833
depth
362.8
731.6
1265
2066.8
3234.2
3833.4
4332.1
4622.3
5.3
15
32.8
57.9
83.2
108.4
132.9
157.8
217.4
315.9
366.8
732.4
1132.3
1666.3
2867
3332.6
Long (E)
-108.84
-108.84
-103.0003
-103.0003
-103.0003
-103.0003
-103.0003
-103.0003
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
145.5
138.8
123.9
93.4
56.4
28.2
24.8
2.7
0.9
1
0.8
0.9
0.8
1.1
1.5
1.5
153.3
153.2
153.3
152.5
142.3
105.3
61.3
34.4
Si
36.73
36.44
39.66
42.01
43.28
34.97
29.6
10.25
1.37
1.37
0.78
0.68
0.1
2.15
4.68
4.68
37.02
37.02
37.12
37.22
38.49
40.54
43.96
36.92
NO3
2.53
2.51
2.81
3.01
3.04
2.72
2.67
0.96
0.49
0.49
0.42
0.41
0.34
0.41
0.54
0.54
2.46
2.46
2.47
2.51
2.65
2.87
3.06
2.65
PO4
2425.00
2414.50
2337.90
2298.50
2363.20
2364.00
2368.70
2378.00
2378.70
2375.00
2364.10
2364.10
2366.80
2431.10
2374.60
2374.60
TA
2447.31
2436.85
2368.35
2321.99
2364.21
2315.12
2315.19
2320.06
2317.78
2310.57
2300.16
2308.63
2310.36
2453.39
2406.29
2394.03
NTA
34.681
34.679
34.616
34.55
34.509
34.646
34.662
34.985
35.739
35.809
35.874
35.92
35.976
35.973
35.841
35.855
34.682
34.681
34.679
34.68
34.651
34.577
34.539
34.716
Sp

 Meas 26.054
26.053
26.005
25.955
25.924
26.028
26.040
26.284
26.854
26.907
26.956
26.991
27.033
27.031
26.931
26.941
26.055
26.054
26.053
26.053
26.031
25.975
25.947
26.080
 Calc 0.010
0.007
0.008
0.006
0.002
-0.001
-0.001
-0.005
-0.006
-0.002
0.002
-0.005
-0.002
0.002
-0.004
-0.004
0.011
0.007
0.012
0.008
0.008
0.004
0.002
0.000

131
Stn
76
76
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
110
110
110
110
Cruise
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
Table A.1 cont.
-35.0842
-35.0842
-35.0842
-35.0842
-19.9153
-19.9153
-19.9153
-19.9153
-19.9153
-19.9153
-19.9153
-19.9153
-19.9153
-19.9153
-19.9153
-19.9153
-19.9153
-19.9153
-19.9153
-19.9153
-19.9153
-19.3323
-15.2498
Lat (N)
-15.2498
depth
3832.6
4066.7
4.8
12.7
20
41
66.3
92.7
116.3
142.6
189.9
280.4
332.6
665.8
1065.9
1733.9
2931.9
3416.6
3904.9
4181.4
5.2
46.3
86.2
132.6
Long (E)
-103.0002
-103.0002
-103.0007
-103.001
-103.001
-103.001
-103.001
-103.001
-103.001
-103.001
-103.001
-103.001
-103.001
-103.001
-103.001
-103.001
-103.001
-103.001
-103.001
-103.001
-103.0005
-103.0005
-103.0005
-103.0005
0.9
0.7
0.6
0.5
137.2
137
136.2
132.8
117.7
73.2
29.9
10.6
2.7
0.6
0.6
0.6
0.5
0.5
0.5
0.5
0.5
0.5
152.1
151.2
Si
5.22
1.77
0.46
1.18
36.03
35.84
35.84
35.93
38.87
40.24
34.77
20.61
11.03
0.68
0.29
0.2
0.2
0.2
0.2
0.2
0.2
0.2
37.31
37.02
NO3
0.46
0.23
0.14
0.18
2.46
2.44
2.45
2.45
2.71
2.79
2.36
1.77
0.93
0.3
0.27
0.25
0.24
0.24
0.25
0.25
0.25
0.25
2.56
2.54
PO4
2276.40
2279.30
2281.70
2420.00
2406.80
2407.80
2402.50
2385.40
2334.40
2289.10
2276.00
2284.00
2362.30
2362.60
2366.30
2366.30
2375.40
2377.10
2377.10
2323.40
2316.09
2316.98
2441.56
2428.03
2429.39
2424.53
2412.28
2367.61
2331.81
2313.88
2310.34
2316.30
2310.84
2312.58
2312.07
2320.76
2316.54
2315.77
2316.32
2355.48
2418.00
2377.80
2452.72
NTA
2430.30
TA
34.292
34.444
34.467
34.517
34.691
34.694
34.689
34.682
34.61
34.509
34.359
34.427
34.601
35.695
35.784
35.813
35.821
35.824
35.915
35.927
35.929
35.929
34.68
34.68
Sp

 Meas 25.760
25.875
25.892
25.930
26.062
26.064
26.060
26.055
26.000
25.924
25.811
25.862
25.994
26.820
26.888
26.910
26.916
26.918
26.987
26.996
26.997
26.997
26.053
26.053
 Calc -0.004
-0.006
-0.003
-0.004
0.005
0.008
0.009
0.008
0.009
0.006
0.001
0.003
-0.001
0.001
0.003
-0.001
0.004
-0.003
-0.001
-0.006
-0.004
-0.003
0.010
0.010

132
Stn
110
110
110
110
110
110
110
110
110
110
110
110
110
110
120
120
120
120
120
120
120
120
120
120
Cruise
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
Table A.1 cont.
-40.9155
-40.9155
-40.9155
-40.9155
-40.9155
-40.9155
-40.9155
-40.9155
-40.9155
-40.9155
-35.0842
-35.0842
-35.0842
-35.0842
-35.0842
-35.0842
-35.0842
-35.0842
-35.0842
-35.0842
-35.0842
-35.0842
-35.0842
Lat (N)
-35.0842
depth
183.1
267.4
367.2
533.6
732.8
933.8
1132.8
1332
1665.9
2066.8
2466.9
2865.7
3332.1
3593.6
5.5
41.2
92.3
190.6
282.3
384.2
467.8
566.4
665.7
867.9
Long (E)
-103.0005
-103.0005
-103.0005
-103.0005
-103.0005
-103.0005
-103.0005
-103.0005
-103.0005
-103.0005
-103.0005
-103.0005
-103.0005
-103.0005
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
22.4
12
9.9
8.6
7.8
6.4
3.4
1.4
1.2
1.2
123.6
124
123.2
119.8
111.7
98.7
77.8
53.8
27.2
13.1
8.8
6.4
3.6
1.4
Si
28.9
25
23.53
22.95
22.36
21.97
19.04
11.82
9.77
10.26
34.23
34.2
34.24
34.28
35.05
36.55
37.56
35.39
30.56
26
23.38
22.26
17.9
10.6
NO3
1.87
1.58
1.49
1.44
1.4
1.38
1.2
0.8
0.66
0.68
2.26
2.25
2.27
2.28
2.34
2.47
2.54
2.36
1.99
1.65
1.47
1.41
1.15
0.72
PO4
2286.20
2277.70
2281.30
2281.30
2282.10
2265.40
2267.20
2258.50
2303.70
2238.60
2283.20
2334.56
2326.22
2329.42
2327.52
2327.72
2327.10
2331.41
2330.68
2344.84
2285.02
2331.56
2314.97
2318.54
2272.50
2269.40
2315.80
NTA
2271.80
TA
34.275
34.27
34.277
34.305
34.314
34.294
34.21
34.072
34.036
33.916
34.691
34.691
34.687
34.679
34.643
34.578
34.489
34.386
34.289
34.274
34.311
34.305
34.335
34.331
Sp

 Meas 25.747
25.744
25.749
25.770
25.777
25.762
25.698
25.594
25.567
25.476
26.062
26.062
26.059
26.053
26.025
25.976
25.909
25.831
25.758
25.747
25.774
25.770
25.793
25.790
 Calc 0.001
-0.005
-0.003
0.000
-0.003
0.000
0.000
0.000
-0.001
-0.003
0.009
0.009
0.008
0.006
0.006
0.005
0.002
0.001
0.000
-0.002
-0.002
-0.001
-0.003
-0.004

133
Stn
120
120
120
120
120
120
120
120
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
Cruise
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
Table A.1 cont.
-45.5842
-45.5842
-45.5842
-45.5842
-45.5842
-45.5842
-45.5842
-45.5842
-45.5842
-45.5842
-45.5842
-45.5842
-45.5842
-45.5842
-45.5842
-45.5842
-40.9155
-40.9155
-40.9155
-40.9155
-40.9155
-40.9155
-40.9155
Lat (N)
-40.9155
depth
1067.1
1332.5
1732.1
2134.3
2535
2933.9
3417.2
4182.4
9.2
58.6
107.8
157.9
216.9
316.8
432.4
632.6
833.2
1032.8
1233.7
1466.9
1867.6
2266.4
2666.2
3082.6
Long (E)
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-103.0002
-102.9998
-102.9998
-102.9998
-102.9998
-102.9998
-102.9998
-102.9998
-102.9998
-102.9998
-102.9998
-102.9998
-102.9998
-102.9998
-102.9998
-102.9998
-102.9998
117.4
112.5
102.8
92.2
72.7
52.8
34.3
19.8
10.6
8.1
7
5.5
3.5
1.9
1.3
0.9
131.4
125.3
118.3
115.8
101.2
93.4
72
40.3
Si
33.28
33.58
33.87
34.85
35.63
34.27
31.73
28.22
24.31
22.46
21.77
20.89
18.84
15.43
14.16
13.67
32.9
33.19
33.39
33.68
33.78
35.54
36.71
32.61
NO3
2.31
2.33
2.36
2.43
2.48
2.38
2.19
1.94
1.68
1.56
1.51
1.46
1.35
1.17
1.07
1.03
2.16
2.18
2.2
2.23
2.22
2.37
2.47
2.14
PO4
2387.20
2374.80
2357.80
2353.00
2338.10
2312.30
2298.50
2285.30
2281.60
2281.70
2274.30
2272.70
2268.10
2269.60
2267.80
2260.60
2384.10
2386.50
2387.50
2365.70
2300.30
TA
2407.49
2395.40
2379.90
2379.65
2372.67
2353.66
2343.09
2334.46
2330.13
2327.99
2319.84
2320.98
2321.15
2327.39
2328.13
2325.24
2403.95
2406.92
2408.77
2388.77
2345.13
NTA
34.705
34.699
34.675
34.608
34.49
34.385
34.334
34.263
34.271
34.304
34.313
34.272
34.2
34.131
34.093
34.027
34.711
34.707
34.703
34.691
34.662
34.58
34.469
34.331
Sp

 Meas 26.072
26.068
26.049
25.999
25.910
25.830
25.792
25.738
25.744
25.769
25.776
25.745
25.691
25.638
25.610
25.560
26.077
26.074
26.071
26.062
26.040
25.978
25.894
25.790
 Calc 0.008
0.007
0.007
0.007
0.006
0.007
0.000
0.000
0.001
0.001
-0.003
-0.002
-0.003
-0.007
-0.001
-0.003
0.007
0.010
0.008
0.008
0.009
0.008
0.004
0.001

134
Stn
128
128
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
140
140
140
140
Cruise
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
Table A.1 cont.
-52.582
-52.582
-52.582
-51.9997
-48.9405
-48.9405
-48.9405
-48.9405
-48.9405
-48.9405
-48.9405
-48.9405
-48.9405
-48.9405
-48.9405
-48.9405
-48.9405
-48.9405
-48.9405
-48.9405
-48.9405
-48.9405
-45.5842
Lat (N)
-45.5842
-102.9987
-102.9987
-102.9987
-103.0005
-103.0658
-103.0658
-103.0658
-103.0658
-103.0658
-103.0658
-103.0658
-103.0658
-103.0658
-103.0658
-103.0658
-103.0658
-103.0658
-103.0658
-103.0658
-103.0658
-103.0658
-103.0658
108.5
57.9
32.9
5
4153.1
3943.5
3734.8
3332.9
2935.3
2532.7
2132.4
1732.1
1398.5
1165.3
999.7
701.1
433
273.5
140.3
81.6
33.3
4.6
3926.3
3583
-102.9998
-102.9998
depth
Long (E)
3.7
1.1
1.3
1.3
136.8
133.3
128.4
117.8
114.9
107.6
95.6
81.4
64.3
47.4
34.5
14.6
7.5
6.4
2.9
2.2
1.9
1.9
129.1
125.5
Si
18.45
16.49
16.69
16.69
32.99
32.89
32.99
32.79
33.28
33.28
33.48
34.16
34.46
33.09
31.24
25.77
21.57
20.6
17.28
16.01
15.72
15.72
33.09
33.19
NO3
1.36
1.19
1.18
1.18
2.29
2.29
2.29
2.3
2.33
2.34
2.36
2.41
2.41
2.3
2.18
1.8
1.53
1.46
1.3
1.21
1.18
1.18
2.3
2.29
PO4
2273.70
2276.70
2274.70
2379.20
2386.00
2386.00
2370.70
2373.50
2374.40
2365.70
2365.70
2326.90
2311.20
2311.20
2300.40
2283.00
2286.20
2276.30
2274.70
2275.50
2275.60
2271.50
2401.40
TA
2328.59
2332.14
2331.18
2438.20
2405.93
2405.80
2390.23
2393.05
2394.24
2386.08
2388.08
2354.69
2347.69
2354.32
2346.53
2331.84
2333.06
2321.60
2329.14
2331.73
2333.33
2329.13
2421.53
NTA
34.175
34.168
34.152
34.153
34.71
34.712
34.714
34.714
34.71
34.701
34.672
34.587
34.456
34.359
34.312
34.267
34.297
34.317
34.182
34.156
34.134
34.134
34.709
34.708
Sp

 Meas 
0.004
0.007
0.002
-0.002
-0.003
0.000
-0.002
0.000
-0.001
0.001
0.003
0.004
0.006
0.007
0.008
0.007
0.008
0.010
0.008
0.008
-0.003
-0.001
-0.002
-0.001
 Calc 26.074
26.075
25.641
25.641
25.657
25.677
25.779
25.764
25.741
25.775
25.811
25.884
25.983
26.047
26.069
26.076
26.079
26.079
26.077
26.076
25.655
25.654
25.666
25.672
135
Stn
140
140
140
140
140
140
140
140
140
140
140
140
140
149
149
149
149
149
149
149
149
149
149
149
Cruise
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
Table A.1 cont.
-57.7502
-57.7502
-57.7502
-57.7502
-57.7502
-57.7502
-57.7502
-57.7502
-57.7502
-57.7502
-57.7502
-52.582
-52.582
-52.582
-52.582
-52.582
-52.582
-52.582
-52.582
-52.582
-52.582
-52.582
-52.582
Lat (N)
-52.582
depth
142.6
195.5
348.2
550.1
1167.9
1396.9
1732
2531.2
2934.3
3330.1
3732.1
4133.2
4400.6
5.3
32.8
82.7
132.1
217.4
317
433
630.5
832.4
1066.9
1466.5
Long (E)
-102.9987
-102.9987
-102.9987
-102.9987
-102.9987
-102.9987
-102.9987
-102.9987
-102.9987
-102.9987
-102.9987
-102.9987
-102.9987
-102.9995
-102.9995
-102.9995
-102.9995
-102.9995
-102.9995
-102.9995
-102.9995
-102.9995
-102.9995
-102.9995
81.1
67.8
52.8
37.3
23.8
15
11.4
7.9
3.5
3.4
3.4
138.4
135.9
125.9
114.7
113.8
105.4
81.9
65.8
49.8
10.8
7.4
4.9
4.5
Si
33.75
34.53
33.76
31.81
29.08
26.44
24.79
22.35
20.3
20.3
20.4
33.27
33.27
33.17
32.88
33.37
33.46
34.64
34.84
33.67
24.2
21.86
20.11
19.23
NO3
2.32
2.39
2.33
2.19
1.99
1.83
1.72
1.64
1.46
1.45
1.45
2.28
2.27
2.26
2.25
2.3
2.3
2.39
2.39
2.31
1.67
1.52
1.42
1.4
PO4
2337.10
2328.30
2306.40
2266.70
2289.10
2278.40
2276.80
2276.50
2275.10
2281.70
2275.30
2379.50
2376.10
2373.50
2373.50
2374.30
2354.10
2325.30
2310.90
2310.90
2281.00
2279.40
2269.70
2269.70
TA
2362.00
2363.07
2349.15
2315.52
2341.76
2338.74
2336.62
2339.60
2338.71
2346.39
2339.67
2399.52
2395.95
2393.12
2392.64
2394.14
2374.04
2352.79
2346.70
2353.46
2331.97
2328.29
2322.79
2322.93
NTA
34.631
34.485
34.363
34.262
34.213
34.097
34.104
34.056
34.048
34.035
34.037
34.708
34.71
34.713
34.72
34.71
34.706
34.591
34.466
34.367
34.235
34.265
34.2
34.198
Sp

 Meas 26.016
25.906
25.814
25.737
25.700
25.613
25.618
25.582
25.576
25.566
25.567
26.074
26.076
26.078
26.084
26.076
26.073
25.986
25.892
25.817
25.717
25.740
25.691
25.689
 Calc 0.002
0.002
0.002
0.001
0.002
0.002
-0.002
-0.002
-0.002
0.001
-0.002
0.011
0.010
0.011
0.009
0.009
0.008
0.008
0.006
0.005
0.001
0.001
-0.001
0.000

136
Stn
149
149
149
149
149
149
149
157
157
157
157
157
157
157
157
157
157
157
157
157
157
157
157
157
Cruise
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
Table A.1 cont.
-61.7503
-61.7503
-61.7503
-61.7503
-61.7503
-61.7503
-61.7503
-61.7503
-61.7503
-61.7503
-61.7503
-61.7503
-61.7503
-61.7503
-61.7503
-61.7503
-61.7503
-57.7502
-57.7502
-57.7502
-57.7502
-57.7502
-57.7502
Lat (N)
-57.7502
depth
1867.3
2267
2666.8
3082.3
3582.7
4081.7
4725.6
5.1
23.9
72.4
100.4
147.7
300.9
399.5
647.2
800.2
1100.4
1299.7
1598.8
2400
3399.7
3899.7
4399.3
4898.2
Long (E)
-102.9995
-102.9995
-102.9995
-102.9995
-102.9995
-102.9995
-102.9995
-103.0003
-103.0003
-103.0003
-103.0003
-103.0003
-103.0003
-103.0003
-103.0003
-103.0003
-103.0003
-103.0003
-103.0003
-103.0003
-103.0003
-103.0003
-103.0003
-103.0003
144.5
138.9
133
128.4
111.5
91.9
86.2
82.7
75.2
67.6
44.8
34.5
21.9
19
14.5
5.3
5.2
139.8
135
125.9
115.7
102
100.1
89.5
Si
32.9
32.8
32.7
32.51
32.02
31.82
32.51
33.39
34.66
34.86
32.62
30.86
28.52
26.86
25.59
24.22
24.22
32.87
32.68
32.48
32.19
0.005
31.99
32.38
NO3
2.25
2.25
2.24
2.23
2.2
2.18
2.23
2.28
2.37
2.38
2.23
2.12
1.97
1.94
1.89
1.59
1.59
2.26
2.26
2.24
2.22
2.22
2.23
PO4
2363.90
2362.40
2362.40
2362.50
2360.10
2351.60
2348.10
2344.00
2334.10
2313.10
2301.80
2292.50
2281.90
2281.90
2283.40
2280.60
2280.60
2365.10
2365.30
2368.60
2365.90
2366.30
2356.00
2351.10
TA
2384.34
2382.69
2382.55
2382.38
2378.72
2370.15
2368.54
2367.13
2364.23
2349.01
2354.75
2353.07
2350.12
2351.78
2353.74
2352.52
2352.80
2385.27
2385.20
2388.05
2384.77
2385.11
2374.59
2370.95
NTA
34.7
34.702
34.704
34.708
34.726
34.726
34.698
34.658
34.554
34.465
34.213
34.099
33.984
33.96
33.954
33.93
33.926
34.704
34.708
34.715
34.723
34.724
34.726
34.707
Sp

 Meas 26.068
26.070
26.071
26.074
26.088
26.088
26.067
26.037
25.958
25.891
25.700
25.614
25.527
25.509
25.505
25.487
25.484
26.071
26.074
26.080
26.086
26.087
26.088
26.074
 Calc 0.010
0.010
0.009
0.008
0.005
0.006
0.005
0.009
0.006
0.008
0.003
0.001
0.001
0.002
-0.001
-0.002
0.000
0.006
0.005
0.004
0.004
0.008
0.005

137
Stn
157
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
173
173
173
173
173
Cruise
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
Table A.1 cont.
-67.0005
-67.0005
-67.0005
-67.0005
-67.0005
-65.7492
-65.7492
-65.7492
-65.7492
-65.7492
-65.7492
-65.7492
-65.7492
-65.7492
-65.7492
-65.7492
-65.7492
-65.7492
-65.7492
-65.7492
-65.7492
-65.7492
-65.2488
Lat (N)
-61.7503
depth
4977.7
4.1
19.2
41.9
66.8
92.2
131.7
275.6
466.7
750.9
1050.3
1500.4
2266.6
2734.6
3232.9
3732.7
4232.1
4733.1
4945.6
33.4
57.6
83.5
116.3
173.1
Long (E)
-103.0003
-102.9987
-103.0008
-103.0008
-103.0008
-103.0008
-103.0008
-103.0008
-103.0008
-103.0008
-103.0008
-103.0008
-103.0008
-103.0008
-103.0008
-103.0008
-103.0008
-103.0008
-103.0008
-107.2502
-107.2502
-107.2502
-107.2502
-107.2502
46.6
36.8
29.1
9.8
7.6
150
143.4
138.9
133.8
128.5
121.2
113
95.2
85.6
80
68.7
50.6
27.2
23
5.3
4.6
4.2
4.2
144.8
Si
31.83
29.78
27.05
24.8
24.51
32.89
32.89
32.79
32.69
32.6
32.3
32.01
31.62
32.5
33.87
34.85
33.29
28.71
26.85
24.31
24.02
23.93
23.93
32.9
NO3
2.17
2.06
2
1.57
1.51
2.26
2.25
2.25
2.24
2.24
2.22
2.2
2.17
2.23
2.33
2.38
2.27
2.04
1.99
1.55
1.49
1.48
1.46
2.26
PO4
2285.60
2285.60
2281.20
2283.80
2283.80
2361.80
2359.80
2359.10
2358.60
2358.60
2357.50
2356.10
2348.90
2343.40
2337.10
2315.80
2301.50
2284.20
2284.20
2276.30
2279.80
2279.60
2364.40
2363.70
TA
2343.24
2351.30
2351.96
2357.91
2357.98
2382.08
2380.06
2379.15
2378.58
2378.31
2376.58
2374.62
2367.02
2363.93
2362.89
2351.54
2351.90
2352.28
2354.36
2352.94
2357.60
2357.81
2445.52
2384.07
NTA
34.139
34.022
33.947
33.9
33.899
34.702
34.702
34.705
34.706
34.71
34.719
34.727
34.732
34.696
34.618
34.468
34.25
33.987
33.957
33.86
33.845
33.839
33.839
34.701
Sp

 Meas 25.645
25.556
25.500
25.464
25.463
26.070
26.070
26.072
26.073
26.076
26.083
26.089
26.093
26.065
26.006
25.893
25.728
25.530
25.507
25.434
25.422
25.418
25.418
26.069
 Calc 0.003
0.003
0.000
0.001
-0.002
0.011
0.011
0.007
0.008
0.010
0.007
0.006
0.006
0.006
0.006
0.004
0.004
0.005
0.004
0.002
0.001
0.001
0.002
0.008

138
Stn
173
173
173
173
173
173
173
173
173
173
173
173
173
8
8
8
8
8
8
8
8
8
8
8
Cruise
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P18
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
Table A.1 cont.
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-67.0005
-67.0005
-67.0005
-67.0005
-67.0005
-67.0005
-67.0005
-67.0005
-67.0005
-67.0005
-67.0005
-67.0005
Lat (N)
-67.0005
depth
332.2
549.1
699.3
850
1000.1
1166.9
1733.1
2531.8
3331.9
3765.5
4266.4
4701.7
4723.1
3.6
26.5
46.9
73
97.6
124.2
149.3
199.5
250
300.6
351.5
Long (E)
-107.2502
-107.2502
-107.2502
-107.2502
-107.2502
-107.2502
-107.2502
-107.2502
-107.2502
-107.2502
-107.2502
-107.2502
-107.2502
154
154
154
154
154
154
154
154
154
154
154
3.79
3.21
2.83
2.04
1.67
1.08
0.71
1.38
0
0.01
0.26
145.1
144.7
141.2
135.7
131.4
121.4
105.1
91.7
87.7
84.6
82.3
78.7
68.1
Si
11.52
9.73
8.4
6.29
4.7
2.84
2.07
3.77
0.07
0
0
34.06
32.98
32.89
32.89
32.69
32.4
31.91
31.91
32.1
32.69
33.18
34.06
34.84
NO3
0.94
0.83
0.74
0.61
0.51
0.39
0.34
0.43
0.16
0.12
0.13
2.25
2.24
2.24
2.23
2.23
2.21
2.17
2.16
2.19
2.22
2.25
2.31
2.37
PO4
2311.40
2315.00
2319.30
2324.20
2328.40
2333.70
2329.80
2323.20
2325.00
2323.40
2321.50
2357.70
2281.20
2281.20
2355.60
2355.10
2356.00
2354.50
2333.30
2341.10
2336.70
2336.70
2330.30
2323.20
TA
2297.55
2296.95
2294.45
2293.98
2287.23
2297.27
2288.48
2289.06
2279.03
2291.97
2289.64
2377.81
2300.72
2300.72
2375.62
2374.78
2375.27
2372.74
2351.58
2360.46
2357.45
2359.49
2356.90
2360.22
NTA
35.211
35.275
35.379
35.461
35.63
35.555
35.632
35.522
35.706
35.48
35.487
34.704
34.703
34.703
34.705
34.71
34.716
34.731
34.728
34.713
34.692
34.662
34.605
34.451
Sp
1023.496
1023.544
1023.622
1023.684
1023.811
1023.758
1023.816
1023.733
1023.871
1023.701
1023.705

26.451
26.499
26.577
26.639
26.766
26.713
26.771
26.688
26.826
26.654
26.658
 Meas 26.455
26.503
26.582
26.644
26.771
26.715
26.773
26.690
26.829
26.658
26.663
26.071
26.071
26.071
26.072
26.076
26.080
26.092
26.090
26.078
26.062
26.040
25.997
25.880
 Calc -0.004
-0.004
-0.005
-0.005
-0.005
-0.002
-0.002
-0.002
-0.003
-0.004
-0.005
0.009
0.009
0.007
0.008
0.006
0.008
0.006
0.006
0.005
0.005
0.001
0.002

139
Stn
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
Cruise
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
Table A.1 cont.
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
-30.08
Lat (N)
-30.08
depth
401.7
453.7
503.8
605.6
706.7
808.7
910
1011.4
1114
1215.3
1317.8
1418.9
1519.2
1620.4
1823.6
2016.9
2269.3
2523.9
2780.6
3038.1
3345.3
3649.9
3957.9
4213.1
Long (E)
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
119.45
118.83
116.71
114.58
109.44
103.85
100.01
96.82
93.42
93.89
93.5
90.53
83.91
77.08
65.77
56.42
43.28
32.3
24.32
17.2
11.58
7.64
6.42
5.43
Si
33.66
33.58
33.51
33.43
33.2
33.13
33.1
33.43
34.03
34.93
35.68
35.76
35.48
34.94
33.89
32.88
31.36
29.57
27.74
25.49
22.52
18.93
17.04
14.79
NO3
2.33
2.32
2.31
2.31
2.29
2.29
2.31
2.33
2.37
2.43
2.48
2.49
2.47
2.45
2.37
2.29
2.18
2.06
1.95
1.8
1.61
1.39
1.28
1.14
PO4
2380.80
2378.10
2381.30
2377.90
2370.10
2366.30
2362.20
2394.60
2366.40
2364.70
2362.90
2361.20
2247.20
2350.20
2339.40
2328.10
2314.50
2301.30
2298.40
2295.00
2291.70
2292.30
2295.60
2301.10
TA
2399.45
2396.86
2400.02
2394.52
2388.11
2375.19
2378.17
2414.05
2387.00
2387.21
2388.63
2388.57
2275.35
2380.95
2371.59
2362.39
2350.56
2334.45
2326.05
2325.77
2318.66
2308.53
2302.24
2302.22
NTA
34.728
34.726
34.727
34.757
34.736
34.869
34.765
34.718
34.698
34.67
34.623
34.599
34.567
34.548
34.525
34.492
34.463
34.503
34.584
34.537
34.593
34.754
34.899
34.983
Sp
1023.132
1023.133
1023.131
1023.156
1023.138
1023.241
1023.164
1023.125
1023.11
1023.088
1023.056
1023.035
1023.011
1022.998
1022.982
1022.953
1022.931
1022.96
1023.023
1022.985
1023.03
1023.152
1023.26
1023.321

26.09
26.091
26.089
26.114
26.096
26.199
26.122
26.083
26.068
26.046
26.011
25.99
25.966
25.953
25.937
25.908
25.886
25.915
25.978
25.94
25.985
26.107
26.215
26.276
 Meas 26.090
26.088
26.089
26.112
26.096
26.196
26.118
26.082
26.067
26.046
26.010
25.992
25.968
25.954
25.936
25.911
25.889
25.920
25.981
25.945
25.988
26.109
26.219
26.282
 Calc 0.000
0.003
0.000
0.002
0.000
0.003
0.004
0.001
0.001
0.000
0.001
-0.002
-0.002
-0.001
0.001
-0.003
-0.003
-0.005
-0.003
-0.005
-0.003
-0.002
-0.004
-0.006

140
Stn
8
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
Cruise
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
Table A.1 cont.
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
Lat (N)
-30.08
depth
4503
4.8
20.7
41.3
65.6
91.4
116.9
141.6
185.8
236.6
287.1
337
386.6
436.8
487.1
568.1
669.2
770.5
871.8
971
1073.2
1175.1
1275.2
1375.9
Long (E)
154
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
71.06
59.23
47.25
31.9
22.47
16.69
12.31
9.13
6.96
5.78
4.6
4.42
3.24
2.67
2.28
1.5
0.92
0.94
0.56
0.37
0.38
0.4
0.41
120.49
Si
33.39
32.79
31.85
29.7
27.69
25.93
24.13
22.29
19.92
17.84
15.99
13.67
9.88
8.66
7.3
5.1
3.32
2.59
1.19
0
0
0
0
33.69
NO3
2.34
2.29
2.22
2.06
1.92
1.8
1.68
1.55
1.41
1.27
1.16
1
0.77
0.7
0.62
0.48
0.36
0.32
0.23
0.11
0.09
0.1
0.11
2.33
PO4
2346.50
2329.70
2317.50
2302.30
2294.60
2292.60
2287.70
2287.30
2287.70
2297.00
2295.20
2304.90
2311.00
2315.40
2320.20
2328.70
2330.80
2334.30
2332.10
2335.60
2334.70
2333.60
2331.70
2386.70
TA
2377.89
2365.66
2353.27
2341.64
2335.71
2332.45
2325.64
2320.18
2306.15
2304.24
2309.85
2304.31
2298.65
2296.89
2293.98
2294.54
2285.42
2296.12
2291.76
2295.72
2292.45
2290.86
2290.99
2396.90
NTA
34.538
34.468
34.468
34.412
34.384
34.402
34.429
34.504
34.72
34.89
34.778
35.009
35.188
35.282
35.4
35.521
35.695
35.582
35.616
35.608
35.645
35.653
35.622
34.851
Sp
1022.993
1022.939
1022.937
1022.892
1022.871
1022.884
1022.906
1022.961
1023.128
1023.252
1023.167
1023.342
1023.478
1023.549
1023.638
1023.728
1023.86
1023.777
1023.802
1023.798
1023.824
1023.829
1023.805
1023.224

25.946
25.892
25.892
25.847
25.826
25.839
25.86
25.915
26.082
26.206
26.121
26.296
26.432
26.503
26.592
26.682
26.814
26.731
26.756
26.752
26.778
26.783
26.759
26.182
 Meas 25.946
25.893
25.893
25.851
25.830
25.843
25.864
25.920
26.084
26.212
26.127
26.302
26.437
26.508
26.597
26.689
26.821
26.735
26.761
26.755
26.783
26.789
26.765
26.183
 Calc 0.000
-0.001
-0.001
-0.004
-0.004
-0.004
-0.004
-0.005
-0.002
-0.006
-0.006
-0.006
-0.005
-0.005
-0.005
-0.007
-0.007
-0.004
-0.005
-0.003
-0.005
-0.006
-0.006
-0.001

141
Stn
58
58
58
58
58
58
58
58
58
58
58
58
58
78
78
78
78
78
78
78
78
78
78
78
Cruise
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
Table A.1 cont.
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
-30.0806
Lat (N)
-30.0806
depth
1478.6
1578.8
1680.9
1780.2
1952.4
2187.5
2442.7
2696.8
2950.4
3241.2
3547.9
3754.7
3948.3
3.6
35.8
61.2
86.1
117.2
164.7
216.3
265.9
316.7
367.3
436.3
Long (E)
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
175.0001
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
6.02
5.29
4.75
3.84
2.55
2.96
2.04
1.51
0.98
0.81
1.03
126.29
126.31
125.92
125.11
123.88
122.03
119.15
114.41
109.05
103.27
98.55
91.56
82.73
Si
17.83
15.51
13.7
11.55
7.26
8.43
4.84
2.02
0
0
0.03
35.05
35.05
34.95
34.85
34.84
34.89
34.94
34.84
34.64
34.38
34.29
34.03
33.79
NO3
1.3
1.15
1.05
0.92
0.67
0.73
0.52
0.36
0.15
0.14
0.15
2.46
2.46
2.46
2.46
2.46
2.46
2.46
2.45
2.44
2.43
2.42
2.4
2.37
PO4
2292.30
2296.80
2303.40
2307.60
2313.30
2316.80
2322.90
2323.90
2325.40
2329.10
2338.80
2410.70
2409.10
2410.60
2404.40
2403.70
2402.00
2397.50
2391.70
2385.10
2380.00
2375.30
2368.20
2356.70
TA
2312.45
2307.28
2306.96
2303.78
2300.09
2300.70
2297.82
2296.47
2295.49
2296.68
2302.03
2430.77
2430.49
2427.59
2425.82
2425.88
2424.23
2420.32
2408.35
2410.10
2406.19
2402.48
2396.96
2387.12
NTA
34.695
34.841
34.946
35.058
35.201
35.245
35.382
35.418
35.456
35.494
35.559
34.711
34.692
34.755
34.691
34.68
34.679
34.67
34.758
34.637
34.619
34.604
34.58
34.554
Sp
1023.101
1023.213
1023.295
1023.375
1023.487
1023.519
1023.621
1023.651
1023.679
1023.707
1023.759
1023.129
1023.113
1023.159
1023.113
1023.103
1023.105
1023.095
1023.157
1023.067
1023.052
1023.047
1023.028
1023.003

26.059
26.171
26.253
26.333
26.445
26.477
26.579
26.609
26.637
26.665
26.717
26.082
26.066
26.112
26.066
26.056
26.058
26.048
26.11
26.02
26.005
26
25.981
25.956
 Meas 26.065
26.175
26.254
26.339
26.447
26.480
26.584
26.611
26.640
26.669
26.718
26.077
26.062
26.110
26.062
26.053
26.053
26.046
26.112
26.021
26.007
25.996
25.978
25.958
 Calc -0.006
-0.004
-0.001
-0.006
-0.002
-0.003
-0.005
-0.002
-0.003
-0.004
-0.001
0.005
0.004
0.002
0.004
0.003
0.005
0.002
-0.002
-0.001
-0.002
0.004
0.003
-0.002

142
Stn
78
78
78
78
78
78
78
78
78
78
78
78
78
78
78
78
78
78
78
78
78
78
78
78
Cruise
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
Table A.1 cont.
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
Lat (N)
-32.4999
depth
537.8
639.6
740.7
842.8
944.3
1046.4
1248.3
1450
1648.9
1854.5
2055.3
2309.2
2577.8
2935
3239.8
3549.2
3855.1
4161.9
4472.4
4782.2
5092.5
5401.2
5705.9
6025.3
Long (E)
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
-177.6698
121.56
121.58
121.4
121.43
120.85
120.08
118.32
115.19
109.7
105.98
107.58
120.58
113.91
108.03
101.57
91.4
72.3
49.86
31.08
22.15
14.79
10.08
8.79
6.75
Si
31.81
31.62
31.51
31.54
31.53
31.57
31.46
31.3
31.24
31.52
32.41
35.05
34.79
34.65
34.44
33.85
33.51
32.04
29.2
27.41
25.14
23.4
21.99
19.96
NO3
2.23
2.23
2.23
2.23
2.23
2.22
2.22
2.21
2.21
2.22
2.3
2.49
2.47
2.46
2.44
2.4
2.37
2.26
2.05
1.93
1.78
1.64
1.56
1.43
PO4
2367.80
2366.50
2366.10
2368.40
2367.50
2365.80
2364.90
2365.30
2364.50
2365.60
2373.90
2400.00
2391.60
2388.90
2380.70
2369.20
2346.20
2320.10
2306.20
2295.80
2290.70
2286.20
2286.00
2287.80
TA
2386.83
2385.86
2385.39
2385.37
2386.25
2384.95
2379.79
2383.89
2382.81
2384.06
2393.46
2423.05
2400.65
2414.21
2406.97
2397.14
2367.58
2357.76
2346.15
2336.86
2330.99
2324.66
2319.20
2318.07
NTA
34.721
34.716
34.717
34.751
34.725
34.719
34.781
34.727
34.731
34.729
34.714
34.667
34.868
34.633
34.618
34.592
34.684
34.441
34.404
34.385
34.395
34.421
34.499
34.543
Sp
1023.133
1023.129
1023.129
1023.157
1023.136
1023.131
1023.175
1023.136
1023.139
1023.135
1023.126
1023.091
1023.243
1023.063
1023.055
1023.035
1023.1
1022.918
1022.888
1022.874
1022.877
1022.894
1022.954
1022.986

26.088
26.084
26.084
26.112
26.091
26.086
26.13
26.091
26.094
26.09
26.081
26.046
26.198
26.018
26.01
25.99
26.055
25.873
25.843
25.829
25.835
25.852
25.912
25.944
 Meas 26.084
26.081
26.081
26.107
26.087
26.083
26.130
26.089
26.092
26.090
26.079
26.044
26.195
26.018
26.007
25.987
26.056
25.873
25.845
25.831
25.838
25.858
25.917
25.950
 Calc 0.004
0.003
0.003
0.005
0.004
0.003
0.000
0.002
0.002
0.000
0.002
0.002
0.003
0.000
0.003
0.003
-0.001
0.000
-0.002
-0.002
-0.003
-0.006
-0.005
-0.006

143
Stn
78
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
Cruise
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
Table A.1 cont.
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
Lat (N)
-32.4999
depth
6128.5
4.5
19.2
39.7
64.6
87.6
134.3
184.8
235.7
286.2
336.1
387.8
469
571.5
667.3
769.6
870.9
973.2
1069.2
1172.1
1274.1
1375.8
1478.1
1581
Long (E)
-177.6698
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
79.55
71.15
60.9
50.68
38.64
28.94
21.13
14.99
10.72
7.68
6.27
5.29
4.3
3.71
3.13
2.75
2.17
1.39
1.01
0.62
0.46
0.49
0.52
121.95
Si
34.03
33.74
33.42
32.72
31.51
30.01
28.25
26.22
24.33
22.46
21.13
19.03
16.28
13.8
11.14
10.3
8.18
4.79
3.48
0
0
0
0
31.74
NO3
2.4
2.38
2.36
2.31
2.21
2.1
1.97
1.83
1.69
1.56
1.48
1.34
1.16
1.01
0.83
0.78
0.65
0.43
0.34
0.13
0.09
0.08
0.08
2.23
PO4
2350.90
2341.70
2327.20
2321.20
2309.60
2300.80
2293.30
2289.00
2287.50
2295.00
2282.10
2287.20
2287.70
2303.40
2310.20
2308.60
2317.50
2324.70
2330.90
2333.70
2333.40
2334.90
2333.00
2369.90
TA
2379.04
2365.22
2346.17
2360.45
2351.93
2344.82
2338.67
2333.33
2329.50
2334.69
2318.33
2315.65
2302.77
2309.93
2305.13
2299.86
2299.76
2295.51
2296.39
2298.37
2292.98
2298.07
2295.94
2385.85
NTA
34.586
34.652
34.717
34.418
34.37
34.343
34.321
34.335
34.369
34.405
34.453
34.57
34.771
34.901
35.077
35.133
35.27
35.445
35.526
35.538
35.617
35.561
35.565
34.766
Sp
1023.028
1023.075
1023.126
1022.898
1022.862
1022.844
1022.826
1022.834
1022.859
1022.886
1022.922
1023.01
1023.166
1023.262
1023.395
1023.437
1023.54
1023.672
1023.736
1023.745
1023.803
1023.759
1023.767
1023.169

25.982
26.029
26.08
25.852
25.816
25.798
25.78
25.788
25.813
25.84
25.876
25.964
26.12
26.216
26.349
26.391
26.494
26.626
26.69
26.699
26.757
26.713
26.721
26.124
 Meas 25.982
26.032
26.081
25.855
25.819
25.799
25.782
25.793
25.818
25.846
25.882
25.970
26.122
26.220
26.353
26.396
26.499
26.632
26.693
26.702
26.762
26.719
26.722
26.118
 Calc 0.000
-0.003
-0.001
-0.003
-0.003
-0.001
-0.002
-0.005
-0.005
-0.006
-0.006
-0.006
-0.002
-0.004
-0.004
-0.005
-0.005
-0.006
-0.003
-0.003
-0.005
-0.006
-0.001
0.006

144
Stn
100
100
100
100
100
100
100
100
100
100
100
100
100
122
122
122
122
122
122
122
122
122
122
122
Cruise
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
Table A.1 cont.
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
Lat (N)
-32.5
depth
1749.5
1954
2183.9
2440.4
2698.1
2950.1
3237.5
3548.7
3858.6
4165
4474
4578.6
4774.8
5.7
25
51.2
75.2
101.2
150.7
196.9
249.3
298.4
348.8
401.6
Long (E)
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-166.3721
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
3.83
3.08
2.34
1.58
0.84
0.1
-0.05
0.02
0.08
0.14
0.2
119.49
119.08
118.26
114.87
111.07
115.55
126.44
129.44
127.33
122.89
115.88
106.35
93.45
Si
18.19
16.18
13.4
10.11
5.76
1.23
0
0
0
0
0
31.55
31.5
31.55
31.41
31.51
32.64
34.28
34.99
35.24
35.24
35.05
34.72
34.4
NO3
1.32
1.2
1.04
0.82
0.55
0.26
0.14
0.11
0.1
0.1
0.1
2.22
2.21
2.22
2.21
2.22
2.31
2.43
2.49
2.51
2.51
2.5
2.47
2.44
PO4
2284.40
2287.80
2291.60
2308.60
2310.40
2312.10
2316.40
2316.80
2319.10
2316.90
2321.10
2367.40
2364.30
2365.70
2365.30
2366.90
2385.70
2403.90
2410.40
2410.00
2404.60
2396.10
2381.70
2370.20
TA
2318.72
2316.52
2311.28
2315.55
2301.98
2297.27
2300.82
2297.70
2294.84
2301.45
2299.48
2386.90
2378.37
2370.31
2358.76
2382.21
2383.79
2425.45
2432.99
2433.22
2428.47
2419.74
2407.36
2391.52
NTA
34.482
34.566
34.702
34.895
35.128
35.226
35.237
35.291
35.37
35.235
35.329
34.714
34.793
34.932
35.097
34.775
35.028
34.689
34.675
34.666
34.656
34.658
34.627
34.688
Sp
1022.944
1023.007
1023.11
1023.259
1023.436
1023.507
1023.516
1023.558
1023.615
1023.512
1023.584
1023.126
1023.187
1023.293
1023.415
1023.175
1023.361
1023.109
1023.1
1023.092
1023.081
1023.086
1023.064
1023.108

25.9
25.963
26.066
26.215
26.392
26.463
26.472
26.514
26.571
26.468
26.54
26.08
26.141
26.247
26.369
26.129
26.315
26.063
26.054
26.046
26.035
26.04
26.018
26.062
 Meas 25.904
25.967
26.070
26.216
26.392
26.466
26.474
26.515
26.575
26.473
26.544
26.079
26.139
26.244
26.369
26.125
26.316
26.060
26.050
26.043
26.035
26.037
26.013
26.059
 Calc -0.004
-0.004
-0.004
-0.001
0.000
-0.003
-0.002
-0.001
-0.004
-0.005
-0.004
0.001
0.002
0.003
0.000
0.004
-0.001
0.003
0.004
0.003
0.000
0.003
0.005
0.003

145
Stn
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
122
Cruise
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
Table A.1 cont.
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
Lat (N)
-32.4999
depth
502.3
605.2
700.7
802.6
904
1006.3
1108.1
1204.2
1310.3
1413.8
1616.9
1815.4
2019.6
2270.8
2529.5
2784.7
3038
3340.3
3651.8
3956.7
4260.8
4570.9
4883.2
5191.1
Long (E)
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
-149.3
118.03
118.09
117.73
119.02
119.49
120.99
123.74
126.28
126.33
123.9
118.35
110.13
100.48
87.57
68.75
58.17
47.21
37.7
27.18
18.31
12.29
8.5
6.74
5.18
Si
31.97
32.02
32.22
32.58
32.94
33.5
34.27
34.93
35.29
35.5
35.4
35.05
35.01
34.71
34.26
33.86
33.01
31.91
30.01
27.62
25.4
23.29
21.93
20.42
NO3
2.25
2.25
2.27
2.3
2.32
2.36
2.42
2.47
2.5
2.51
2.51
2.49
2.48
2.45
2.42
2.38
2.32
2.23
2.1
1.94
1.78
1.64
1.56
1.47
PO4
2370.60
2375.10
2373.30
2378.90
2385.50
2388.90
2394.40
2402.40
2389.30
2402.10
2396.80
2391.90
2378.60
2363.20
2339.70
2327.60
2317.10
2306.50
2299.70
2288.40
2285.90
2283.80
2282.90
2283.60
TA
2389.99
2394.53
2383.52
2398.71
2390.42
2407.82
2411.70
2424.36
2400.62
2423.01
2420.52
2416.62
2403.39
2391.83
2368.05
2365.04
2357.86
2350.01
2344.38
2329.80
2330.99
2317.57
2315.58
2321.27
NTA
34.716
34.716
34.85
34.711
34.928
34.725
34.749
34.683
34.835
34.698
34.657
34.642
34.639
34.581
34.581
34.446
34.395
34.352
34.333
34.378
34.323
34.49
34.506
34.432
Sp
1023.127
1023.127
1023.229
1023.126
1023.29
1023.136
1023.154
1023.104
1023.219
1023.116
1023.086
1023.073
1023.069
1023.025
1023.023
1022.919
1022.882
1022.849
1022.834
1022.867
1022.825
1022.952
1022.963
1022.908

26.081
26.081
26.183
26.08
26.244
26.09
26.108
26.058
26.173
26.07
26.04
26.027
26.023
25.979
25.977
25.873
25.836
25.803
25.788
25.821
25.779
25.906
25.917
25.864
 Meas 26.081
26.081
26.182
26.077
26.241
26.087
26.106
26.056
26.171
26.067
26.036
26.025
26.022
25.979
25.979
25.877
25.838
25.806
25.791
25.825
25.784
25.910
25.922
25.866
 Calc 0.000
0.000
0.001
0.003
0.003
0.003
0.002
0.002
0.002
0.003
0.004
0.002
0.001
0.000
-0.002
-0.004
-0.002
-0.003
-0.003
-0.004
-0.005
-0.004
-0.005
-0.002

146
Stn
122
143
143
143
143
143
143
143
143
143
143
143
143
143
143
143
143
143
143
143
143
143
143
143
Cruise
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
Table A.1 cont.
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
Lat (N)
-32.4999
depth
5671.6
3.2
25.9
49.8
74.4
101.3
151.4
200.8
252.1
301.8
352.1
403.7
451.4
503.9
602.5
705.3
807.9
907.9
1010.8
1111.9
1213.9
1312.6
1411.5
1516.1
Long (E)
-149.3
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
76.04
65.66
55.91
47.8
39.93
30.26
37.34
14.43
10.45
7.88
6.31
5.73
4.96
3.98
2.61
1.63
0.86
0.29
0.31
0.33
0.35
0.18
0.39
118.19
Si
34.26
34.1
33.6
32.94
32.08
30.82
30.66
26.39
24.35
22.77
21.61
20.87
20.03
18.42
14.51
10.21
5.54
1.36
0
0
0
0
0
31.91
NO3
2.41
2.39
2.35
2.3
2.23
2.13
2.13
1.82
1.68
1.58
1.5
1.46
1.41
1.31
1.07
0.8
0.52
0.27
0.14
0.13
0.12
0.11
0.11
2.25
PO4
2347.20
2316.40
2287.40
2282.80
2282.90
2283.80
2294.50
2311.00
2312.10
2313.50
2376.90
TA
2379.29
2357.08
2331.77
2326.47
2323.53
2320.13
2309.74
2304.55
2302.10
2300.75
2385.69
NTA
34.528
34.492
34.434
34.396
34.361
34.329
34.369
34.334
34.317
34.343
34.371
34.388
34.404
34.452
34.601
34.769
34.913
34.977
35.098
35.13
35.152
35.194
35.194
34.871
Sp
1022.986
1022.957
1022.912
1022.883
1022.855
1022.831
1022.861
1022.834
1022.821
1022.841
1022.863
1022.875
1022.886
1022.923
1023.034
1023.16
1023.268
1023.319
1023.411
1023.435
1023.448
1023.48
1023.483
1023.247

25.939
25.91
25.865
25.836
25.808
25.784
25.814
25.787
25.774
25.794
25.816
25.831
25.842
25.879
25.99
26.116
26.224
26.275
26.367
26.391
26.404
26.436
26.439
26.201
 Meas 25.939
25.911
25.868
25.839
25.812
25.788
25.818
25.792
25.779
25.799
25.820
25.833
25.845
25.881
25.994
26.121
26.229
26.278
26.369
26.393
26.410
26.442
26.442
26.198
 Calc 0.000
-0.001
-0.003
-0.003
-0.004
-0.004
-0.004
-0.005
-0.005
-0.005
-0.004
-0.002
-0.003
-0.002
-0.004
-0.005
-0.005
-0.003
-0.002
-0.002
-0.006
-0.006
-0.003
0.003

147
Stn
143
143
143
143
143
143
143
143
143
143
143
143
143
184
184
184
184
184
184
184
184
184
184
184
Cruise
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
Table A.1 cont.
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
Lat (N)
-32.4999
depth
1615.2
1817.6
2023.1
2275.6
2531
2786.2
3040.2
3346
3654.4
3961.7
4267.3
4421.9
4544.3
8.5
20
39.5
64.3
90.5
113.7
139.2
164.3
190.8
215.6
239.8
Long (E)
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-136.9567
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
1.15
0.81
0.47
0.33
0.39
0.24
0.3
0.36
0.41
0.47
0.53
118.98
118.79
118.6
120.26
122.33
122.96
123.17
122.78
121.57
117.49
110.14
99.11
84.19
Si
9.49
6.38
4.06
0.96
0.39
0.03
0.03
0.02
0.02
0.02
0.02
32.56
32.56
32.67
33.06
33.76
34.09
34.42
34.76
34.92
35.14
34.97
34.81
34.59
NO3
0.81
0.63
0.5
0.31
0.25
0.19
0.14
0.13
0.13
0.13
0.13
2.26
2.27
2.27
2.31
2.37
2.39
2.42
2.44
2.47
2.47
2.46
2.45
2.43
PO4
2289.90
2290.50
2306.90
2314.30
2326.50
2345.20
2387.50
2399.30
2398.70
2396.10
2389.20
TA
2316.77
2316.64
2311.92
2310.14
2309.61
2364.45
2407.79
2421.23
2421.60
2420.23
2414.03
NTA
34.535
34.616
34.594
34.621
34.605
34.762
34.924
35.078
35.063
35.16
35.256
34.715
34.714
34.705
34.705
34.696
34.689
34.683
34.678
34.669
34.651
34.64
34.618
34.563
Sp
1022.987
1023.047
1023.03
1023.053
1023.039
1023.156
1023.279
1023.395
1023.384
1023.457
1023.531
1023.128
1023.128
1023.121
1023.121
1023.116
1023.109
1023.103
1023.101
1023.094
1023.081
1023.072
1023.054
1023.012

25.94
26
25.983
26.006
25.992
26.109
26.232
26.348
26.337
26.41
26.484
26.083
26.083
26.076
26.076
26.071
26.064
26.058
26.056
26.049
26.034
26.025
26.007
25.965
 Meas 25.944
26.005
25.988
26.009
25.997
26.115
26.238
26.354
26.343
26.416
26.489
26.080
26.079
26.072
26.072
26.066
26.060
26.056
26.052
26.045
26.031
26.023
26.007
25.965
 Calc -0.004
-0.005
-0.005
-0.003
-0.005
-0.006
-0.006
-0.006
-0.006
-0.006
-0.005
0.003
0.004
0.004
0.004
0.005
0.004
0.002
0.004
0.004
0.003
0.002
0.000
0.000

148
Stn
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
184
Cruise
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
Table A.1 cont.
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
-32.4985
Lat (N)
-32.4985
depth
286.2
336.4
386.8
436.6
488.1
567.3
668.8
770.9
870.6
973.6
1072.4
1173.2
1276.8
1376
1478.9
1580
1680.8
1781.5
1885.2
1986.2
2158.3
2361.9
2565.4
2708.1
Long (E)
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
-109.9707
119.81
119.65
118.43
114.93
108.5
103.35
96.32
91.8
87.49
83.18
77.65
67.18
57.78
44.54
30.59
20.37
13.82
10.09
8.15
7.61
6.67
5.14
3.61
2.08
Si
35.17
35.23
35.28
35.39
35.34
35.29
35.24
35.35
35.86
36.59
37.15
37.04
36.65
35.09
32.8
29.49
27.24
25.24
24.04
23.93
23.29
21.62
18.76
14.46
NO3
2.43
2.44
2.44
2.45
2.45
2.44
2.45
2.46
2.49
2.54
2.58
2.57
2.53
2.42
2.26
2.03
1.87
1.74
1.66
1.66
1.62
1.54
1.36
1.1
PO4
2399.10
2386.00
2368.80
2352.60
2332.40
2303.80
2289.10
2285.20
2280.60
2281.60
TA
2421.24
2410.03
2396.12
2385.04
2370.81
2349.65
2337.18
2331.84
2326.26
2320.65
NTA
34.683
34.675
34.68
34.669
34.651
34.638
34.624
34.601
34.588
34.551
34.524
34.481
34.433
34.376
34.317
34.289
34.28
34.269
34.3
34.332
34.31
34.313
34.34
34.411
Sp
1023.105
1023.099
1023.101
1023.094
1023.081
1023.075
1023.063
1023.047
1023.035
1023.008
1022.987
1022.954
1022.916
1022.874
1022.825
1022.804
1022.797
1022.789
1022.81
1022.836
1022.818
1022.82
1022.84
1022.895

26.061
26.055
26.057
26.05
26.037
26.027
26.015
25.999
25.987
25.96
25.939
25.906
25.868
25.826
25.779
25.758
25.751
25.743
25.764
25.79
25.772
25.774
25.794
25.848
 Meas 26.056
26.050
26.053
26.045
26.031
26.022
26.011
25.994
25.984
25.956
25.935
25.903
25.867
25.824
25.779
25.758
25.751
25.743
25.766
25.790
25.774
25.776
25.797
25.850
 Calc 0.005
0.005
0.004
0.005
0.006
0.005
0.004
0.005
0.003
0.004
0.004
0.003
0.001
0.002
0.000
0.000
0.000
0.000
-0.002
0.000
-0.002
-0.002
-0.003
-0.002

149
Stn
184
199
199
199
199
199
199
199
199
199
199
199
199
199
199
199
199
199
199
199
199
199
199
199
Cruise
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
Table A.1 cont.
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
Lat (N)
-32.4985
depth
2845.5
5
21.6
39.4
63.5
88.7
113.5
138.8
184.8
235.9
286.4
335.4
386.7
437.9
486.2
569.8
669.4
769.9
871.4
970.7
1072
1172.8
1276.9
1375.5
Long (E)
-109.9707
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
78.32
71.04
56.87
41.99
28.22
18.34
11.89
8.41
7.11
6.01
5.69
3.81
1.54
0.63
0
0
0
0
0
0
0
0
0.16
120.18
Si
37.95
37.85
36.9
34.8
31.72
29.11
26.57
24.48
23.57
22.83
22.89
20.56
15.33
10.47
6.18
2.06
0
0
0
0
0
0
0
35.16
NO3
2.71
2.7
2.62
2.45
2.22
2.02
1.84
1.69
1.64
1.6
1.63
1.49
1.15
0.85
0.59
0.36
0.2
0.18
0.18
0.17
0.17
0.16
0.16
2.43
PO4
2304.00
2402.70
TA
2310.27
2424.80
NTA
34.519
34.509
34.428
34.377
34.305
34.27
34.323
34.281
34.312
34.335
34.297
34.297
34.355
34.491
34.563
34.728
34.929
34.956
35.021
35.04
35.014
34.862
34.905
34.681
Sp
1022.976
1022.968
1022.907
1022.867
1022.813
1022.786
1022.826
1022.795
1022.819
1022.838
1022.808
1022.808
1022.851
1022.955
1023.006
1023.133
1023.283
1023.306
1023.355
1023.367
1023.35
1023.232
1023.266
1023.103

25.93
25.922
25.861
25.821
25.767
25.74
25.78
25.749
25.773
25.792
25.763
25.763
25.806
25.91
25.961
26.088
26.238
26.261
26.31
26.322
26.305
26.187
26.221
26.059
 Meas 25.932
25.924
25.863
25.824
25.770
25.744
25.784
25.752
25.775
25.793
25.764
25.764
25.808
25.911
25.965
26.090
26.242
26.262
26.311
26.325
26.306
26.191
26.223
26.054
 Calc -0.002
-0.002
-0.002
-0.003
-0.003
-0.004
-0.004
-0.003
-0.002
-0.001
-0.001
-0.001
-0.002
-0.001
-0.004
-0.002
-0.004
-0.001
-0.001
-0.003
-0.001
-0.004
-0.002
0.005

150
Stn
199
199
199
199
199
199
199
199
199
199
199
199
199
228
228
228
228
228
228
228
228
228
228
228
Cruise
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
Table A.1 cont.
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
-32.5007
Lat (N)
-32.5007
depth
1478.7
1579.7
1680.9
1780.9
1954.5
2188.6
2442.1
2695.7
2951.1
3203.4
3462.7
3617.4
3751.1
3.5
34.8
60.9
87.4
111.1
135.9
166.5
215.3
266.1
316.8
367.6
Long (E)
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-99.8901
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
15.02
11.5
4.84
0.74
0.19
0.02
0
0
0
0
0
117.26
117.12
117
116.86
116.72
114.94
111.72
107.66
100.73
95.46
92.04
88.42
83.98
Si
30.96
26.53
20.59
12.52
7.02
4.39
2.89
2.06
0.17
0
0
34.04
33.92
34.03
33.92
33.98
33.97
34.19
34.63
35.35
35.96
36.46
36.73
37.56
NO3
2.41
2.17
1.63
0.99
0.67
0.58
0.49
0.38
0.23
0.24
0.25
2.38
2.39
2.39
2.39
2.4
2.39
2.4
2.44
2.5
2.55
2.59
2.62
2.68
PO4
2280.10
2276.00
2265.60
2265.40
2271.90
2281.80
2310.30
2309.80
2399.90
TA
2320.61
2319.61
2319.07
2320.16
2326.13
2325.18
2326.12
2325.55
2421.14
NTA
34.389
34.342
34.193
34.174
34.184
34.231
34.32
34.347
34.401
34.762
34.763
34.693
34.697
34.696
34.698
34.693
34.69
34.677
34.658
34.622
34.596
34.58
34.564
34.543
Sp
1022.88
1022.844
1022.731
1022.711
1022.719
1022.755
1022.821
1022.842
1022.883
1023.156
1023.158
1023.112
1023.115
1023.113
1023.115
1023.11
1023.109
1023.101
1023.086
1023.057
1023.038
1023.027
1023.015
1022.995

25.831
25.795
25.682
25.667
25.675
25.711
25.777
25.798
25.839
26.112
26.114
26.065
26.068
26.066
26.068
26.063
26.062
26.055
26.04
26.011
25.992
25.981
25.969
25.949
 Meas 25.833
25.798
25.685
25.671
25.679
25.714
25.781
25.802
25.843
26.115
26.116
26.063
26.066
26.066
26.067
26.063
26.061
26.051
26.037
26.010
25.990
25.978
25.966
25.950
 Calc -0.002
-0.003
-0.003
-0.004
-0.004
-0.003
-0.004
-0.004
-0.004
-0.003
-0.002
0.002
0.002
0.000
0.001
0.000
0.001
0.004
0.003
0.001
0.002
0.003
0.003
-0.001

151
Stn
228
228
228
228
228
228
228
228
228
228
228
228
228
228
228
228
228
228
228
228
228
228
228
228
Cruise
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
Table A.1 cont.
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
-32.5
Lat (N)
-32.5
depth
416.4
466.2
537.5
638.4
738.6
839.1
939.9
1042.2
1144.9
1245.4
1345.5
1448.5
1551
1644.3
1753.2
1885.8
2106.7
2361
2616
2872.3
3127.5
3382.5
3635.5
3806.9
Long (E)
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
-81.5501
122.88
122.29
122.52
122.75
121.54
120.33
118.29
114.81
109.68
106.2
102.33
99.06
93.74
88.23
82.11
72.94
60.75
47.42
32.97
21.83
14.92
12.77
14.17
15.19
Si
34.49
34.54
34.76
35.03
35.2
35.47
35.85
36.46
36.96
37.4
37.79
38.01
38.34
38.61
38.78
38.56
37.71
36.36
33.64
30.99
28.85
28.52
30.64
31.85
NO3
2.44
2.45
2.47
2.5
2.52
2.54
2.58
2.63
2.68
2.72
2.75
2.77
2.79
2.83
2.82
2.8
2.72
2.62
2.4
2.21
2.04
2.04
2.22
2.35
PO4
2409.30
2408.20
2406.20
2406.70
2404.50
2404.30
2401.90
2396.90
2390.90
2385.40
2382.40
2379.00
2372.60
2365.80
2357.50
2336.60
2319.30
2304.40
2294.30
2282.80
2286.20
2284.40
2281.10
TA
2429.50
2429.02
2426.79
2428.42
2426.55
2426.42
2425.53
2421.46
2416.86
2412.21
2410.01
2407.41
2402.11
2396.47
2389.52
2374.32
2360.44
2349.44
2341.46
2330.68
2332.59
2328.10
2323.05
NTA
34.709
34.7
34.703
34.687
34.682
34.681
34.659
34.645
34.624
34.611
34.599
34.587
34.57
34.552
34.531
34.495
34.444
34.39
34.329
34.295
34.281
34.304
34.343
34.368
Sp
1023.127
1023.12
1023.121
1023.111
1023.106
1023.105
1023.086
1023.077
1023.062
1023.052
1023.043
1023.034
1023.019
1023.008
1022.991
1022.963
1022.925
1022.883
1022.836
1022.81
1022.798
1022.815
1022.846
1022.865

26.079
26.072
26.073
26.063
26.058
26.057
26.038
26.029
26.013
26.003
25.994
25.985
25.97
25.959
25.942
25.914
25.876
25.834
25.787
25.761
25.749
25.766
25.797
25.816
 Meas 26.075
26.069
26.071
26.059
26.055
26.054
26.038
26.027
26.011
26.001
25.992
25.983
25.970
25.957
25.941
25.914
25.875
25.834
25.788
25.763
25.752
25.769
25.799
25.818
 Calc 0.004
0.003
0.002
0.004
0.003
0.003
0.000
0.002
0.002
0.002
0.002
0.002
0.000
0.002
0.001
0.000
0.001
0.000
-0.001
-0.002
-0.003
-0.003
-0.002
-0.002

152
Stn
228
243
243
243
243
243
243
243
243
243
243
243
243
243
243
243
243
243
243
243
243
243
243
243
Cruise
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
Table A.1 cont.
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
Lat (N)
-32.5
depth
3967.7
4.4
33.8
60.3
84.7
115.8
165.8
215.2
265.5
314.6
367.4
439
539.5
635.4
739.2
842.4
941
1042.1
1143.8
1245.5
1346
1480.4
1682.6
1884.8
Long (E)
-81.5501
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
108.98
101.47
91.93
85.47
76.81
68.16
59.33
48.51
36.31
28.55
21.2
25.03
27.47
27.31
27.16
27
27.44
28.08
27.93
27.37
25.42
22.27
2.61
123.06
Si
37.69
38.58
39.14
39.47
39.69
39.51
39.11
38.16
36.37
35.75
33.38
36.57
35.34
31.4
29.45
27.68
25.19
23.87
22.87
23.07
23.07
22.32
7.65
34.22
NO3
2.73
2.79
2.83
2.85
2.86
2.85
2.81
2.74
2.61
2.56
2.39
2.74
2.91
2.88
2.87
2.86
2.85
2.86
2.88
2.92
2.9
2.79
1.3
2.44
PO4
2392.70
2382.80
2370.90
2363.30
2353.20
2343.90
2333.90
2321.80
2307.20
2300.80
2293.50
2296.00
2299.70
2301.30
2302.00
2302.00
2304.80
2302.20
2296.50
2415.80
TA
2418.82
2411.25
2400.74
2394.57
2386.75
2379.73
2371.51
2361.68
2349.01
2342.63
2335.81
2330.90
2326.29
2324.08
2322.97
2321.50
2321.98
2321.17
2335.81
2436.62
NTA
34.622
34.587
34.565
34.543
34.508
34.473
34.445
34.409
34.377
34.375
34.366
34.476
34.6
34.657
34.684
34.706
34.741
34.747
34.748
34.737
34.714
34.668
34.411
34.701
Sp
1023.057
1023.029
1023.011
1022.992
1022.964
1022.938
1022.918
1022.891
1022.866
1022.864
1022.856
1022.938
1023.035
1023.078
1023.098
1023.115
1023.141
1023.146
1023.147
1023.14
1023.123
1023.088
1022.892
1023.121

26.011
25.983
25.965
25.948
25.92
25.894
25.874
25.847
25.822
25.82
25.812
25.894
25.989
26.032
26.052
26.069
26.095
26.1
26.101
26.094
26.077
26.042
25.846
26.073
 Meas 26.010
25.983
25.966
25.950
25.923
25.897
25.876
25.849
25.824
25.823
25.816
25.899
25.993
26.036
26.056
26.073
26.099
26.104
26.105
26.096
26.079
26.044
25.850
26.069
 Calc 0.001
0.000
-0.001
-0.002
-0.003
-0.003
-0.002
-0.002
-0.002
-0.003
-0.004
-0.005
-0.004
-0.004
-0.004
-0.004
-0.004
-0.004
-0.004
-0.002
-0.002
-0.002
-0.004
0.004

153
Stn
243
243
243
243
243
243
243
243
243
243
243
243
243
5
5
5
9
9
9
9
9
9
9
11
Cruise
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
P6
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
Table A.1 cont.
35.02
35
35
35
35
35
35
35
35.012
35.012
35.012
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
-32.4999
Lat (N)
-32.4999
depth
2107.9
2363.3
2616.6
2869.4
3141.1
3449.8
3788.9
4201.5
4613.6
5017.8
5433.9
5776.8
6117.1
1
1060
1445
5
126
302
900
3873
4169
4412
0
Long (E)
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-72.6828
-126.017
-126.017
-126.017
-130.023
-130.023
-130.023
-130.023
-130.023
-130.023
-130.023
-132.05
3
163
165
168
117
36
3
3
152
130
4
124.95
124.57
124.8
124.63
124.46
124.08
124.52
127.02
129.31
127.49
124.44
121.6
117.13
Si
0
37
37
37
44
25
0
0
44
44
0
34.55
34.6
34.65
34.76
34.81
34.96
35.18
35.5
35.94
35.88
35.87
36.25
36.81
NO3
2.45
2.45
2.46
2.46
2.46
2.47
2.48
2.51
2.55
2.55
2.56
2.6
2.65
PO4
2328.00
2447.00
2446.00
2448.00
2393.00
2329.00
2319.00
2315.00
2417.00
2406.00
2333.00
2408.50
2408.80
2410.10
2412.60
2411.70
2412.30
2413.30
2417.10
2420.40
2416.60
2412.30
2408.30
2401.50
TA
2431.66
2468.51
2467.00
2470.02
2434.53
2400.32
2436.58
2424.23
2448.27
2441.51
2458.38
2429.39
2430.05
2430.52
2433.67
2432.76
2433.30
2434.66
2438.84
2442.38
2438.90
2434.56
2431.71
2425.41
NTA
33.508
34.695
34.702
34.688
34.403
33.96
33.311
33.423
34.553
34.491
33.215
34.699
34.694
34.706
34.697
34.697
34.698
34.693
34.688
34.685
34.68
34.68
34.663
34.655
Sp
1023.116
1023.111
1023.121
1023.114
1023.114
1023.114
1023.109
1023.106
1023.103
1023.101
1023.101
1023.089
1023.082

25.165
26.076
26.082
26.074
25.850
25.510
25.018
25.098
25.974
25.924
24.949
26.073
26.068
26.078
26.071
26.071
26.071
26.066
26.063
26.06
26.055
26.055
26.043
26.036
 Meas 25.168
26.065
26.070
26.059
25.844
25.509
25.019
25.104
25.957
25.910
24.947
26.068
26.064
26.073
26.066
26.066
26.067
26.063
26.059
26.057
26.053
26.053
26.041
26.034
 Calc -0.003
0.011
0.012
0.014
0.005
0.001
-0.002
-0.006
0.016
0.013
0.002
0.005
0.004
0.005
0.005
0.005
0.004
0.003
0.004
0.003
0.002
0.002
0.002
0.002

154
Stn
17
17
17
17
21
21
21
21
21
21
23
25
25
25
25
25
25
25
25
25
29
33
37
41
Cruise
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
Table A.1 cont.
35.023
34.992
34.998
34.993
34.993
34.993
34.993
34.993
34.993
34.993
34.993
34.993
34.993
35.007
35.967
35.967
35.967
35.967
35.967
35.967
35.005
35.005
35.005
Lat (N)
35.005
depth
1124
1618
4080
5083
1
31
101
152
495
1184
0
0
50
151
175
200
496
594
791
1186
0
0
0
0
Long (E)
-137.983
-137.983
-137.983
-137.983
-142.002
-142.002
-142.002
-142.002
-142.002
-142.002
-144.013
-146.008
-146.008
-146.008
-146.008
-146.008
-146.008
-146.008
-146.008
-146.008
-149.992
-153.998
158.068
-161.998
7
6
5
4
142
110
75
50
10
8
6
4
4
6
143
56
7
5
6
6
159
167
163
139
Si
0
0
0
0
46
44
37
29
9
7
2
0
0
0
46
32
1
0
0
0
37
37
44
46
NO3
PO4
2298.00
2294.00
2300.00
2302.00
2428.00
2383.00
2357.00
2347.00
2300.00
2298.00
2304.00
2303.00
2300.00
2306.00
2422.00
2348.00
2323.00
2306.00
2314.00
2311.00
2443.00
2444.00
2433.00
2416.00
TA
2350.93
2343.07
2358.01
2348.84
2466.33
2439.38
2428.82
2417.10
2355.80
2360.38
2374.56
2351.65
2347.62
2364.57
2459.38
2419.34
2412.61
2370.06
2383.11
2380.79
2458.03
2465.41
2462.91
2450.02
NTA
34.212
34.267
34.139
34.302
34.456
34.191
33.965
33.985
34.171
34.075
33.96
34.276
34.29
34.133
34.468
33.968
33.7
34.054
33.985
33.974
34.786
34.696
34.575
34.514
Sp

25.704
25.734
25.645
25.774
25.897
25.688
25.522
25.525
25.677
25.590
25.504
25.749
25.761
25.633
25.911
25.529
25.311
25.576
25.527
25.517
26.146
26.075
25.986
25.927
 Meas 25.700
25.741
25.645
25.768
25.884
25.684
25.513
25.528
25.669
25.596
25.509
25.748
25.759
25.640
25.893
25.515
25.313
25.580
25.528
25.520
26.133
26.065
25.974
25.928
 Calc 0.004
-0.007
0.001
0.006
0.012
0.004
0.009
-0.003
0.008
-0.006
-0.005
0.000
0.002
-0.007
0.017
0.014
-0.002
-0.004
-0.001
-0.003
0.012
0.009
0.012
-0.001

155
Stn
41
41
41
41
41
41
41
41
43
43
43
43
43
43
43
43
43
53
53
53
53
53
53
53
Cruise
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
Table A.1 cont.
35.01
35.01
35.01
35.01
35.01
35.01
35.01
35
35
35
35
35
35
35
35
35
35.023
35.023
35.023
35.023
35.023
35.023
35.023
Lat (N)
35.023
depth
125
200
249
298
494
690
982
1180
1127
1423
1915
2505
3687
4278
4869
5461
5560
3
47
134
518
1681
2178
2675
Long (E)
-161.998
-161.998
-161.998
-161.998
-161.998
-161.998
-161.998
-161.998
-163.988
-163.988
-163.988
-163.988
-163.988
-163.988
-163.988
-163.988
-163.988
-174.033
-174.033
-174.033
-174.033
-174.033
-174.033
-174.033
174
178
174
43
8
5
4
147
148
151
157
162
175
173
158
146
142
128
88
43
19
17
14
8
Si
40
42
44
23
6
2
1
37
37
37
37
38
41
44
46
46
45
45
40
26
15
13
11
4
NO3
PO4
2444.00
2453.00
2453.00
2375.00
2312.00
2307.00
2307.00
2436.00
2437.00
2431.00
2439.00
2447.00
2416.00
2441.00
2419.00
2413.00
2415.00
2406.00
2373.00
2329.00
2314.00
2286.00
2316.00
2301.00
TA
2468.19
2478.99
2485.24
2441.98
2350.62
2343.70
2343.97
2456.35
2457.79
2452.09
2460.51
2469.01
2440.05
2469.22
2452.71
2452.59
2455.48
2453.89
2437.35
2395.88
2368.20
2317.38
2368.44
2355.93
NTA
34.657
34.633
34.546
34.04
34.425
34.452
34.448
34.71
34.704
34.699
34.694
34.688
34.655
34.6
34.519
34.435
34.423
34.317
34.076
34.023
34.199
34.526
34.225
34.184
Sp

26.050
26.030
25.971
25.576
25.861
25.881
25.878
26.089
26.084
26.079
26.075
26.070
26.049
26.006
25.946
25.884
25.868
25.791
25.615
25.568
25.699
25.941
25.714
25.679
 Meas 26.036
26.018
25.952
25.570
25.861
25.881
25.878
26.076
26.071
26.068
26.064
26.059
26.034
25.993
25.932
25.868
25.859
25.779
25.597
25.557
25.690
25.937
25.710
25.679
 Calc 0.014
0.012
0.018
0.006
0.000
-0.001
-0.001
0.013
0.012
0.011
0.011
0.010
0.014
0.013
0.014
0.015
0.008
0.011
0.018
0.011
0.009
0.004
0.005
0.001

156
Stn
53
53
53
53
59
61
61
61
61
61
61
65
69
69
69
69
69
77
77
77
77
77
85
85
Cruise
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
Table A.1 cont.
34.142
34.142
34.983
34.983
34.983
34.983
34.983
34.977
34.977
34.977
34.977
34.977
35
34.983
34.983
34.983
34.983
34.983
34.983
34.988
35.01
35.01
35.01
Lat (N)
35.01
depth
3172
3915
4901
5390
2
2
146
1172
1984
3184
3623
1
0
1144
1893
3137
4614
1
71
1780
2178
4003
1
31
Long (E)
-174.033
-174.033
-174.033
-174.033
179.993
177.973
177.973
177.973
177.973
177.973
177.973
174.005
170.058
170.058
170.058
170.058
170.058
162.075
162.075
162.075
162.075
162.075
153.963
153.963
12
12
156
171
169
13
12
154
163
170
136
6
6
161
163
177
147
12
8
7
156
161
164
169
Si
5
4
37
42
43
7
5
36
38
43
43
1
2
36
38
43
45
9
0
1
36
37
37
38
NO3
PO4
2311.00
2317.00
2441.00
2444.00
2438.00
2316.00
2312.00
2445.00
2445.00
2446.00
2414.00
2307.00
2300.00
2445.00
2440.00
2445.00
2422.00
2307.00
2308.00
2309.00
2442.00
2448.00
2447.00
2447.00
TA
2341.30
2348.13
2462.46
2469.76
2466.68
2351.81
2344.96
2466.21
2467.92
2476.42
2459.89
2334.21
2324.31
2466.85
2462.66
2473.27
2464.67
2343.63
2351.74
2346.41
2463.33
2469.45
2468.87
2469.94
NTA
34.547
34.536
34.695
34.635
34.593
34.467
34.508
34.699
34.675
34.57
34.347
34.592
34.634
34.69
34.678
34.6
34.394
34.453
34.349
34.442
34.697
34.696
34.69
34.675
Sp

25.949
25.944
26.085
26.037
26.003
25.887
25.915
26.080
26.060
25.985
25.816
25.986
26.017
26.069
26.069
26.013
25.853
25.877
25.802
25.869
26.083
26.078
26.075
26.063
 Meas 25.953
25.944
26.065
26.019
25.988
25.892
25.923
26.068
26.049
25.970
25.802
25.987
26.019
26.061
26.052
25.993
25.837
25.882
25.803
25.873
26.066
26.065
26.061
26.049
 Calc -0.004
-0.001
0.020
0.017
0.015
-0.006
-0.009
0.012
0.010
0.014
0.014
-0.001
-0.002
0.008
0.017
0.020
0.015
-0.005
-0.002
-0.005
0.016
0.012
0.014
0.013

157
Stn
85
85
85
85
85
85
85
89
89
89
89
89
89
89
89
89
89
93
93
93
93
93
93
93
Cruise
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
Table A.1 cont.
34.97
34.97
34.97
34.97
34.97
34.97
34.97
35
35
35
35
35
35
35
35
35
35
34.142
34.142
34.142
34.142
34.142
34.142
Lat (N)
34.142
depth
592
1165
1178
2982
4174
5355
5744
1
51
399
985
1224
2003
3163
4316
4894
5472
1
99
580
1162
1896
2896
4385
Long (E)
153.963
153.963
153.963
153.963
153.963
153.963
153.963
149.867
149.867
149.867
149.867
149.867
149.867
149.867
149.867
149.867
149.867
146.017
146.017
146.017
146.017
146.017
146.017
146.017
152
160
167
159
108
20
12
147
151
155
162
171
153
137
56
11
10
145
147
154
161
158
156
105
Si
36
38
41
43
39
11
4
36
36
37
38
42
44
44
28
4
3
35
36
36
38
44
44
39
NO3
PO4
2440.00
2431.00
2440.00
2431.00
2399.00
2299.00
2317.00
2434.00
2444.00
2443.00
2448.00
2446.00
2408.00
2411.00
2352.00
2316.00
2320.00
2440.00
2433.00
2446.00
2446.00
2436.00
2431.00
2397.00
TA
2461.52
2453.93
2468.07
2468.16
2453.90
2343.53
2349.63
2452.50
2464.85
2464.26
2470.45
2473.49
2445.81
2452.55
2419.11
2341.22
2344.92
2459.96
2450.72
2467.22
2468.36
2472.88
2469.17
2453.07
NTA
34.694
34.673
34.602
34.473
34.217
34.335
34.514
34.736
34.704
34.698
34.682
34.611
34.459
34.407
34.029
34.623
34.628
34.716
34.747
34.699
34.683
34.478
34.459
34.2
Sp

26.081
26.065
26.011
25.914
25.712
25.795
25.924
26.106
26.081
26.079
26.071
26.014
25.899
25.856
25.569
26.003
26.008
26.095
26.123
26.082
26.068
25.917
25.904
25.707
 Meas 26.064
26.048
25.994
25.897
25.703
25.793
25.928
26.096
26.071
26.067
26.055
26.001
25.886
25.847
25.561
26.010
26.014
26.080
26.104
26.068
26.056
25.901
25.886
25.691
 Calc 0.017
0.017
0.016
0.017
0.009
0.002
-0.004
0.010
0.009
0.012
0.016
0.012
0.012
0.008
0.008
-0.008
-0.006
0.014
0.019
0.014
0.012
0.016
0.017
0.017

158
Stn
93
93
97
97
97
97
97
97
97
97
97
97
97
97
97
97
97
392-2
392-2
392-2
392-2
392-2
392-2
392-2
Cruise
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
M78
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
Table A.1 cont.
80.4629
80.4629
80.4629
80.4629
80.4629
80.4629
80.4629
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
34.97
Lat (N)
34.97
depth
5367
5852
21
58
141
229
358
530
1099
1186
1683
2180
2676
3170
4296
5454
5834
3.6
30.1
49.8
101
201.7
303.2
506
Long (E)
146.017
146.017
142.023
142.023
142.023
142.023
142.023
142.023
142.023
142.023
142.023
142.023
142.023
142.023
142.023
142.023
142.023
-158.6761
-158.6761
-158.6761
-158.6761
-158.6761
-158.6761
-158.6761
147
148
153
161
164
167
163
135
129
23
12
5
4
3
3
144
146
Si
35
35
36
38
39
41
43
41
41
15
9
3
2
0
0
35
35
NO3
PO4
2293.40
2281.51
2270.50
2244.28
2213.06
2217.66
2103.67
2430.00
2430.00
2431.00
2441.00
2439.00
2440.00
2417.00
2415.00
2407.00
2316.00
2303.00
2297.00
2270.00
2298.00
2288.00
2434.00
2432.00
TA
2302.34
2297.52
2313.74
2410.17
2421.14
2440.06
2437.38
2451.01
2451.22
2452.58
2463.24
2463.64
2467.21
2450.18
2459.84
2453.12
2352.84
2326.67
2313.66
2261.02
2314.13
2292.72
2454.97
2452.96
NTA
34.864
34.756
34.346
32.591
31.992
31.81
30.208
34.7
34.697
34.692
34.684
34.65
34.614
34.526
34.362
34.342
34.452
34.644
34.748
35.139
34.756
34.928
34.701
34.701
Sp
1023.231
1023.151
1022.84
1021.516
1021.071
1020.931
1019.723

26.186
26.106
25.795
24.471
24.026
23.886
22.678
26.079
26.080
26.076
26.076
26.046
26.026
25.954
25.825
25.811
25.894
26.026
26.104
26.399
26.110
26.239
26.081
26.083
 Meas 26.192
26.111
25.801
24.476
24.024
23.886
22.678
26.068
26.066
26.062
26.056
26.031
26.003
25.937
25.813
25.798
25.881
26.026
26.105
26.400
26.111
26.241
26.069
26.069
 Calc -0.006
-0.005
-0.006
-0.005
0.002
0.000
0.000
0.011
0.014
0.014
0.019
0.015
0.022
0.017
0.011
0.012
0.012
-0.001
-0.001
-0.001
-0.001
-0.002
0.011
0.013

159
Stn
392-2
392-2
392-2
396-2
396-2
396-2
396-2
396-2
396-2
396-2
396-2
396-2
396-2
408-2
408-2
408-2
408-2
408-2
408-2
408-2
408-2
408-2
408-2
413-2
Cruise
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
Table A.1 cont.
80.3118
80.5481
80.5481
80.5481
80.5481
80.5481
80.5481
80.5481
80.5481
80.5481
80.5481
80.5833
80.5833
80.5833
80.5833
80.5833
80.5833
80.5833
80.5833
80.5833
80.5833
80.4629
80.4629
Lat (N)
80.4629
1013.8
2031.4
3054
3.5
10.1
50.5
101.4
202.4
303.3
506
1013.2
2031.3
2592.7
4
29.9
50.4
99.8
202.2
303.6
505.8
1013.2
2031.2
2553.4
-158.6761
-158.6761
-158.6761
-162.4038
-162.4038
-162.4038
-162.4038
-162.4038
-162.4038
-162.4038
-162.4038
-162.4038
-162.4038
-174.6926
-174.6926
-174.6926
-174.6926
-174.6926
-174.6926
-174.6926
-174.6926
-174.6926
-174.6926
-178.5547
depth
Long (E)
Si
NO3
PO4
2129.63
2310.02
2294.64
2289.45
2288.54
2293.75
2283.75
2246.42
2222.11
2228.76
2122.66
2298.03
2293.35
2290.45
2284.01
2278.67
2275.77
2231.23
2215.97
2119.44
2117.55
2305.59
2300.39
2297.28
TA
2423.49
2312.14
2296.93
2297.32
2297.59
2306.47
2317.52
2378.60
2405.47
2426.41
2425.27
2300.66
2296.57
2297.41
2292.85
2296.38
2319.17
2390.51
2417.59
2436.45
2442.95
2308.56
2303.69
2301.75
NTA
30.756
34.968
34.965
34.88
34.862
34.807
34.49
33.055
32.332
32.149
30.633
34.96
34.951
34.894
34.865
34.73
34.345
32.668
32.081
30.446
30.338
34.955
34.95
34.932
Sp
1020.139
1023.319
1023.313
1023.243
1023.23
1023.19
1022.953
1021.871
1021.325
1021.187
1020.045
1023.305
1023.297
1023.255
1023.232
1023.13
1022.84
1021.58
1021.14
1019.905
1019.827
1023.304
1023.296
1023.285

23.094
26.274
26.268
26.198
26.185
26.145
25.908
24.826
24.28
24.142
23
26.26
26.252
26.21
26.187
26.085
25.795
24.535
24.095
22.86
22.782
26.259
26.251
26.24
 Meas 23.091
26.271
26.269
26.204
26.191
26.149
25.910
24.826
24.280
24.142
22.999
26.265
26.258
26.215
26.193
26.091
25.800
24.534
24.091
22.858
22.776
26.261
26.257
26.244
 Calc 0.003
0.003
-0.001
-0.006
-0.006
-0.004
-0.002
0.000
0.000
0.000
0.001
-0.005
-0.006
-0.005
-0.006
-0.006
-0.005
0.001
0.004
0.002
0.006
-0.002
-0.006
-0.004

160
Stn
413-2
413-2
413-2
413-2
413-2
413-2
413-2
413-2
413-2
418-2
418-2
418-2
418-2
418-2
418-2
418-2
418-2
418-2
422-2
422-2
422-2
422-2
422-2
422-2
Cruise
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
Table A.1 cont.
80.5556
80.5556
80.5556
80.5556
80.5556
80.5556
80.3888
80.3888
80.3888
80.3888
80.3888
80.3888
80.3888
80.3888
80.3888
80.3118
80.3118
80.3118
80.3118
80.3118
80.3118
80.3118
80.3118
Lat (N)
80.3118
2275.67
2289.02
2285.00
2283.20
2292.11
2284.58
2091.34
9.8
40.4
101.1
202.2
303.6
405
506.3
759.4
1012.9
3.5
29.5
50.2
100.9
202.3
303.3
-178.5547
-178.5547
-178.5547
-178.5547
-178.5547
-178.5547
178.7087
178.7087
178.7087
178.7087
178.7087
178.7087
178.7087
178.7087
178.7087
175.7425
175.7425
175.7425
175.7425
175.7425
175.7425
2292.93
2282.14
2281.01
2221.57
2175.88
1956.57
2291.48
2292.06
2300.06
2292.26
2282.77
2277.09
2250.26
2236.59
2250.75
TA
-178.5547
PO4
2222.42
NO3
-178.5547
Si
2205.16
depth
-178.5547
Long (E)
2304.52
2305.66
2338.47
2369.28
2419.80
2436.84
2300.09
2301.20
2309.96
2303.05
2295.16
2307.75
2345.00
2415.18
2419.81
2291.52
2299.86
2291.91
2293.32
2301.71
2306.25
2358.57
2400.77
2411.51
NTA
34.824
34.643
34.14
32.818
31.472
28.102
34.869
34.861
34.85
34.836
34.811
34.535
33.586
32.412
30.249
34.894
34.882
34.867
34.873
34.807
34.536
33.4
32.4
32.005
Sp
1023.21
1023.074
1022.694
1021.697
1020.683
1018.139
1023.24
1023.231
1023.222
1023.211
1023.192
1022.987
1022.268
1021.384
1019.753
1023.253
1023.245
1023.234
1023.24
1023.189
1022.986
1022.131
1021.376
1021.079

26.163
26.027
25.647
24.65
23.636
21.092
26.195
26.186
26.177
26.166
26.147
25.942
25.223
24.339
22.708
26.208
26.2
26.189
26.195
26.144
25.941
25.086
24.331
24.034
 Meas 26.162
26.025
25.645
24.647
23.631
21.092
26.196
26.190
26.182
26.171
26.152
25.944
25.227
24.341
22.709
26.215
26.206
26.195
26.199
26.149
25.944
25.086
24.332
24.033
 Calc 0.001
0.002
0.002
0.003
0.005
0.000
-0.001
-0.004
-0.005
-0.005
-0.005
-0.002
-0.004
-0.002
-0.001
-0.007
-0.006
-0.006
-0.004
-0.005
-0.003
0.000
-0.001
0.001

161
Stn
422-2
422-2
422-2
422-2
430-2
430-2
430-2
430-2
430-2
430-2
430-2
430-2
430-2
430-2
442-2
442-2
442-2
442-2
442-2
442-2
442-2
442-2
451-2
451-2
Cruise
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
Table A.1 cont.
80.9684
80.9684
81.0179
81.0179
81.0179
81.0179
81.0179
81.0179
81.0179
81.0179
81.0012
81.0012
81.0012
81.0012
81.0012
81.0012
81.0012
81.0012
81.0012
81.0012
80.5556
80.5556
80.5556
Lat (N)
80.5556
depth
555.8
1013.6
2031.6
2530.6
3.7
10.1
50.5
101.3
202.7
304.3
507.2
1015.8
2031.5
2742.3
3.5
10.3
50.5
101.5
152.3
303.8
760.2
1522.2
10.4
50.7
Long (E)
175.7425
175.7425
175.7425
175.7425
164.8674
164.8674
164.8674
164.8674
164.8674
164.8674
164.8674
164.8674
164.8674
164.8674
145.0364
145.0364
145.0364
145.0364
145.0364
145.0364
145.0364
145.0364
142.0785
142.0785
Si
NO3
PO4
2265.00
2171.00
2285.00
2299.00
2298.00
2282.00
2290.00
2270.00
2186.00
2172.00
2303.00
2308.00
2297.00
2295.00
2290.00
2294.00
2287.00
2247.00
1967.00
1966.00
2307.67
2293.61
2299.11
2289.84
TA
2349.65
2373.57
2290.56
2307.64
2308.02
2305.85
2326.76
2339.10
2398.21
2386.96
2305.70
2311.63
2304.84
2303.75
2300.12
2310.97
2332.45
2340.28
2485.20
2493.03
2309.92
2296.62
2307.68
2298.44
NTA
33.739
32.013
34.915
34.869
34.848
34.638
34.447
33.966
31.903
31.848
34.959
34.945
34.881
34.867
34.846
34.743
34.318
33.605
27.702
27.601
34.966
34.954
34.87
34.869
Sp
1022.387
1021.084
1023.274
1023.237
1023.222
1023.064
1022.923
1022.559
1021.004
1020.963
1023.31
1023.298
1023.247
1023.24
1023.222
1023.145
1022.826
1022.289
1017.84
1017.764
1023.313
1023.302
1023.239
1023.239

25.342
24.039
26.228
26.191
26.176
26.018
25.877
25.513
23.958
23.917
26.263
26.251
26.2
26.193
26.175
26.098
25.779
25.242
20.793
20.717
26.266
26.255
26.192
26.192
 Meas 25.342
24.040
26.231
26.196
26.180
26.022
25.877
25.514
23.957
23.915
26.264
26.254
26.205
26.195
26.179
26.101
25.780
25.241
20.791
20.714
26.269
26.260
26.197
26.196
 Calc 0.000
-0.001
-0.003
-0.005
-0.004
-0.004
0.000
-0.001
0.001
0.002
-0.001
-0.003
-0.005
-0.002
-0.004
-0.003
-0.001
0.001
0.002
0.003
-0.003
-0.005
-0.005
-0.004

162
Stn
451-2
451-2
451-2
451-2
451-2
459-2
459-2
459-2
459-2
459-2
459-2
459-2
459-2
466-1
466-1
466-1
466-1
466-1
466-1
466-1
466-1
471-2
471-2
471-2
Cruise
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
Table A.1 cont.
81.2353
81.2353
81.2353
81.013
81.013
81.013
81.013
81.013
81.013
81.013
81.013
80.978
80.978
80.978
80.978
80.978
80.978
80.978
80.978
80.9684
80.9684
80.9684
80.9684
Lat (N)
80.9684
depth
101.4
202.6
407.6
1012.4
1584.8
3.3
10.3
50.8
101.3
253.1
505.6
1013.4
1667.8
3.7
10.1
49.1
101.3
202.3
404.8
1013.1
2541.8
3.4
10.3
50.4
Long (E)
142.0785
142.0785
142.0785
142.0785
142.0785
139.0126
139.0126
139.0126
139.0126
139.0126
139.0126
139.0126
139.0126
136.1054
136.1054
136.1054
136.1054
136.1054
136.1054
136.1054
136.1054
121.2663
121.2663
121.2663
Si
NO3
PO4
2284.00
2241.00
2231.00
2307.00
2304.00
2312.00
2297.00
2300.00
2264.00
2205.00
2196.00
2309.00
2299.00
2291.00
2295.00
2280.00
2276.00
2195.00
2299.00
2292.00
2288.00
2290.00
2281.00
TA
2363.41
2370.50
2366.79
2311.49
2310.14
2317.89
2306.22
2335.23
2353.15
2400.91
2391.56
2312.57
2306.38
2298.95
2303.49
2313.85
2345.84
2390.47
2303.54
2299.36
2295.67
2304.42
2318.76
NTA
33.824
33.088
32.992
34.932
34.907
34.911
34.86
34.472
33.674
32.144
32.138
34.946
34.888
34.879
34.871
34.488
33.958
32.138
32.039
34.931
34.888
34.883
34.781
34.43
Sp
1022.456
1021.898
1021.825
1023.291
1023.269
1023.27
1023.23
1022.937
1022.338
1021.184
1021.182
1023.295
1023.251
1023.246
1023.238
1022.949
1022.549
1021.18
1021.108
1023.289
1023.252
1023.247
1023.171
1022.906

25.41
24.852
24.779
26.245
26.223
26.224
26.184
25.891
25.292
24.138
24.136
26.25
26.206
26.201
26.193
25.904
25.504
24.135
24.063
26.244
26.207
26.202
26.126
25.861
 Meas 25.407
24.851
24.778
26.244
26.225
26.228
26.189
25.896
25.293
24.138
24.134
26.254
26.210
26.204
26.198
25.908
25.508
24.134
24.059
26.243
26.210
26.207
26.130
25.864
 Calc 0.003
0.001
0.001
0.001
-0.002
-0.004
-0.005
-0.005
-0.001
0.000
0.002
-0.004
-0.004
-0.003
-0.005
-0.004
-0.004
0.001
0.004
0.001
-0.003
-0.005
-0.004
-0.003

163
74.8
74.82
69.5
73.34
74.49
75.17
75.87
76.93
77.09
77.47
77.95
78
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
81.2353
74.78
471-2
AXXIII/3
81.2353
AXXIII/3
471-2
AXXIII/3
81.2353
74.81
471-2
AXXIII/3
81.2353
AXXIII/3
471-2
AXXIII/3
81.2353
74.86
471-2
AXXIII/3
81.2353
AXXIII/3
471-2
AXXIII/3
81.2353
74.92
471-2
AXXIII/3
Lat (N)
81.2353
AXXIII/3
Stn
471-2
Cruise
AXXIII/3
Table A.1 cont.
depth
101.1
202.4
303.2
505.9
1013.1
2031.5
3054.1
4260.4
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
Long (E)
121.2663
121.2663
121.2663
121.2663
121.2663
121.2663
121.2663
121.2663
-127
-128.38
-129.76
-129.39
-130.67
-131.25
-136.01
-141.23
-147.17
-151.39
-155.32
-162.98
-163.86
-165.31
-169.77
-170.09
Si
NO3
PO4
1858.20
1858.80
1867.80
1785.00
1766.90
1761.20
1673.40
1670.40
1681.60
1750.70
1769.00
1868.70
1887.70
1911.50
1929.60
1941.30
2307.00
2301.00
2308.00
2296.00
2296.00
2295.00
2296.00
2277.00
TA
2487.74
2481.24
2501.93
2522.10
2540.74
2544.35
2562.19
2554.02
2571.70
2528.14
2532.52
2490.56
2478.60
2472.65
2462.57
2461.70
2310.43
2304.69
2312.69
2302.12
2302.18
2302.17
2303.77
2318.27
NTA
26.143
26.22
26.129
24.771
24.34
24.227
22.859
22.891
22.886
24.237
24.448
26.261
26.656
27.057
27.425
27.601
34.948
34.944
34.929
34.907
34.906
34.891
34.882
34.377
Sp
1016.667
1016.727
1016.657
1015.637
1015.317
1015.233
1014.2
1014.228
1014.225
1015.238
1015.395
1016.759
1017.055
1017.356
1017.626
1017.764
1023.3
1023.296
1023.286
1023.27
1023.267
1023.257
1023.25
1022.869

19.62
19.68
19.61
18.59
18.27
18.186
17.153
17.181
17.178
18.191
18.348
19.712
20.008
20.309
20.579
20.717
26.254
26.25
26.24
26.224
26.221
26.211
26.204
25.823
 Meas 19.617
19.675
19.607
18.586
18.262
18.177
17.149
17.173
17.169
18.184
18.343
19.706
20.003
20.305
20.582
20.715
26.256
26.253
26.241
26.225
26.224
26.213
26.206
25.824
 Calc 0.003
0.005
0.003
0.004
0.008
0.009
0.004
0.008
0.009
0.007
0.005
0.006
0.005
0.004
-0.003
0.002
-0.002
-0.003
-0.001
-0.001
-0.003
-0.002
-0.002
-0.001

164
78.23
78.07
78.15
78.41
78.47
78.19
77.97
77.6
77.6
77.6
77.59
77.59
77.58
77.59
77.62
77.6
77.51
77.24
77.31
77.61
77.34
77.06
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
Lat (N)
78.11
78.23
Stn
AXXIII/3
Cruise
AXXIII/3
Table A.1 cont.
depth
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
Long (E)
-173.04
-178.68
179.17
178.47
177.47
173.93
173
172.73
173.05
177.07
179.66
-177.77
-172.16
-171.34
-170.48
-170.46
-175.86
-176.66
-178.68
178.58
179.05
174.54
174.14
173.71
Si
NO3
PO4
2126.20
2123.50
2088.60
2085.70
2090.80
2090.10
2018.40
2008.80
2015.40
2027.10
2097.00
2079.10
2077.20
2081.20
2124.20
2099.90
2065.30
2117.10
2117.80
2090.00
2117.90
2122.20
2029.20
2029.20
TA
2413.00
2410.80
2417.68
2420.17
2426.25
2421.18
2452.92
2438.71
2449.19
2465.80
2418.84
2417.48
2416.63
2413.19
2410.19
2415.26
2422.92
2422.15
2423.43
2394.51
2427.11
2431.80
2437.52
2453.52
NTA
30.84
30.829
30.236
30.163
30.161
30.214
28.8
28.83
28.801
28.773
30.343
30.101
30.084
30.185
30.847
30.43
29.834
30.592
30.586
30.549
30.541
30.544
29.137
28.947
Sp
1020.199
1020.196
1019.747
1019.692
1019.686
1019.731
1018.665
1018.691
1018.668
1018.643
1019.825
1019.646
1019.635
1019.709
1020.137
1019.896
1019.445
1020.014
1020.014
1019.982
1019.973
1019.982
1018.921
1018.779

23.152
23.149
22.7
22.645
22.639
22.684
21.618
21.644
21.621
21.596
22.778
22.599
22.588
22.662
23.09
22.849
22.398
22.967
22.967
22.935
22.926
22.935
21.874
21.732
 Meas 23.155
23.147
22.700
22.644
22.643
22.683
21.617
21.640
21.618
21.597
22.780
22.598
22.585
22.661
23.160
22.846
22.396
22.968
22.963
22.935
22.929
22.932
21.871
21.728
 Calc -0.003
0.002
0.000
0.001
-0.004
0.001
0.001
0.004
0.003
-0.001
-0.002
0.001
0.003
0.001
0.003
0.002
-0.001
0.004
0.000
-0.003
0.003
0.003
0.004

165
76.23
75.98
75.72
75.51
75.25
74.72
74.79
74.86
74.92
75.05
75.05
75.36
75.42
75.49
75.55
75.61
75.67
75.74
75.8
76.13
76.18
76.28
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
Lat (N)
76.78
76.47
Stn
AXXIII/3
Cruise
AXXIII/3
Table A.1 cont.
depth
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
Long (E)
173.29
172.85
172.51
172.16
171.8
171.5
170.98
170.94
171.57
172.18
172.83
173.33
173.99
177.2
177.81
178.46
179.09
179.72
-178.33
-177.02
-177.63
-174.87
-173.56
-172.13
Si
NO3
PO4
1939.00
1929.30
1945.50
1994.00
2004.00
1998.80
2030.40
2095.00
2100.80
2090.60
2088.00
2082.00
2081.20
2027.90
2028.40
2030.00
2032.80
2076.20
2093.00
2093.90
2103.40
2107.10
2103.30
2103.40
TA
2475.83
2466.14
2475.46
2469.92
2478.80
2467.74
2456.07
2435.08
2439.95
2431.01
2413.63
2412.27
2416.95
2413.02
2415.50
2418.56
2421.40
2406.19
2411.85
2409.00
2414.69
2419.09
2415.52
2416.03
NTA
27.411
27.381
27.507
28.256
28.296
28.349
28.934
30.112
30.135
30.099
30.278
30.208
30.138
29.414
29.391
29.377
29.383
30.2
30.373
30.422
30.488
30.486
30.476
30.471
Sp
1017.619
1017.599
1017.697
1018.256
1018.288
1018.33
1018.766
1019.654
1019.673
1019.647
1019.78
1019.727
1019.676
1019.131
1019.112
1019.101
1019.109
1019.72
1019.848
1019.887
1019.937
1019.936
1019.928
1019.924

20.573
20.553
20.651
21.209
21.241
21.283
21.719
22.607
22.626
22.6
22.733
22.68
22.629
22.084
22.065
22.054
22.062
22.673
22.801
22.84
22.89
22.889
22.881
22.877
 Meas 20.572
20.549
20.644
21.208
21.238
21.278
21.718
22.606
22.623
22.596
22.731
22.678
22.626
22.080
22.063
22.052
22.057
22.672
22.803
22.840
22.889
22.888
22.880
22.877
 Calc 0.001
0.004
0.007
0.001
0.003
0.005
0.001
0.001
0.003
0.004
0.002
0.002
0.003
0.004
0.002
0.002
0.005
0.001
-0.002
0.000
0.001
0.001
0.001
0.000

166
76.4
76.34
76.32
76.28
75.98
75.86
75.72
75.54
74.57
74.26
73.93
73.63
73.85
74.65
74.84
75.05
75.04
75.24
75.39
75.59
76.39
76.45
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
Lat (N)
76.29
76.35
Stn
AXXIII/3
Cruise
AXXIII/3
Table A.1 cont.
depth
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
Long (E)
-172.83
-171.49
-170.14
-170.78
-169.4
-165.15
-165.76
-165.83
-165.73
-165.71
-165.6
-165.56
-165.53
-165.49
-165.17
-167.69
-167.32
-168.93
-168.84
-168.55
-168.05
-169.82
-171.81
-172.71
Si
NO3
PO4
1844.30
1825.10
1863.50
1855.50
1863.00
1878.50
1863.60
1843.50
1853.40
1852.40
1842.30
1843.20
1843.10
1864.50
1831.70
1830.80
1832.40
1829.00
1856.80
1890.20
1896.50
1939.70
1939.80
1939.80
TA
2478.23
2507.10
2504.32
2498.08
2488.08
2508.01
2512.65
2487.66
2460.42
2437.19
2502.74
2505.13
2504.60
2513.29
2502.03
2501.00
2499.08
2495.23
2480.93
2492.63
2487.26
2480.07
2476.76
2477.67
NTA
26.047
25.479
26.044
25.997
26.207
26.215
25.959
25.937
26.365
26.602
25.764
25.752
25.756
25.965
25.623
25.621
25.663
25.655
26.195
26.541
26.687
27.374
27.412
27.402
Sp
1016.595
1016.17
1016.594
1016.558
1016.718
1016.723
1016.53
1016.514
1016.835
1017.014
1016.383
1016.375
1016.377
1016.534
1016.274
1016.273
1016.303
1016.297
1016.706
1016.964
1017.075
1017.594
1017.62
1017.612

19.55
19.124
19.548
19.512
19.672
19.677
19.484
19.468
19.789
19.968
19.337
19.329
19.331
19.488
19.228
19.227
19.257
19.251
19.66
19.918
20.029
20.548
20.574
20.566
 Meas 19.545
19.118
19.543
19.507
19.666
19.672
19.479
19.462
19.784
19.963
19.332
19.323
19.326
19.483
19.226
19.225
19.256
19.250
19.657
19.917
20.027
20.544
20.572
20.565
 Calc 0.005
0.006
0.005
0.005
0.006
0.005
0.005
0.006
0.005
0.005
0.005
0.006
0.005
0.005
0.002
0.002
0.001
0.001
0.003
0.001
0.002
0.004
0.002
0.001

167
76.42
76.46
75.33
75.13
75.11
75.31
75.44
75.57
75.84
76.15
76.48
76.75
77.05
77.01
77.06
77.06
77.16
77.63
79.2
79.51
79.76
80.09
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
Lat (N)
76.5
76.45
Stn
AXXIII/3
Cruise
AXXIII/3
Table A.1 cont.
depth
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
Long (E)
-173.84
-174.62
-175.48
178.13
174.75
175.35
175.36
176.25
176.85
177.48
178.76
-178.07
-178.52
-178.91
-177.36
-173.64
-172.69
-171.91
-170.78
-170.47
-165.45
-163.24
-162.89
-160.81
Si
NO3
PO4
2097.90
2057.20
2045.70
2051.30
1955.60
1890.20
1930.10
2009.00
2034.90
2058.90
2073.90
2056.20
2049.80
2064.50
2029.70
2082.90
2068.50
2048.10
2067.40
2090.20
2073.20
1921.20
1919.00
1921.70
TA
2440.23
2444.31
2445.25
2447.77
2473.39
2482.81
2501.61
2456.08
2465.01
2444.83
2438.33
2443.20
2456.36
2440.97
2454.04
2431.75
2435.41
2434.98
2423.92
2423.54
2440.45
2489.34
2475.03
2476.33
NTA
30.09
29.457
29.281
29.331
27.673
26.646
27.004
28.629
28.893
29.475
29.769
29.456
29.207
29.602
28.948
29.979
29.727
29.439
29.852
30.186
29.733
27.012
27.137
27.161
Sp
1019.636
1019.16
1019.027
1019.063
1017.819
1017.042
1017.312
1018.537
1018.736
1019.173
1019.394
1019.159
1018.971
1019.268
1018.776
1019.551
1019.365
1019.145
1019.456
1019.707
1019.371
1017.321
1017.413
1017.43

22.592
22.116
21.983
22.019
20.775
19.998
20.268
21.493
21.692
22.128
22.349
22.114
21.926
22.223
21.731
22.506
22.32
22.1
22.411
22.662
22.326
20.276
20.368
20.385
 Meas 22.589
22.112
21.980
22.017
20.769
19.996
20.265
21.489
21.688
22.126
22.348
22.112
21.924
22.222
21.729
22.506
22.316
22.099
22.410
22.662
22.320
20.271
20.365
20.383
 Calc 0.003
0.004
0.003
0.002
0.006
0.002
0.003
0.004
0.004
0.002
0.001
0.002
0.002
0.001
0.002
0.000
0.004
0.001
0.001
0.000
0.006
0.005
0.003
0.002

168
80.72
80.57
80.64
80.62
80.59
80.62
80.69
80.56
80.38
80.32
80.31
80.39
80.51
80.54
80.59
80.37
80.87
80.94
81
81
81
81
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
Lat (N)
80.29
80.6
Stn
AXXIII/3
Cruise
AXXIII/3
Table A.1 cont.
depth
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
Long (E)
-159.99
-156.76
-154.5
-162.38
-165.29
-167.92
-168.69
-168.15
-170.45
-171.21
-176.65
-177.35
-177.45
178.69
176.7
173.77
172.1
172.13
167.62
166.13
158.73
157.06
155.42
153.87
Si
NO3
PO4
2015.80
1980.10
1925.20
1990.50
1967.50
1976.40
1969.90
1968.50
1976.80
1982.40
2076.20
2127.80
2122.60
2123.90
2108.70
1937.60
2118.10
2107.60
2107.10
2084.20
2103.00
2086.00
2088.50
2103.70
TA
2491.37
2504.46
2534.49
2523.45
2505.73
2512.86
2438.86
2442.31
2448.96
2436.06
2424.42
2422.20
2424.64
2424.78
2431.30
2234.76
2436.60
2437.18
2433.70
2401.15
2436.20
2441.81
2440.16
2441.13
NTA
28.319
27.672
26.586
27.608
27.482
27.528
28.27
28.21
28.252
28.482
29.973
30.746
30.64
30.657
30.356
30.346
30.425
30.267
30.303
30.38
30.213
29.9
29.956
30.162
Sp
1018.305
1017.815
1017
1017.769
1017.671
1017.707
1018.266
1018.218
1018.251
1018.423
1019.547
1020.132
1020.049
1020.067
1019.84
1019.83
1019.889
1019.769
1019.798
1019.855
1019.73
1019.492
1019.532
1019.69

21.258
20.768
19.953
20.722
20.625
20.661
21.22
21.172
21.205
21.377
22.501
23.086
23.003
23.021
22.794
22.784
22.843
22.723
22.754
22.811
22.686
22.448
22.488
22.646
 Meas 21.255
20.768
19.951
20.720
20.625
20.660
21.218
21.173
21.205
21.378
22.501
23.084
23.004
23.017
22.790
22.782
22.842
22.723
22.750
22.808
22.682
22.446
22.488
22.644
 Calc 0.003
0.000
0.002
0.002
0.000
0.001
0.002
-0.001
0.000
-0.001
0.000
0.002
-0.001
0.004
0.004
0.002
0.001
0.000
0.004
0.003
0.004
0.002
0.000
0.002

169
81.05
80.98
81.01
81.17
81.16
81.1
81.12
81.16
81.24
80.48
80.22
79.95
79.65
79.46
79.24
78.54
78.21
77.95
77.92
77.91
-25.3352
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
AXXIII/3
I9
94
80.99
AXXIII/3
Lat (N)
81
80.98
Stn
AXXIII/3
Cruise
AXXIII/3
Table A.1 cont.
depth
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
8.8
Long (E)
151.97
148
146.47
140.57
137.54
136.09
128.79
127.93
126.61
124.42
123.1
121.22
121.48
120.86
119.95
118.87
118.55
118.11
117.77
117.3
116.64
115.22
114
95.0001
99
Si
0.06
NO3
0.11
PO4
2349.40
2083.50
2077.00
2067.70
2072.70
2130.90
2181.40
2181.30
2192.00
2220.70
2219.20
2220.20
2229.30
2191.30
2165.70
2167.20
2167.90
2166.90
2212.50
2207.60
2179.60
2188.10
2220.00
2049.80
TA
2294.85
2449.61
2435.83
2420.47
2398.09
2384.01
2366.82
2369.95
2351.72
2352.44
2357.20
2365.37
2366.70
2393.74
2409.09
2418.83
2418.68
2411.95
2409.76
2414.11
2388.49
2386.45
2405.72
2491.77
NTA
35.832
29.769
29.844
29.899
30.251
31.284
32.258
32.214
32.623
33.04
32.951
32.852
32.968
32.04
31.464
31.359
31.371
31.444
32.135
32.006
31.939
32.091
32.298
28.792
Sp
1023.969
1019.396
1019.455
1019.495
1019.758
1020.536
1021.27
1021.234
1021.543
1021.859
1021.791
1021.719
1021.806
1021.107
1020.672
1020.595
1020.607
1020.662
1021.176
1021.078
1021.028
1021.143
1021.306
1018.665

26.924
22.348
22.407
22.447
22.71
23.488
24.222
24.188
24.497
24.813
24.745
24.673
24.76
24.061
23.626
23.548
23.56
23.615
24.129
24.031
23.981
24.096
24.259
21.618
 Meas 26.924
22.347
22.404
22.446
22.711
23.490
24.224
24.191
24.500
24.815
24.748
24.673
24.760
24.060
23.625
23.546
23.555
23.610
24.132
24.034
23.984
24.098
24.255
21.611
 Calc 0.000
0.001
0.003
0.001
-0.001
-0.002
-0.002
-0.003
-0.003
-0.002
-0.003
0.000
0.000
0.001
0.001
0.002
0.005
0.005
-0.003
-0.003
-0.003
-0.002
0.004
0.007

170
Stn
94
94
96
96
96
98
98
98
102
102
102
104
104
104
106
106
106
108
108
108
110
110
110
114
Cruise
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
Table A.1 cont.
-14.0844
-16.2776
-16.2776
-16.2776
-17.4001
-17.4001
-17.4001
-18.5188
-18.5189
-18.5188
-19.6334
-19.6334
-19.6335
-20.7633
-20.7633
-20.7633
-23.0157
-23.0157
-23.0157
-24.137
-24.137
-24.137
-25.3352
Lat (N)
-25.3351
depth
1381.5
5333.6
4.3
1350.7
5268
33.4
1109.8
4963.1
42
1047.8
5061.5
31.4
1007.6
5145.4
47.8
1078.3
5633.2
4.1
1148
6086.5
3.5
1008.1
6086.9
76
Long (E)
95.0001
95.0001
95.0073
95.0073
95.0073
94.9976
94.9976
94.9976
94.9995
94.9995
94.9995
95.0016
95.0016
95.0016
94.9984
94.9984
94.9984
94.9982
94.9982
94.9982
95.007
95.007
95.007
94.9924
2.6
122.42
90
1.98
122.73
92.79
1.65
122.32
88.68
2.14
122.03
82.37
2.19
122.53
77.23
2.19
122.55
73.7
1.91
122.31
82.42
1.83
122.9
82.83
Si
0.07
32.25
36.16
0.06
32.32
36.21
0.06
32.21
36.08
0.07
32.09
35.74
0
32.3
35.52
0.05
32.16
34.9
0.06
32.21
35.13
0.05
32.3
35.19
NO3
0.09
2.24
2.65
0.07
2.25
2.64
0.08
2.25
2.65
0.08
2.25
2.61
0.09
2.25
2.58
0.09
2.24
2.5
0.09
2.25
2.52
0.09
2.25
2.48
PO4
2380.90
2362.10
2273.90
2376.50
2365.90
2286.30
2379.40
2362.60
2308.90
2381.20
2358.60
2299.40
2321.70
2338.70
2351.10
2336.90
2377.80
2358.60
TA
2400.71
2294.82
2396.29
2385.67
2295.81
2399.69
2385.98
2293.76
2401.02
2383.14
2280.44
2291.52
2287.59
35.021
34.7112
34.681
34.7109
34.71
34.855
34.704
34.657
35.231
34.7111
34.6396
35.291
34.7113
34.707
35.461
34.7118
34.5551
35.782
34.7111
34.609
35.678
2292.49
2377.66
34.7107
Sp
2397.62
NTA
1023.354
1023.134
1023.115
1023.095
1023.129
1023.124
1023.23
1023.126
1023.09
1023.516
1023.134
1023.079
1023.564
1023.185
1023.13
1023.694
1023.136
1023.013
1023.926
1023.17
1023.049
1023.856
1023.131
1023.029

26.309
26.089
26.07
26.05
26.084
26.079
26.185
26.081
26.045
26.471
26.089
26.034
26.519
26.14
26.085
26.649
26.091
25.968
26.881
26.125
26.004
26.811
26.086
25.984
 Meas 26.311
26.077
26.054
26.077
26.076
26.186
26.071
26.036
26.470
26.077
26.023
26.515
26.077
26.074
26.644
26.077
25.959
26.886
26.077
26.000
26.808
26.076
 Calc -0.002
0.012
-0.004
0.007
0.003
-0.001
0.010
0.009
0.001
0.012
0.011
0.004
0.011
0.005
0.014
0.009
-0.005
0.004
0.003
0.010

171
Stn
114
114
116
116
116
118
118
118
120
120
120
122
122
122
124
124
124
126
126
128
128
128
130
130
Cruise
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
Table A.1 cont.
-5.5304
-5.5304
-6.5991
-6.5992
-6.5992
-7.6741
-7.6741
-8.7302
-8.7303
-8.7303
-9.8168
-9.8168
-9.8168
-10.8848
-10.8848
-10.8848
-11.9477
-11.9477
-11.9478
-13.0168
-13.0169
-13.0169
-14.084
Lat (N)
-14.0843
depth
1046.6
5499.2
2.7
655.3
4149.6
3.8
977.1
4189.1
1.7
1047.6
5475.4
1.4
1000
5284.5
3.6
677.2
5484.9
2.2
1045.3
2.3
606.5
5223.7
3.1
776.2
Long (E)
94.9924
94.9925
94.9988
94.9988
94.9988
94.9999
94.9999
95
94.9991
94.9991
94.9991
95.0009
95.0009
95.0009
95.0068
95.0068
95.0068
95.0048
95.0048
95.0101
95.0101
95.0101
95.0124
95.0124
69.01
1.79
125.35
48.19
1.79
93.76
1.94
124.01
66.07
2.25
125.44
97.21
1.92
124.11
99.03
2.15
126.13
96.43
1.69
126.95
66.5
2.88
124.02
95.14
Si
35.85
0.06
32.14
33.79
0.01
36.73
0
32.26
35.54
0.05
32.55
36.75
0.06
32.3
36.64
0.06
32.89
36.34
0.03
32.83
34.65
0
32.31
36.3
NO3
2.63
0.08
2.24
2.44
0.09
2.69
0.08
2.24
2.56
0.08
2.26
2.68
0.1
2.25
2.7
0.13
2.28
2.66
0.08
2.28
2.48
0.07
2.26
2.66
PO4
2351.30
2230.20
2392.90
2227.70
2369.20
2233.10
2388.30
2340.10
2245.60
2388.10
2371.00
2212.70
2389.50
2374.20
2200.80
2393.60
2369.00
2233.40
2397.30
2282.40
2385.70
2369.30
TA
2363.10
2297.49
2412.63
2298.29
2387.14
2290.96
2408.01
2356.94
2298.08
2407.80
2409.23
2397.85
2280.04
2413.24
2393.52
2297.80
2416.93
2299.89
2405.41
2393.49
NTA
34.8252
33.9749
34.7138
34.8739
33.925
34.737
34.116
34.7135
34.7499
34.2007
34.7136
34.7134
34.6548
33.7836
34.7152
34.6415
34.019
34.7157
34.665
34.7339
34.7132
34.6462
Sp
1023.211
1022.573
1023.136
1023.266
1022.526
1023.148
1022.672
1023.132
1023.152
1022.736
1023.141
1023.122
1022.388
1023.133
1023.091
1022.429
1023.138
1023.079
1022.596
1023.136
1023.092
1023.142
1023.145
1023.083

26.166
25.528
26.091
26.221
25.481
26.103
25.627
26.087
26.107
25.691
26.096
26.077
25.343
26.088
26.046
25.384
26.093
26.034
25.551
26.091
26.047
26.097
26.1
26.038
 Meas 26.163
25.521
26.079
26.200
25.483
26.096
25.627
26.079
26.106
25.691
26.079
26.079
26.034
25.376
26.080
26.024
25.554
26.080
26.042
26.094
26.078
26.028
 Calc 0.003
0.007
0.012
0.021
-0.002
0.007
0.000
0.008
0.001
0.000
0.017
0.009
0.012
0.008
0.013
0.010
-0.003
0.011
0.005
0.003
0.022
0.010

172
Stn
130
132
132
132
136
136
136
138
138
138
140
140
140
142
142
142
144
144
144
148
148
148
150
150
Cruise
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
Table A.1 cont.
1.45
1.45
0.8179
0.8179
0.8179
-0.3168
-0.3167
-0.3168
-0.9341
-0.9341
-0.9341
-1.5647
-1.5647
-1.5647
-2.2017
-2.2017
-2.2013
-2.8332
-2.8332
-2.8332
-4.534
-4.5341
-4.534
Lat (N)
-5.5304
depth
5135
2.1
525.3
4751.4
2.3
674.5
4836.1
2.6
845.2
4785.7
2.4
805.5
4728.3
3.2
775.7
4679.3
2.8
846.4
4601.6
2.9
674.5
4464.6
1.2
744.7
Long (E)
95.0124
94.8687
94.8687
94.8687
94.3325
94.3325
94.3325
94.1333
94.132
94.132
93.9322
93.9322
93.9322
93.7334
93.7334
93.7334
93.5519
93.5518
93.5518
92.7344
92.7344
92.7344
92.2993
92.2993
57.92
1.08
127.71
49.47
1.26
128.01
66.39
1.09
128.54
59.5
1.27
126.4
63.46
1.28
127.62
68.68
1.07
126
52.07
1.24
128.88
38.57
1.41
124.99
Si
35.43
0.02
32.78
34.42
0.06
32.71
36.16
0.07
33.02
35.65
0.05
32.61
35.78
0.13
32.55
36.1
0
32.56
34.64
0
32.61
32.71
0.05
32.48
NO3
2.64
0.07
2.27
2.51
0.07
2.27
2.69
0.07
2.27
2.62
0.09
2.26
2.63
0.07
2.26
2.67
0.08
2.25
2.51
0.08
2.26
2.28
0.08
2.24
PO4
2339.70
2233.30
2399.70
2335.60
2234.40
2394.30
2345.40
2227.10
2395.50
2321.50
2230.30
2398.50
2346.40
2223.70
2395.40
2227.00
2397.30
2227.30
2317.20
2243.80
2395.30
TA
2419.43
2335.49
2294.27
2413.98
2344.93
2415.21
2322.35
2292.12
2418.24
2348.21
2290.99
2415.09
2294.61
2417.04
2289.78
2323.06
2296.76
2415.03
NTA
34.7146
35.0017
34.0867
34.7147
35.007
34.7144
34.9872
34.0561
34.7143
34.973
33.972
34.7146
34.9409
33.9688
34.7141
34.978
34.045
34.7144
34.9117
34.1929
34.7141
Sp
1023.366
1022.661
1023.133
1023.342
1022.646
1023.142
1023.343
1022.578
1023.136
1023.33
1022.63
1023.143
1023.328
1022.56
1023.131
1023.303
1022.562
1023.144
1023.332
1022.619
1023.143
1023.278
1022.738
1023.13

26.321
25.616
26.088
26.297
25.601
26.097
26.298
25.533
26.091
26.285
25.585
26.098
26.283
25.515
26.086
26.258
25.517
26.099
26.287
25.574
26.098
26.233
25.693
26.085
 Meas 26.079
26.296
25.605
26.079
26.300
26.079
26.285
25.582
26.079
26.275
25.518
26.079
26.250
25.516
26.079
26.278
25.574
26.079
26.228
25.685
26.079
 Calc 0.009
0.001
-0.004
0.018
-0.002
0.012
0.000
0.003
0.019
0.008
-0.003
0.007
0.008
0.001
0.020
0.009
0.000
0.019
0.005
0.008
0.006

173
Stn
150
152
152
152
154
154
154
156
156
156
158
158
158
160
160
160
162
162
162
164
164
164
166
166
Cruise
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
Table A.1 cont.
7.6106
7.6106
6.8727
6.8727
6.8727
6.1198
6.1197
6.1197
5.3939
5.3939
5.3939
4.6543
4.6543
4.6543
3.9009
3.9008
3.9009
3.0003
3.0003
3.0003
2.2011
2.2011
2.2011
Lat (N)
1.45
depth
4396.2
2.2
804.7
4315.3
1.6
675.2
4203.5
2.7
745.1
3913.9
2
504.1
3252.9
1.8
772.9
2892.9
1.7
643.5
3130.6
2.5
804.1
3777.5
2.3
572.3
Long (E)
92.2993
92.0206
92.0205
92.0206
91.7596
91.7596
91.7596
91.3271
91.3271
91.3271
90.7628
90.7628
90.7628
90.1935
90.1935
90.1935
89.6287
89.6287
89.6287
89.0551
89.0551
89.0551
88.486
88.486
51.35
2.16
142.11
68.86
1.56
136.59
54.22
1.5
134.41
63.11
1.28
135.08
39.94
1.32
131.07
61.85
1.15
128.04
55.21
1.22
128.38
68.36
1.46
128.18
Si
36.16
0.14
34.34
36.84
0.01
34.54
36.44
0.01
34.49
36.15
0.05
34.33
33.22
0.05
33.07
35.83
0.05
32.94
35.61
0.06
33.01
36.68
0.07
33
NO3
2.6
0
2.37
2.7
0.05
2.4
2.64
0.06
2.43
2.66
0.07
2.41
2.37
0.07
2.29
2.64
0.09
2.28
2.62
0.08
2.29
2.72
0.08
2.29
PO4
2332.40
2192.50
2433.50
2192.60
2418.90
2337.50
2215.20
2414.90
2346.60
2238.30
2416.00
2326.90
2228.80
2402.80
2345.50
2228.20
2392.20
2337.70
2234.30
2418.40
2354.00
2233.10
2401.70
TA
2330.80
2319.40
2453.02
2305.92
2437.73
2336.00
2298.56
2432.13
2346.90
2291.51
2432.19
2324.51
2291.87
2422.48
2289.63
2411.85
2295.03
2438.28
2354.08
2292.40
2420.23
NTA
35.024
33.0851
34.7215
34.9863
33.28
34.7296
35.0225
33.7307
34.752
34.9956
34.1873
34.767
35.036
34.0368
34.7157
34.061
34.7148
34.0738
34.7147
34.9988
34.0946
34.732
Sp
1023.361
1021.896
1023.141
1023.326
1022.036
1023.153
1023.365
1022.378
1023.162
1023.336
1022.724
1023.168
1023.378
1022.617
1023.131
1023.339
1022.629
1023.143
1023.373
1022.645
1023.139
1023.343
1022.653
1023.154

26.316
24.851
26.096
26.281
24.991
26.108
26.32
25.333
26.117
26.291
25.679
26.123
26.333
25.572
26.086
26.294
25.584
26.098
26.328
25.6
26.094
26.298
25.608
26.109
 Meas 26.313
24.849
26.085
26.285
24.996
26.091
26.312
25.336
26.108
26.292
25.681
26.119
26.322
25.567
26.080
25.586
26.080
25.595
26.079
26.294
25.611
26.093
 Calc 0.003
0.002
0.011
-0.004
-0.005
0.017
0.008
-0.003
0.009
-0.001
-0.002
0.004
0.011
0.005
0.006
-0.002
0.018
0.005
0.015
0.004
-0.003
0.016

174
Stn
166
168
170
170
170
173
173
173
175
175
175
177
177
177
179
179
179
181
181
181
183
183
183
185
Cruise
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
I9
Table A.1 cont.
11.2429
10.2993
10.2993
10.2993
9.3069
9.307
9.307
8.2664
8.2664
8.2664
8.8485
8.8485
8.8485
9.969
9.969
9.9689
9.9672
9.9672
9.9672
9.0878
9.0878
9.0878
8.3498
Lat (N)
7.6106
depth
3714.1
3
1.8
204.1
3603
2
1105.2
3513.9
3
90
3539.4
1.7
273.7
3697.6
1.9
104.9
3740.2
2.5
163.1
3637.2
1.6
103
3484.5
2.5
Long (E)
88.4861
87.9196
87.3512
87.3512
87.3512
87.3002
87.3002
87.3002
86.1998
86.1999
86.1999
85.6994
85.6994
85.6994
86.0062
86.0062
86.0062
86.5242
86.5242
86.5242
87.0624
87.0624
87.0624
87.6232
2.24
141.32
12.04
1.79
149.88
23.9
1.42
150.84
17.87
1.41
150.66
32.71
1.49
148.05
9.84
1.61
142.18
89.7
1.62
145.46
30.3
1.4
1.36
146.08
Si
0.03
34.5
20.26
0.06
35.22
28.03
0.05
35.07
21.67
0.05
35.17
32.46
0.06
35.19
15.38
0.05
34.65
37.36
0.05
34.76
31.08
0.04
0.02
34.94
NO3
0.02
2.39
1.46
0.02
2.44
2.04
0.05
2.44
1.57
0.07
2.44
2.34
0.07
2.44
1.17
0.05
2.38
2.71
0.04
2.41
2.27
0.05
0.06
2.39
PO4
2191.40
2430.10
2270.60
2195.80
2451.10
2291.20
2207.10
2446.50
2275.40
2200.70
2445.70
2313.70
2215.70
2442.30
2268.60
2211.60
2430.60
2208.10
2442.30
2302.50
2215.70
2197.40
2432.00
TA
2449.37
2286.67
2327.05
2470.65
2297.57
2307.05
2466.05
2294.92
2465.26
2310.45
2299.69
2289.66
2311.79
2449.89
2309.24
2461.77
2303.56
2304.91
2300.12
2451.49
NTA
34.7247
34.7541
33.0259
34.7231
34.903
33.4837
34.7226
33.563
34.7223
35.0492
33.7217
34.678
33.4832
34.7244
34.9133
33.467
34.7232
34.9839
33.6453
33.4369
34.7217
Sp
1021.658
1023.148
1023.157
1021.851
1023.147
1023.269
1022.199
1023.144
1023.169
1022.257
1023.146
1023.379
1022.38
1023.157
1023.095
1022.19
1023.145
1023.278
1022.182
1023.152
1023.33
1022.322
1022.165
1023.147

24.613
26.103
26.112
24.806
26.102
26.224
25.154
26.099
26.124
25.212
26.101
26.334
25.335
26.112
26.05
25.145
26.1
26.233
25.137
26.107
26.285
25.277
25.12
26.102
 Meas 26.087
26.109
24.804
26.086
26.222
25.150
26.085
25.210
26.085
26.332
25.329
26.052
25.149
26.087
26.230
25.137
26.086
26.283
25.272
25.114
26.085
 Calc 0.016
0.003
0.002
0.016
0.002
0.004
0.014
0.002
0.016
0.002
0.006
-0.002
-0.004
0.013
0.003
0.000
0.021
0.002
0.005
0.006
0.017

175
196
198
198
I9
I9
I9
17
196
I9
A10
196
I9
17
194
I9
A10
194
I9
17
194
I9
A10
191
I9
17
191
I9
A10
191
I9
17
189
I9
A10
189
I9
17
189
I9
A10
187
I9
17
185
I9
A10
Stn
185
Cruise
I9
Table A.1 cont.
-29.735
-29.735
-29.735
-29.735
-29.735
-29.735
-29.735
17.5015
17.5015
16.4998
16.4998
16.4998
15.5001
15.5002
15.5001
14.0742
14.0742
14.0742
13.13
13.13
13.13
12.1876
11.2429
Lat (N)
11.2429
depth
137.9
3362.9
3220.4
2.3
128.5
3074.8
1.6
87.3
2878.3
2.6
113.8
2648.5
1.8
272.7
2474.7
203.1
2285.6
4.2
39.9
95.3
139.3
189
189
271.7
Long (E)
87.6233
87.6232
88.1815
88.7441
88.7441
88.7441
89.3057
89.3057
89.3057
89.8498
89.8498
89.8498
89.8495
89.8496
89.8496
89.8488
89.8488
6.725
6.725
6.725
6.725
6.725
6.725
6.725
3.32
2.83
2.83
2.44
2.44
1.95
1.85
137.64
35.37
137.47
39.14
2.26
139.82
26.79
2.04
139.75
1.87
1.48
139.39
20.43
2.62
140.81
139.39
25.24
Si
8.1
4.1
4.1
1.95
1.85
0.29
0.1
35.38
32.28
35.3
33.95
0.01
35.09
27.74
0
34.95
0.17
0
34.84
25.62
0
35.13
34.57
27.42
NO3
0.61
0.38
0.38
0.28
0.26
0.15
0.14
2.55
2.4
2.54
2.47
0.01
2.5
2.16
0.02
2.45
0.14
0.07
2.44
1.94
0.02
2.42
2.39
2.05
PO4
2311.40
2325.90
2325.90
2335.40
2338.50
2338.20
2340.60
2423.70
2310.10
2423.30
2316.50
2185.10
2423.50
2294.30
2201.00
2425.00
2245.80
2224.10
2427.40
2284.00
2183.80
2423.80
2423.20
2291.90
TA
2298.66
2294.11
2293.46
2296.75
2298.57
2297.76
2299.21
2440.50
2309.69
2436.67
2312.14
2353.00
2441.72
2299.89
2353.10
2442.02
2300.01
2302.13
2446.23
2292.86
2349.09
2442.84
2442.40
2300.18
NTA
35.194
35.485
35.495
35.589
35.608
35.616
35.630
34.759
35.0062
34.808
35.066
32.5025
34.7389
34.915
32.7376
34.756
34.175
33.8137
34.7306
34.8647
32.5373
34.7272
34.7249
34.874
Sp
1023.478
1023.699
1023.706
1023.78
1023.795
1023.802
1023.813
1023.169
1023.349
1023.203
1023.394
1021.456
1023.15
1023.283
1021.632
1023.164
1022.714
1022.458
1023.145
1023.237
1021.484
1023.147
1023.138
1023.243

26.439
26.66
26.667
26.741
26.756
26.763
26.774
26.124
26.304
26.158
26.349
24.411
26.105
26.238
24.587
26.119
25.669
25.413
26.1
26.192
24.439
26.102
26.093
26.198
 Meas 26.442
26.662
26.669
26.741
26.755
26.761
26.772
26.113
26.300
26.150
26.345
24.409
26.098
26.231
24.586
26.111
25.672
25.399
26.092
26.193
24.435
26.089
26.087
26.200
 Calc -0.003
-0.002
-0.002
0.000
0.001
0.002
0.002
0.011
0.004
0.008
0.004
0.002
0.007
0.007
0.001
0.008
-0.003
0.014
0.008
-0.001
0.004
0.013
0.006
-0.002

176
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
43
43
43
43
43
43
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
Stn
17
A10
Cruise
A10
Table A.1 cont.
-30.003
-30.003
-30.003
-30.003
-30.003
-30.003
-29.735
-29.735
-29.735
-29.735
-29.735
-29.735
-29.735
-29.735
-29.735
-29.735
-29.735
-29.735
-29.735
-29.735
-29.735
-29.735
-29.735
Lat (N)
-29.735
depth
369
493.1
644.8
794
945
1239.3
1451.9
1603.6
1897.5
2203.9
2500.4
2797.6
3101.4
3498.8
3901.2
4298
4700.9
5153.5
5.3
34.9
72.5
125.7
184.8
270.5
Long (E)
6.725
6.725
6.725
6.725
6.725
6.725
6.725
6.725
6.725
6.725
6.725
6.725
6.725
6.725
6.725
6.725
6.725
6.725
-6.244
-6.244
-6.244
-6.244
-6.244
-6.244
2.63
1.85
1.66
1.56
1.46
1.46
106.19
104.24
93.21
67.63
57.48
52.21
48.11
43.72
40.79
38.94
42.85
47.34
55.74
37.78
24.31
15.33
7.42
5.07
Si
3.71
1.07
0.68
0.29
0
0
30.55
30.16
28.79
25.77
24.69
24.2
24.11
23.81
24.2
25.18
27.43
29.38
32.8
31.92
29.09
25.58
18.45
13.37
NO3
0.4
0.26
0.24
0.2
0.16
0.16
2.25
2.23
2.11
1.83
1.72
1.67
1.64
1.62
1.63
1.69
1.87
2.02
2.26
2.14
1.92
1.67
1.22
0.89
PO4
2331.40
2347.70
2348.40
2342.70
2348.50
2351.20
2366.00
2363.40
2357.10
2354.60
2347.70
2337.40
2332.50
2327.40
2329.40
2325.80
2324.80
2320.10
2311.50
2304.80
2291.00
2288.70
2291.40
2301.60
TA
2294.17
2295.17
2294.32
2288.50
2293.01
2293.85
2383.16
2380.13
2372.28
2365.55
2356.72
2346.45
2341.26
2335.27
2337.35
2335.61
2338.90
2338.41
2341.34
2346.36
2333.74
2326.52
2311.08
2301.47
NTA
35.568
35.801
35.825
35.829
35.847
35.875
34.748
34.754
34.776
34.838
34.866
34.865
34.869
34.882
34.881
34.853
34.789
34.726
34.554
34.380
34.359
34.431
34.702
35.002
Sp
1023.76
1023.937
1023.954
1023.956
1023.969
1023.989
1023.144
1023.149
1023.167
1023.214
1023.235
1023.234
1023.237
1023.244
1023.245
1023.224
1023.175
1023.129
1022.999
1022.865
1022.849
1022.904
1023.11
1023.335

26.727
26.904
26.921
26.923
26.936
26.956
26.109
26.114
26.132
26.179
26.2
26.199
26.202
26.209
26.21
26.189
26.136
26.09
25.96
25.826
25.81
25.865
26.071
26.296
 Meas 26.725
26.901
26.919
26.922
26.936
26.957
26.105
26.109
26.126
26.173
26.194
26.193
26.196
26.206
26.205
26.184
26.136
26.088
25.958
25.827
25.811
25.865
26.070
26.297
 Calc 0.002
0.003
0.002
0.001
0.000
-0.001
0.004
0.005
0.006
0.006
0.006
0.006
0.006
0.003
0.005
0.005
0.000
0.002
0.002
-0.001
-0.001
0.000
0.001
-0.001

177
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
61
61
61
61
61
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
Stn
43
A10
Cruise
A10
Table A.1 cont.
-30.000
-30.000
-30.000
-30.000
-30.000
-30.003
-30.003
-30.003
-30.003
-30.003
-30.003
-30.003
-30.003
-30.003
-30.003
-30.003
-30.003
-30.003
-30.003
-30.003
-30.003
-30.003
-30.003
Lat (N)
-30.003
depth
359.2
499.7
625.3
774.8
924.2
1124.5
1325
1524.2
1774.5
1774.5
2049.3
2350.1
2650.7
2951.7
3199.7
3550.9
3908.5
4249.6
4673.3
4.2
40.8
89.4
134.2
193.7
Long (E)
-6.244
-6.244
-6.244
-6.244
-6.244
-6.244
-6.244
-6.244
-6.244
-6.244
-6.244
-6.244
-6.244
-6.244
-6.244
-6.244
-6.244
-6.244
-6.244
-18.999
-18.999
-18.999
-18.999
-18.999
2.05
1.56
1.37
1.37
1.37
54.38
53.11
52.23
52.03
51.35
51.45
52.13
52.82
51.45
51.36
51.36
54.87
53.71
41.21
23.24
14.35
6.54
4.39
2.63
Si
4.29
1.27
0.1
0
0
23.72
23.62
23.43
23.53
23.53
23.92
24.5
25.48
26.85
28.51
28.51
31.44
32.91
32.23
28.91
24.51
16.3
10.74
4.49
NO3
0.45
0.26
0.16
0.15
0.15
1.7
1.69
1.68
1.69
1.7
1.72
1.77
1.84
1.94
2.08
2.08
2.29
2.42
2.38
2.12
1.8
1.22
0.86
0.46
PO4
2346.30
2359.10
2363.60
2366.20
2355.20
2352.30
2349.00
2343.20
2340.30
2336.60
2333.40
2331.30
2332.80
2325.90
2325.90
2323.00
2318.70
2303.00
2292.50
2285.40
2283.90
2309.60
2327.90
TA
2296.63
2293.76
2294.12
2294.80
2363.10
2360.19
2356.74
2351.19
2342.51
2342.15
2343.38
2342.54
2345.26
2342.63
2342.77
2347.28
2351.01
2341.33
2332.62
2318.59
2292.15
2299.94
2299.58
NTA
35.517
35.757
35.997
36.060
36.089
34.883
34.883
34.885
34.881
34.967
34.917
34.851
34.832
34.814
34.750
34.748
34.638
34.519
34.427
34.398
34.499
34.874
35.147
35.431
Sp
1023.722
1023.904
1024.085
1024.131
1024.151
1023.253
1023.253
1023.251
1023.25
1023.314
1023.276
1023.227
1023.212
1023.196
1023.148
1023.146
1023.067
1022.975
1022.906
1022.883
1022.961
1023.245
1023.452
1023.666

26.687
26.869
27.05
27.096
27.116
26.212
26.212
26.21
26.209
26.273
26.235
26.186
26.171
26.155
26.107
26.105
26.026
25.934
25.865
25.842
25.92
26.204
26.411
26.625
 Meas 26.686
26.868
27.049
27.097
27.119
26.207
26.207
26.208
26.205
26.270
26.232
26.183
26.168
26.155
26.106
26.105
26.022
25.932
25.862
25.840
25.917
26.200
26.406
26.621
 Calc 0.001
0.001
0.001
-0.001
-0.003
0.005
0.005
0.002
0.004
0.003
0.003
0.003
0.003
0.000
0.001
0.000
0.004
0.002
0.003
0.002
0.003
0.004
0.005
0.004

178
61
61
61
61
61
61
61
61
61
61
61
61
61
61
61
61
61
61
61
81
81
81
81
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
Stn
61
A10
Cruise
A10
Table A.1 cont.
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
Lat (N)
-30.000
depth
275.6
364.9
464.8
564.2
666.4
766
766
864.8
963.8
1064.3
1263.3
1499.6
1750.3
2002
2300.7
2601.2
2950.9
3300.1
3699.5
3869.7
4
40.1
90.2
161.6
Long (E)
-18.999
-18.999
-18.999
-18.999
-18.999
-18.999
-18.999
-18.999
-18.999
-18.999
-18.999
-18.999
-18.999
-18.999
-18.999
-18.999
-18.999
-18.999
-18.999
-18.999
-31.892
-31.892
-31.892
-31.892
1.76
0.78
0.88
0.78
70.39
63.95
49.4
41.78
43.64
47.93
51.74
54.87
56.53
52.54
37.31
30.76
22.17
16.02
16.02
12.5
8.89
6.25
4.29
3.03
Si
3.61
0.1
0
0
25.29
24.6
22.65
22.06
22.94
24.31
26.26
28.41
30.76
32.32
31.35
30.47
28.81
26.66
26.66
24.41
20.11
15.33
11.42
7.91
NO3
0.3
0.1
0.08
0.08
1.86
1.8
1.66
1.61
1.68
1.79
1.92
2.1
2.27
2.4
2.33
2.25
2.11
1.98
1.98
1.81
1.51
1.2
0.92
0.69
PO4
2283.70
2361.70
2354.40
2353.70
2364.10
2339.60
2323.10
2326.60
2326.30
2328.20
2328.10
2327.00
2320.60
2313.70
2297.80
2291.90
2280.70
2280.70
2280.20
2288.90
2291.30
2309.30
2317.80
TA
2242.63
2302.49
2293.71
2293.48
2374.21
2349.74
2330.56
2333.47
2333.37
2337.89
2341.48
2345.02
2344.99
2338.56
2341.89
2337.86
2322.84
2322.84
2311.77
2311.55
2297.27
2301.34
2299.01
NTA
35.641
35.900
35.926
35.919
34.851
34.849
34.888
34.897
34.894
34.855
34.800
34.731
34.636
34.628
34.341
34.312
34.282
34.365
34.365
34.522
34.657
34.909
35.121
35.286
Sp
1023.812
1024.015
1024.033
1024.029
1023.228
1023.224
1023.255
1023.26
1023.259
1023.23
1023.188
1023.136
1023.065
1023.059
1022.842
1022.817
1022.787
1022.849
1022.848
1022.968
1023.07
1023.263
1023.422
1023.546

26.777
26.975
26.993
26.989
26.187
26.183
26.214
26.219
26.216
26.187
26.145
26.093
26.022
26.016
25.799
25.774
25.752
25.814
25.813
25.933
26.035
26.228
26.387
26.511
 Meas 26.780
26.976
26.995
26.990
26.183
26.181
26.211
26.217
26.215
26.186
26.144
26.092
26.020
26.014
25.797
25.775
25.753
25.815
25.815
25.934
26.036
26.227
26.387
26.511
 Calc -0.003
-0.001
-0.002
-0.001
0.004
0.002
0.003
0.002
0.001
0.001
0.001
0.001
0.002
0.002
0.002
-0.001
-0.001
-0.001
-0.002
-0.001
-0.001
0.001
0.000
0.000

179
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
81
105
105
105
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
Stn
81
A10
Cruise
A10
Table A.1 cont.
-29.189
-29.189
-29.189
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
-30.000
Lat (N)
-30.000
depth
209.5
280.5
364.8
442.8
532.8
635.5
745.7
832.5
920.4
1014.9
1134.4
1319.7
1319.7
1599.7
1849.1
2130
2374.5
2799.6
3300.3
3799
3995.6
6.2
34.6
70.5
Long (E)
-31.892
-31.892
-31.892
-31.892
-31.892
-31.892
-31.892
-31.892
-31.892
-31.892
-31.892
-31.892
-31.892
-31.892
-31.892
-31.892
-31.892
-31.892
-31.892
-31.892
-31.892
-42.533
-42.533
-42.533
0.78
0.78
0.88
93.69
77.78
45.86
37.86
40.69
46.35
51.92
54.56
52.42
52.42
43.34
33.09
26.07
19.52
15.81
11.81
7.61
5.07
3.71
2.83
2.15
Si
0
0
0
28.59
26.45
22.64
21.86
23.03
24.88
27.33
30.16
32.41
32.41
32.21
30.95
29.68
27.92
26.26
23.23
18.44
13.95
10.93
8.39
5.85
NO3
0.06
0.05
0.05
2.25
2.01
1.55
1.46
1.55
1.7
1.89
2.06
2.18
2.18
2.11
1.97
1.85
1.71
1.59
1.4
1.11
0.86
0.69
0.56
0.42
PO4
2381.90
2389.10
2401.60
2353.20
2344.80
2328.60
2325.10
2324.80
2325.10
2325.20
2322.10
2314.80
2314.80
2303.60
2293.20
2287.20
2267.60
2281.10
2285.90
2291.10
2302.10
2310.20
2318.00
2326.90
TA
2294.45
2295.51
2294.48
2368.63
2356.52
2336.14
2331.70
2325.93
2335.71
2340.24
2344.47
2346.99
2346.51
2340.92
2336.53
2333.33
2304.07
2319.88
2314.73
2306.79
2298.36
2298.12
2297.06
2293.35
NTA
36.334
36.427
36.634
34.772
34.826
34.887
34.901
34.983
34.841
34.775
34.666
34.520
34.527
34.442
34.351
34.308
34.446
34.415
34.564
34.762
35.057
35.184
35.319
35.512
Sp
1024.344
1024.419
1024.576
1023.162
1023.203
1023.247
1023.256
1023.32
1023.214
1023.164
1023.08
1022.969
1022.975
1022.912
1022.843
1022.808
1022.913
1022.887
1022.999
1023.15
1023.372
1023.467
1023.569
1023.714

27.307
27.382
27.539
26.127
26.168
26.212
26.221
26.285
26.179
26.129
26.045
25.934
25.94
25.877
25.808
25.773
25.878
25.852
25.964
26.115
26.337
26.432
26.534
26.679
 Meas 27.304
27.374
27.531
26.123
26.164
26.210
26.220
26.282
26.175
26.125
26.043
25.933
25.938
25.874
25.805
25.772
25.877
25.853
25.966
26.115
26.338
26.434
26.536
26.682
 Calc 0.003
0.008
0.008
0.004
0.004
0.002
0.001
0.003
0.004
0.004
0.002
0.001
0.002
0.003
0.003
0.001
0.001
-0.001
-0.002
0.000
-0.001
-0.002
-0.002
-0.003

180
Stn
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
23
23
Cruise
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A10
A22
A22
Table A.1 cont.
33.7842
33.7842
-29.189
-29.189
-29.189
-29.189
-29.189
-29.189
-29.189
-29.189
-29.189
-29.189
-29.189
-29.189
-29.189
-29.189
-29.189
-29.189
-29.189
-29.189
-29.189
-29.189
-29.189
Lat (N)
-29.189
depth
104.2
154.2
154.2
225.8
278.4
350.9
450
549.5
650.9
749.6
900.4
1073.5
1274.6
1476.5
1649.3
1925.2
2173.6
2450.6
2800.7
3198.9
3629.6
4060.3
4.4
25.8
Long (E)
-42.533
-42.533
-42.533
-42.533
-42.533
-42.533
-42.533
-42.533
-42.533
-42.533
-42.533
-42.533
-42.533
-42.533
-42.533
-42.533
-42.533
-42.533
-42.533
-42.533
-42.533
-42.533
-65.9914
-65.9914
0.01
0
118.69
86.09
36.01
30.06
27.13
26.84
28.89
44.7
52.03
49.89
36.81
22.75
14.16
10.93
7.61
4.49
2.83
2.54
2.05
1.27
1.27
0.88
Si
0.05
0.06
31.53
27.43
20.89
20.49
20.4
20.98
22.35
27.53
30.85
32.51
31.54
28.9
25.87
23.43
18.74
12.98
8.39
7.02
5.07
1.95
1.95
0.88
NO3
0
0
2.76
2.2
1.37
1.28
1.27
1.29
1.38
1.81
2.04
2.11
1.94
1.67
1.43
1.28
1.03
0.74
0.51
0.45
0.35
0.17
0.17
0.11
PO4
2395.2
2416.4
2366.10
2351.80
2328.20
2325.20
2297.20
2318.20
2319.50
2325.30
2323.70
2316.10
2302.40
2288.80
2283.00
2287.30
2296.80
2313.40
2331.70
2334.80
2342.60
2353.40
2353.40
2362.90
TA
2293.44
2313.67
2385.46
2365.86
2333.60
2329.19
2299.50
2322.38
2325.35
2340.75
2348.73
2351.51
2345.97
2336.80
2328.44
2322.60
2312.26
2306.68
2303.14
2302.63
2300.15
2296.45
2296.64
2284.38
NTA
36.553
36.554
34.716
34.792
34.919
34.940
34.965
34.937
34.912
34.769
34.627
34.473
34.350
34.281
34.317
34.468
34.766
35.102
35.434
35.489
35.646
35.868
35.865
36.203
Sp
1024.516
1024.515
1023.124
1023.18
1023.276
1023.293
1023.312
1023.291
1023.27
1023.163
1023.057
1022.936
1022.842
1022.791
1022.816
1022.932
1023.157
1023.409
1023.663
1023.705
1023.826
1023.996
1023.992
1024.249

27.473
27.472
26.084
26.14
26.236
26.253
26.272
26.251
26.23
26.123
26.017
25.899
25.805
25.754
25.779
25.895
26.12
26.372
26.626
26.668
26.789
26.959
26.955
27.212
 Meas 27.470
27.470
26.081
26.138
26.234
26.250
26.269
26.248
26.229
26.121
26.013
25.897
25.804
25.752
25.779
25.893
26.118
26.372
26.623
26.665
26.784
26.951
26.949
27.205
 Calc 0.003
0.002
0.003
0.002
0.002
0.003
0.003
0.003
0.001
0.002
0.004
0.002
0.001
0.002
0.000
0.002
0.002
0.000
0.003
0.003
0.005
0.008
0.006
0.007

181
Stn
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
Cruise
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
Table A.1 cont.
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
Lat (N)
33.7842
depth
51.2
76
104.7
150.6
200.6
252.7
303.7
352.4
402.4
504.3
604.1
705.9
807.4
907.5
1007.8
1109.4
1211.3
1311.2
1413.8
1513.9
1617.1
1820
2020.8
2275.1
Long (E)
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
19.71
13.42
12.76
11.95
11.74
11.64
11.76
12.15
12.69
13.38
13.51
9.73
6.33
3.1
1.84
1.43
1.14
1.14
0.95
0.35
0.09
0.11
0.16
0.06
Si
18.5
17.69
17.83
17.81
17.9
18.07
18.34
19.09
20.08
21.7
23.47
19.89
15.59
9.7
6.24
5.1
4.42
4.13
3.81
1
0.19
0.2
0.19
0.1
NO3
1.24
1.18
1.18
1.19
1.19
1.19
1.21
1.26
1.32
1.41
1.5
1.24
0.95
0.56
0.32
0.25
0.2
0.19
0.16
0.03
0
0
0
0
PO4
2309.9
2311.2
2308.4
2311.2
2313.7
2317.7
2323.1
2332.6
2346.8
2366.5
2387.2
2389.4
2391.9
2393.4
2392.6
2391.6
TA
2312.34
2312.19
2308.53
2309.68
2308.29
2311.29
2310.36
2303.19
2297.82
2293.44
2289.28
2283.45
2287.21
2290.08
2291.01
2290.24
NTA
34.964
34.963
34.974
34.985
34.997
34.998
35.023
35.055
35.082
35.097
35.193
35.447
35.746
36.115
36.391
36.497
36.624
36.573
36.602
36.579
36.552
36.549
36.549
36.554
Sp
1023.31
1023.309
1023.318
1023.329
1023.336
1023.336
1023.356
1023.381
1023.401
1023.414
1023.484
1023.675
1023.902
1024.184
1024.391
1024.469
1024.569
1024.529
1024.551
1024.535
1024.512
1024.513
1024.513
1024.515

26.268
26.267
26.276
26.287
26.294
26.294
26.314
26.339
26.358
26.371
26.441
26.632
26.859
27.141
27.348
27.426
27.526
27.486
27.508
27.492
27.469
27.470
27.470
27.472
 Meas 26.268
26.267
26.276
26.284
26.293
26.294
26.313
26.337
26.357
26.369
26.441
26.633
26.859
27.138
27.347
27.427
27.523
27.485
27.507
27.489
27.469
27.467
27.467
27.470
 Calc 0.000
0.000
0.000
0.003
0.001
0.000
0.001
0.002
0.001
0.002
0.000
-0.001
0.000
0.003
0.001
-0.001
0.003
0.001
0.001
0.003
0.000
0.003
0.003
0.002

182
Stn
23
23
23
23
23
23
23
23
23
23
28
28
28
28
28
28
28
28
28
28
28
28
28
28
Cruise
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
Table A.1 cont.
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
33.7842
Lat (N)
33.7842
depth
2530.7
2787.2
3040.7
3346.8
3654.3
3961
4268
4577.7
4885.7
5198.9
3.3
20.6
41.4
66.4
90.4
136.5
186.8
237.1
287
338.5
386.8
440.3
487
567.5
Long (E)
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.9914
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
2.44
1.62
1.19
1.07
0.89
0.86
0.68
0.12
0.2
0.19
0.23
0.16
0.16
0.21
43.59
34.55
32.6
30.44
27.59
25.28
22.72
22.44
21.65
19.77
Si
8.27
6.46
4.85
4.31
3.99
3.77
3.45
0.58
0.72
0.07
0.01
-0.01
-0.01
-0.01
20.75
19.27
18.96
18.59
18.28
18.06
17.96
18.41
18.54
18.52
NO3
0.45
0.33
0.23
0.19
0.18
0.16
0.14
0.02
0.02
-0.01
-0.01
-0.01
0.01
0
1.42
1.35
1.31
1.28
1.25
1.23
1.22
1.24
1.25
1.24
PO4
2373.3
2381.7
2389.9
2392
2393.4
2393.6
2395.1
2393.9
2393.7
2398.9
2397.9
2397.2
2397.3
2398.7
2348.7
2331.4
2320.4
2321.3
2322.4
2319.7
TA
2337.24
2322.96
2308.95
2294.58
2292.84
2290.46
2290.90
2287.87
2278.72
2284.98
2281.05
2279.02
2277.94
2281.00
2357.39
2338.88
2327.38
2327.68
2326.59
2321.29
NTA
35.540
35.885
36.227
36.486
36.535
36.576
36.592
36.622
36.766
36.745
36.793
36.815
36.834
36.806
34.871
34.886
34.888
34.890
34.895
34.904
34.923
34.937
34.954
34.976
Sp
1023.752
1024.01
1024.269
1024.466
1024.503
1024.536
1024.547
1024.57
1024.68
1024.665
1024.706
1024.722
1024.737
1024.712
1023.24
1023.253
1023.255
1023.255
1023.258
1023.265
1023.279
1023.29
1023.307
1023.32

26.705
26.963
27.222
27.419
27.456
27.489
27.500
27.523
27.633
27.618
27.655
27.671
27.686
27.661
26.198
26.211
26.213
26.213
26.216
26.223
26.237
26.248
26.265
26.278
 Meas 26.703
26.964
27.223
27.419
27.456
27.487
27.499
27.522
27.631
27.615
27.651
27.668
27.682
27.661
26.198
26.209
26.211
26.212
26.216
26.223
26.237
26.248
26.261
26.277
 Calc 0.002
-0.001
-0.001
0.000
0.000
0.002
0.001
0.001
0.002
0.003
0.004
0.003
0.004
0.000
0.000
0.002
0.002
0.001
0.000
0.000
0.000
0.000
0.004
0.001

183
Stn
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
47
47
Cruise
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
Table A.1 cont.
19.3543
19.3543
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
31.3098
Lat (N)
31.3098
depth
669.4
770.4
871.9
972.8
1074.8
1173.6
1277.2
1378.1
1480.8
1582.2
1752
1954.7
2189.1
2444.7
2699.6
2953.6
3243.1
3548.8
3857.9
4166.2
4475.3
4708.5
3.3
24.7
Long (E)
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-65.2875
-66.0016
-66.0016
0.95
0.92
38.69
36.8
34.49
31.06
27.59
24.37
23.02
21.78
19.18
16.73
14.57
12.88
12.18
11.91
11.95
12
12.17
12.52
13.25
13.15
9.44
5.49
Si
0
0
20
19.66
19.32
18.75
18.3
18.04
18.22
18.42
18.17
17.96
17.89
17.81
17.94
17.96
18.19
18.51
18.99
20.08
21.85
23.32
19.9
14.24
NO3
0
0
1.38
1.36
1.33
1.3
1.26
1.23
1.24
1.24
1.22
1.21
1.2
1.19
1.19
1.19
1.21
1.23
1.26
1.33
1.42
1.49
1.24
0.86
PO4
2370.7
2371.5
2338.7
2337.6
2334.6
2330.3
2327.3
2324.2
2323.4
2323.2
2320.7
2318.7
2315.9
2314.2
2315.3
2316.2
2314.4
2315.3
2316.2
2319.1
2319.7
2324
2334.4
2350.7
TA
2295.92
2295.36
2346.95
2345.64
2342.09
2336.84
2333.57
2305.43
2328.39
2327.19
2323.95
2320.95
2316.96
2314.73
2311.80
2313.42
2310.83
2310.94
2311.25
2313.35
2313.49
2317.71
2325.70
2331.91
NTA
36.140
36.161
34.877
34.880
34.888
34.902
34.906
35.285
34.925
34.940
34.951
34.966
34.984
34.992
35.053
35.042
35.054
35.066
35.075
35.087
35.094
35.095
35.131
35.282
Sp
1024.189
1024.207
1023.247
1023.249
1023.256
1023.267
1023.267
1023.556
1023.285
1023.294
1023.303
1023.316
1023.332
1023.338
1023.383
1023.376
1023.383
1023.393
1023.401
1023.41
1023.416
1023.417
1023.443
1023.557

27.156
27.174
26.204
26.206
26.213
26.224
26.224
26.513
26.242
26.251
26.260
26.273
26.285
26.291
26.336
26.329
26.336
26.346
26.354
26.363
26.369
26.370
26.396
26.510
 Meas 27.157
27.173
26.202
26.205
26.211
26.221
26.224
26.511
26.239
26.250
26.258
26.270
26.283
26.289
26.335
26.327
26.336
26.345
26.352
26.361
26.366
26.367
26.394
26.508
 Calc -0.001
0.001
0.002
0.001
0.002
0.003
0.000
0.002
0.003
0.001
0.002
0.003
0.002
0.002
0.001
0.002
0.000
0.001
0.002
0.002
0.003
0.003
0.002
0.002

184
Stn
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
Cruise
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
Table A.1 cont.
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
Lat (N)
19.3543
depth
49.4
74.4
100.1
151.2
201.3
251.4
302
352.4
402.9
503.5
603.5
704.3
806.2
906.9
1007.4
1108.4
1209.8
1311.2
1412.3
1614.9
1818.5
2020
2274.5
2528.4
Long (E)
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
20.06
17.08
14.76
13.7
12.84
12.44
13.08
14.32
16.78
22.78
21.4
18.54
15.47
12.21
8.97
3.54
1.59
1.13
0.69
0.36
0.07
0.38
0.72
0.98
Si
18.31
18.02
17.93
17.93
18.09
18.55
19.41
21.06
23.97
30.27
30.86
29.99
28.6
25.81
21.53
12.15
6.88
5.21
3.89
2.37
0.43
0
0
0
NO3
1.23
1.21
1.2
1.19
1.2
1.23
1.29
1.39
1.57
2
2.02
1.93
1.82
1.63
1.36
0.7
0.36
0.25
0.16
0.07
0
0
0
0
PO4
2315.9
2315.8
2319.1
2313.3
2311.5
2311.7
2316.6
2320.7
2328.5
2362.8
2387.2
2403.2
2400.7
2372
TA
2317.62
2314.41
2315.86
2321.32
2316.47
2316.14
2310.60
2301.60
2290.30
2283.59
2287.27
2292.68
2293.12
NTA
34.959
34.987
34.974
35.004
35.000
35.021
35.048
35.049
35.028
34.852
34.928
35.007
35.153
35.409
36.108
36.403
36.588
36.617
36.774
36.970
36.649
36.265
36.204
Sp
1023.317
1023.339
1023.329
1023.352
1023.346
1023.363
1023.383
1023.365
1023.35
1023.215
1023.273
1023.336
1023.443
1023.637
1024.164
1024.387
1024.53
1024.551
1024.67
1024.816
1024.576
1024.286
1024.241

26.266
26.288
26.278
26.301
26.295
26.312
26.332
26.333
26.318
26.183
26.241
26.304
26.411
26.605
27.132
27.355
27.498
27.519
27.638
27.784
27.544
27.254
27.208
 Meas 26.264
26.285
26.276
26.298
26.295
26.311
26.332
26.332
26.316
26.183
26.241
26.301
26.411
26.604
27.133
27.356
27.496
27.518
27.637
27.785
27.542
27.252
27.206
 Calc 0.002
0.003
0.002
0.003
0.000
0.001
0.000
0.001
0.002
0.000
0.000
0.003
0.000
0.001
-0.001
-0.001
0.002
0.001
0.001
-0.001
0.002
0.002
0.002

185
Stn
47
47
47
47
47
47
47
47
47
47
67
67
67
67
67
67
67
67
67
67
67
67
67
67
Cruise
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
Table A.1 cont.
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
19.3543
Lat (N)
19.3543
depth
2781.8
3037.2
3343.8
3650.3
4055.5
4467.9
4881.4
5293
5702.9
6117
3.3
21.1
40.8
65.5
90.6
115.2
142
186.2
236.8
286.2
334.6
387
437.4
488
Long (E)
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-66.0016
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
11.27
9.37
7.66
5.46
4.13
2.62
1.37
1.15
1.01
0.58
1.56
1.76
1.63
1.61
61.74
59.11
47.25
37.55
32.68
29.76
27.15
24.79
23.27
21.96
Si
23.57
21.3
18.72
14.98
12.1
8.55
4.32
2.28
1.44
0.03
0
0
0
0
23.69
23.26
21.4
19.84
19.04
18.58
18.31
18.06
18.23
18.31
NO3
1.47
1.33
1.15
0.9
0.7
0.47
0.2
0.1
0.06
0
0
0
0
0
1.63
1.6
1.47
1.37
1.31
1.28
1.25
1.23
1.24
1.24
PO4
2327.4
2334.2
2342.7
2370
2389.2
2409.6
2412.2
2399.7
2346.1
2348.4
2349.8
2349.3
2336
2328.5
2323.3
TA
2305.14
2302.04
2299.02
2291.56
2290.51
2288.63
2289.17
2293.42
2299.33
2297.78
2360.32
2359.21
2343.16
2334.17
2327.89
NTA
35.338
35.489
35.665
35.957
36.198
36.508
36.850
36.881
37.212
36.622
35.947
35.712
35.764
35.771
34.844
34.853
34.973
34.893
34.895
34.915
35.089
34.937
34.931
34.946
Sp
1023.59
1023.704
1023.837
1024.057
1024.241
1024.475
1024.733
1024.758
1025.004
1024.562
1024.05
1023.871
1023.911
1023.916
1023.231
1023.237
1023.328
1023.266
1023.268
1023.283
1023.416
1023.301
1023.296
1023.305

26.554
26.668
26.801
27.021
27.205
27.439
27.697
27.722
27.968
27.526
27.014
26.835
26.875
26.880
26.180
26.186
26.277
26.215
26.217
26.232
26.365
26.250
26.245
26.254
 Meas 26.551
26.665
26.798
27.019
27.201
27.435
27.694
27.718
27.968
27.522
27.011
26.834
26.873
26.878
26.177
26.184
26.275
26.214
26.216
26.231
26.363
26.248
26.243
26.254
 Calc 0.003
0.003
0.003
0.002
0.004
0.004
0.003
0.004
0.000
0.004
0.003
0.001
0.002
0.002
0.003
0.002
0.002
0.001
0.001
0.001
0.002
0.002
0.002
0.000

186
Stn
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
Cruise
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
A22
Table A.1 cont.
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
15.9481
Lat (N)
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
-68.2923
Long (E)
4326.8
3955.1
3548.3
3240.9
2950.5
2695.9
2441
2187.8
1953.8
1782.1
1680.2
1578.4
1477.8
1376.2
1274.8
1174.3
1071.6
972.7
871.3
769.7
668.8
568.9
depth
28.47
28.76
28.74
28.71
28.45
28.27
28.01
27.54
27.16
26.77
26.62
26.07
25.41
24.97
24.2
24.47
4.15
24.3
23.39
22.41
19.2
14.74
Si
21.74
21.9
21.99
22.08
22.02
22.04
22.05
22.03
22.13
22.25
22.45
22.5
22.66
22.98
23.25
23.95
12.15
26.74
28.65
30.45
29.67
26.78
NO3
2341.8
1.49
34.995
34.996
2341.5
1.49
2342.13
34.983
1.5
2341.77
34.986
34.982
1.49
1.49
34.984
1.49
2340.80
34.985
1.49
2339.6
34.991
1.5
34.983
35.012
34.985
34.987
34.983
34.978
34.966
36.195
34.905
34.884
34.846
34.928
35.120
Sp
1.5
2338.54
2333.07
2331.73
2331.57
2330.36
2293.78
2331.13
2324.81
2322.42
2317.27
2310.18
NTA
34.986
2337.4
2332.2
2330.6
2330.1
2328.1
2372.1
2324.8
2317.1
2312.2
2312.5
2318.1
TA
1.51
1.52
1.53
1.53
1.55
1.57
1.61
0.71
1.79
1.9
2
1.91
1.7
PO4
1023.326
1023.325
1023.317
1023.319
1023.317
1023.318
1023.317
1023.323
1023.317
1023.319
1023.338
1023.319
1023.32
1023.317
1023.314
1023.307
1024.238
1023.258
1023.244
1023.217
1023.279
1023.422

26.293
26.292
26.284
26.286
26.284
26.285
26.284
26.290
26.284
26.286
26.305
26.286
26.287
26.284
26.281
26.271
27.202
26.222
26.208
26.181
26.243
26.386
 Meas 26.292
26.292
26.282
26.285
26.282
26.283
26.284
26.288
26.282
26.285
26.304
26.284
26.285
26.282
26.279
26.270
27.199
26.223
26.208
26.179
26.241
26.386
 Calc 0.001
0.000
0.002
0.001
0.002
0.002
0.000
0.002
0.002
0.001
0.001
0.002
0.002
0.002
0.002
0.001
0.003
-0.001
0.000
0.002
0.002
0.000

187
References
Amon, R. M. W. (2004), The role of dissolved organic matter for the organic carbon
cycle in the Arctic Ocean in The Organic Carbon Cycle in the Arctic Ocean, edited
by R. Stein and R. W. Macdonald, pp. 83-99, Springer-Verlag, Berlin Heidelberg.
Anderson, L. G., S. Jutterström, and S. Kaltin (2004), Variability in river runoff
distribution in the Eurasian Basin of the Arctic Ocean, J. Geophys. Res., 109,
C01016, doi:10.1029/2003JC001773.
Apps J. A., J. M. Neil, and C. –H. Jun (1988), Thermochemical properties of gibbsite,
boehmite, diaspore and the aluminate ion between 0 and 350°C, Lawrence
Berkeley Laboratory Rpt. 21482.
Baes, C. F., and R. E. Mesmer (1976), The Hydrolysis of Cations, 489pp., John Wiley &
Sons Inc.
Bates, N. R., J. T. Mathis, and L. W. Cooper (2009), Ocean acidification and biologically
induced seasonality of carbonate mineral saturation states in the western Arctic
Ocean, J. Geophys. Res., 114, C11007, doi:10.1029/2008JC004862.
Benézéth P., D. A. Palmer, and D. J. Wesolowski (2001), Aqueous high-temperature
solubility studies. II. The solubility of Boehmite at 0.03 m ionic strength as a
function of temperature and pH as determined by in situ measurements, Geochim.
Cosmochim. Acta, 65, 2097-2111.
Bigg, P.H. (1967), Density of water in SI units over the range 0-40oC, Brit. J. Appl. Phys.,
18, 521-524.
Bischoff W. D., F. T. Mackenzie, and F. C. Bishop (1987), Stabilities of synthetic
magnesian calcites in aqueous solution: Comparison with biogenic materials,
Geochim. Cosmochim. Acta, 51, 1413-1423.
Borgmann, U., W. P. Nonvood, and C. Clarke C. (1993), Accumulation, regulation and
toxicity of copper, zinc, lead and mercury in Hyalella Azteca, Hydrobiologia 259,
79-89.
Bourcier W. L., K. G. Knauss, and K. J. Jackson (1993), Aluminum hydrolysis
constants to 250°C from boehmite solubility measurements, Geochim.
Cosmochim. Acta, 57, 747–762.
188
189
Boyle, E. A., R. M. Sherrell, and M. P. Bacon (1994), Lead variability in the western
North Atlantic and central Greenland ice: Implications for the search for decadal
trends in anthropogenic emissions, Geochim. Cosmoschim. Acta, 58(15), 32273238.
Brand, L. E. (1991), Minimum iron requirements of marine phytoplankton and the
implications for the biogeochemical control of new production, Lim. And Ocean.,
36(8), 1756-1771.
Brewer, P. G., and A. Bradshaw (1975), The effect of non-ideal composition of seawater
on salinity and density, J. Mar. Res. 33, 157-175.
Broecker, W. S. (1977), Recommendations of the working group on carbonate
dissolution: Neutraliztion of fossil fuel CO2 by marine calcium carbonate in The
Fate of Fossil Fuel CO2 in the Oceans, edited by N. R. Andersson and A. Malch,
pp. 207-212, Plenum, New York.
Bruland, K. W. (1983), Trace elements in seawater, in Chemical Oceanography, Vol 8,
2nd ed. edited by J. P. Riley and R. Chester, pp. 157-220, Academic Press, New
York.
Bryan, G.W. (1971), The effects of heavy metals (other than mercury) on marine and
estuarine organisms, Proc. R. Soc. London B, 177, 389–410.
Busenberg E. and L. N. Plummer (1989), Thermodynamics of magnesian calcite solidsolutions at 25°C and 1 atm pressure. Geochim. Cosmochim. Acta, 53, 1189-1208.
Byrne, R.H. (1980), Theoretical upper-bound limitations for mixed-ligand complexes in
solution, Mar. Chem., 9, 75-80.
Byrne, R. H. (1981), Inorganic lead complexation in natural seawater determined by UV
spectroscopy, Nature 290, 487-489.
Byrne, R. H. (2002), Inorganic speciation of dissolved elements in seawater: The
influence of pH on concentration ratios, Geochem. Trans., 3, 11-16.
Byrne, R. H., and W. L. Miller (1984), Medium composition dependence of Lead (II)
complexation by chloride ion,. Am. J. of Sci. 284, 79-94.
Byrne, R. H., and W. Yao (2008), Procedures for measurement of carbonate ion
concentrations in seawater by direct spectrophotometric observations of Pb(II)
complexation, Mar. Chem. 112, 128-135. DOI:10.1016/j.marchem.2008.07.009.
Byrne, R. H. and R. W. Young (1982), Mixed halide complexes of lead. A comparison
with theoretical predictions, J. Soln. Chem. 11, 127-136. DOI: 10.1007/
BF01036380.
190
Byrne, R. H., J. G. Acker, P. R. Betzer, R. A. Feely, and M. H. Cates (1984), Water
column dissolution of aragonite in the Pacific, Nature, 312, 321-326.
Byrne, R. H., L. R. Kump, and K.J. Cantrell (1988), The influence of temperature and pH
on trace metal speciation in seawater, Mar. Chem., 25:163–181.
Byrne, R. H., W. Yao, Y. Luo, and F. J. Millero (2010), Complexation of Pb(II) by
chloride ions in aqueous solutions. Aqua. Geochim., 16(3), 325-335. DOI:
10.1007/s10498-010-9101-4.
Castet S, J. –L. Dandurand, J. Schott, and R. Gout (1993), Boehmite solubility and
aqueous aluminum speciation in hydrothermal solutions (90–350°), Experimental
study and modeling, Geochim. Cosmochim. Acta, 57, 4869–4884.
Caldeira, K., and M. E. Wickett (2003), Oceanography: anthropogenic carbon and ocean
pH, Nature, 425, 365.
Cantrell, K. J., and R. H. Byrne (1987), Rare earth complexation by carbonate and
oxalate ions, Geochim. Cosmochim. Acta, 51(3), 597-605.
Chave K. E., K. S. Deffeyes, P. K. Weyl, R. M. Garrels, and M. E. Thompson (1962),
Observations on the solubility of skeletal carbonates in aqueous solutions, Science,
137, 33-34, DOI:10.1126/science.137.3523.33.
Choppin G. R., A. H. Bond, and P. M. Hromadka (1997), Redox speciation of plutonium,
J. Radioanal. and Nuclear Chem., 219, 203-210.
Connors, D. N., and P. K. Weyl (1968), The partial equivalent conductance of salt in
seawater and the density-conductance relationship, Limnol. Oceanogr. 13, 39-50.
Cooper, L. W., J. W. McCelland, R. M. Holmes, P. A. Raymond, J. J. Gibson, C. K.
Guay, and B. J. Peterson (2008), Flow-weighted values of runoff tracers (18O,
DOC, Ba alkalinity) from the six largest Arctic rivers, Geophys. Res. Letts, 35,
L18606, doi:10.1029/2008GL035007.
Couturier Y., G. Michard, and G. Sarazin (1984), Constantes de formation des
complexes hydroxydés de l'aluminum en solution aqueuse de 20 et 70°C,
Geochim. Cosmochim. Acta, 48, 649–659.
Christov C., and N Møller (2004), Chemical equilibrium model of solution behavior and
solubility in the H-Na-K-OH-Cl-HSO4-SO4-H2O system to high concentration
and temperature, Geochim. Cosmochim. Acta, 68, 1309-1331.
191
Christov C. A G. Dickson, and N. Møller (2007), Thermodynamic modeling of aqueous
aluminum chemistry and solid-liquid equilibria to high solution concentration and
temperature. I. The acidic H-Al-Na-K-Cl-H2O system from 0 to 100 °C, J.
Solution Chem., 36, 1495–1523.
Easley, R. A., and R. H. Byrne, (2011), The ionic strength dependence of lead (II)
carbonate complexation in perchlorate media, Geochim. Cosmochim. Acta,
75(19), 5638-5647. DOI:10.1016/j.gca.2011.07.007.
Ekberg C., Y. Albinsson, M. J. Comarmound, and P. L. Brown (2000), Studies on the
complexation behavior of thorium(IV). 1. Hydrolysis equilibria, J. Soln. Chem.,
29, 63-86.
Ekberg C., G. Källvenius, Y. Albinsson, and P. L. Brown (2004), Studies on the
hydrolytic behavior of zirconium(IV), J. Soln. Chem., 33, 47-79.
Farmer, C. and D. A. Hansell (2007), Determination of dissolved organic carbon and
total dissolved nitrogen in sea water in Guide to best practices for ocean CO2
measurements edited by Dickson, A. G., C. L. Sabine, and J. R. Christian, J.R.,
pp.191, PICES Special Publication 3.
Feely, R. A., C. L. Sabine, K. Lee, F. J. Millero, M. F. Lamb, D. Greeley, J. L. Bullister,
R. M. Key, T. -H. Peng, A. Kozyer, T. Ono, and C. S. Wong (2002), In Situ
Calcium Carbonate dissolution in the Pacific, Glob. Biogeochem. Cycles, 16(4),
1144, doi:10.1029/2002GB091866.
Feely, R. A., C. L. Sabine, K. Lee, W. Berelson, J. Kleypas, V. J. Fabry, and F. J. Millero
(2004), Impact of anthropogenic CO2 on the CaCO3 system in the oceans, Science
16, 362-366.
Frink C. R. and M. Peech (1963), Hydrolysis of the aluminum ion in dilute solutions,
Inorg. Chem., 2, 473–478.
Gaffey, S. J., and C. E. Bronniman (1993), Effects of bleaching on organic and mineral
phases in biogenic carbonates, J. Sed. Petrol.,63, 752-754.
Garrels, R. M., M. E. Thompson, and R. Siever (1960), Stability of some carbonates at
25°C and one atmosphere total pressure, Am. J. of Sci., 258, 402-218.
Gattuso, J. -P., M. Frankignoulle, I. Bourge, S. Romaine, and R. W. Buddemeier (1998),
Effect of calcium carbonate saturation of seawater on coral calcification, Global
Planetary Change, 18(1–2), 37–46.
Gieskes, J.M. (1982) The practical salinity scale 1978, a reply to comments by T.R.
Parsons, Limnol.Oceanogr., 27, 387-389.
192
Greenberg, J. P. and N. Møller (1989), The Prediction of mineral solubilities in natural
waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to
high concentrations from 0 to 250°C, Geochim. Cosmochim. Acta, 53, 2503-2518.
Grosell, M. (2011), Intestinal anion exchange in marine teleosts is involved in
osmoregulation and contributes to the oceanic inorganic carbon cycle, Acta
Physiol (Oxf). 2011 Jul;202(3):421-34. doi: 10.1111/j.1748-1716.2010.02241.x.
Epub 2011 Mar 1.
Hannan, P. J., and C. Patouillet, (1972), Effect of mercury on algal growth rates.
Biotechnol. Bioengin, 14, 93–101.
Hansell, D. A., D. Kadko, and N. R. Bates (2004), Degradation of terrigenous dissolved
organic carbon in the western Arctic Ocean, Science, 304, 858-861.
Hansell, D. A., C. A. Carlson, D. J. Repeta, and R. Schlitzer (2009) Dissolved organic
matter in the ocean: New insights stimulated by a controversy, Oceanography,
22, 52-61.
Harvie, C. E., and J. H. Weare (1980), The prediction of mineral solubilities in natural
waters: the Na-K-Mg-Ca-SO4-Cl-H2O system from zero to high concentrations at
25°C, Geochim. Cosmochim. Acta, 44, 981-997.
Harvie C. E., and J. H. Weare (1983), The prediction of mineral solubility in natural
waters: The Na-K-Mg-Ca-Cl-SO4-H2O system to higher concentration at 25°C,
Geochim. Cosmochim. Acta, 47, 981-997.
Harvie, C. E., N. Møller, and J. H. Weare, (1984), The prediction of mineral solubilities
in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O
system to high ionic strengths at 25°C, Geochim. Cosmochim. Acta, 48(4), 723742.
Heuer, R. M., A. J. Esbaugh, and M. Grosell (2012), Oceanacidification leads to
counterproductive intestinal base loss in gulf toadfish (Opsanus beta), Physiol.
Biochem. Zool., in press.
Jansen, H., R. E. Zeebe, and D. A. Wolf-Gladrow (2002), Modeling the dissolution of
CaCO3 in the ocean, Glob. Biogeochem. Cycles, 16(2), 1027, DOI:10.1029/
2000GB001279.
Kell, G.S. (1975), The density, thermal expansivity and compressibility of liquid water
from 0 to 150°C: correlations and tables for atmospheric pressure and saturation
reviewed and expressed on the 1968 temperature scale, J. Chem. Eng. Data, 20,
97-105.
193
Kleypas, J. A., R. W. Buddemeier, D. Archer, J. -P. Gattuso, C. Langdon, and B. N.
Opdyke (1999), Geochemical consequences of increased atmospheric carbon
dioxide on coral reefs, Science, 284, 118–120.
Klungness G. D., and R. H. Byrne (2000), Comparative hydrolysis behavior of the rare
earths and yttrium: the influence of temperature and ionic strength, Polyhedron,
19,99-107.
Langdon, C., W. S. Broecker, D. E. Hammond, E. Glenn, K. Fitzsimmons, S. G. Nelson,
T. -H. Peng, I. Hajdas, and G. Bonani (2003), Effect of elevated CO2 on the
community metabolism of an experimental coral reef, Global Biogeochem.
Cycles, 17, 1011, doi:10.1029/2002GB001941.
Langer, G., G. Nehrke, and S. Jansen (2007), Dissolution of Calcidicus leptoporus
coccoliths in copepod guts? A morphological study, Mar. Eco. Prog. Ser. 331, 139146, DOI:10.1021/cr0503557.
Letscher, R. T., D. A. Hansell and D. Kadko (2011), Rapid removal of terrigenous
dissolved organic carbon over the Eurasian shelves of the Arctic Ocean, Mar.
Chem., 123, 78-87. DOI: 10.1016/j.marchem.2010.10.002.
Liu X., and F. J. Millero (1999), The solubility of iron hydroxide in sodium chloride
solutions, Geochim. Cosmochim Acta, 63, 3487-3497.
Lo Surdo, A., E. M. Alzola, and F. J. Millero (1982), The PVT properties of concentrated
aqueous electrolytes. I. Densities and apparent molal volume of NaCl, Na2SO4,
MgCl2, and MgSO4 solutions from 0.1 mol kg-1 to saturation and from 273.15 to
323.15 K, J. Chem. Thermodyn., 13, 649–662.
Luo Y., and F. J. Millero (2007), Stability constants for the formation of lead chloride
complexes as a function of temperature and ionic strength, Geochim. Cosmochim.
Acta, 71, 326–334.
Manfredi C., V. Caruso, E. Vasca, S. Vero, E. Ventimiglia, G. Pallidino, and D. Ferri
(2006), On the hydrolysis of tetravalent uranium ion U4+, J. Soln. Chem., 35,
927-937.
Middag, R., H. J. W. de Baar, P. Laan, and K. Bakker (2009), Dissolved aluminium and
the silicon cycle in the Arctic Ocean, Mar. Chem., 115, 176–195.
Millero, F. J. (1975), The physical chemistry of estuaries, in Marine Chemistry in the
Coastal Environment, edited by T. M. Church, pp. 25-55, ACS Symp. Ser. 18
Washington, DC.
Millero, F. J. (1978), The physical chemistry of Baltic Sea waters, Thalassia Jugoslavica
14, 1-46.
194
Millero F. J. (1983), The estimation of the pK*HA of acids in seawater, using the Pitzer
equations, Geochim. Cosmochim. Acta, 47, 212 l-2129.
Millero, F. J. (1984), The conductivity-density-salinity-chlorinity relationship for
estuarine waters, Limnol. Oceanogr., 29, 1317-1321.
Millero, F. J. (1992), Stability constants for the formation of rare earth inorganic
complexes of a function of ionic strength, Geochimi. Cosmochim. Acta, 56, 31233132.
Millero, F. J. (2000), Effect of changes in the composition of seawater on the densitysalinity relationship, Deep-Sea Res. 47, 1583-1590.
Millero, F. J. (2001a), Physical Chemistry of Natural Waters, 654 pp., WileyInterscience, New York.
Millero, F. J. (2001b), Speciation of metals in natural water, Geochemical Transctions 8.
Millero, F. J. (2007), The Marine Inorganic Carbon Cycle, Chemical Reviews, 107(2),
308-341.
Millero, F. J. and R. H. Byrne (1984), Use of Pitzer’s equations to determine the media
effect on the formation of lead chloro complexes, Geochim. Cosmochim. Acta, 48,
1145-1150.
Millero F. J., and D. J. Hawke (1992), Ionic interactions of divalent metals in natural
waters, Mar. Chem., 40, 19-48.
Millero, F. J., and K. Kremling (1976), The densities of Baltic Sea Waters, Deep-Sea
Res., 23, 1129-1138.
Millero, F. J., and D. Pierrot (1998), A chemical model for natural waters, Aquatic
Geochem., 4, 153-199.
Millero, F. J., and D. Pierrot (2002), Speciation of metals in natural waters. in Chemistry
of Marine Water and Sediments, edited by A. Gianguzza, E. Pellizzetti, and S.
Sammartano, Springer-Verlag, Berlin.
Millero F. J., and D. Pierrot (2007), The activity coefficients of Fe(III) hydroxide
complexes in NaCl and NaClO4 solutions, Geochim. Cosmochim. Acta., 71,
4825-4833.
Millero, F. J., and A. Poisson (1981), International one atmosphere equation of state of
seawater, Deep-Sea Res. 28, 625-629.
195
Millero, F. J., P. V. Chetirkin, and F. Culkin (1976a), The relative conductivity and
density of standard seawaters, Deep-Sea Res. 24, 315-321.
Millero, F .J., A. Gonzalez, and G. K. Ward (1976b), The density of seawater solutions at
one atmosphere as a function of temperature and salinity, J. Mar. Res. 34, 61-93.
Millero, F. J., A. Gonzalez, P. G. Brewer, and A. Bradshaw (1976c), The density of
North Atlantic and North Pacific deep waters, Earth and Planetary Sci. Letters,
32, 468-472.
Millero, F. J., D. Lawson, and A. Gonzalez (1976d), The density of artificial river and
estuarine waters, J. Geophys. Res., 81, 1177-1179.
Millero, F. J., D. Forsht, D. Menas, J. Giekes, and K. Kenyon (1978), The density of
North Pacific Ocean waters, J.Geophys. Res., 83, 2359-2364.
Millero, F. J., J. Z. Zhang, K. Lee, and D. M. Campbell (1993), Titration alkalinity of
seawater, Mar. Chem., 44, 153-165.
Millero, F. J., W. Yao, and J. Aicher (1995), The speciation of iron (II) and (III) in
natural waters, Mar. Chem., 50, 21-39.
Millero, F. J., T. Graham, F. Huang, H. Bustos and D. Pierrot (2006), Dissociation
constants for carbonic acid in seawater as a function of temperature and salinity,
Mar. Chem., 100, 80-94.
Millero, F. J., F. Huang, T. Graham, D. Pierrot (2007), The dissociation of carbonic acid
in NaCl solutions as a function of concentration and temperature, Geochim.
Cosmochim. Acta, 71, 46-55. DOI:10.1016/j.gca.2006.08.041.
Millero, F. J., R. Reistel, D. G. Wright, and T. J. McDougall, T (2008), The Standard
Composition of Seawater: The Definition of a Reference Salinity Scale, Deep-Sea
Res. I, 55(1), 50-72, DOI:10.1016/j.dsr.2007.10.001.
Millero, F. J., R. Woosley, B. DiTrolio, and J. Waters (2009), Effect of ocean
acidification on the speciation of metals in seawater, Oceanography, 22(4), 72-85.
Millero, F. J., J. M. Santana-Casino, and M. Gonzalez-Davilla (2010), The formation of
Cu(II) complexes with carbonate and bicarbonate in NaClO4 solutions, J. Soln.
Chem., 39(4), 543-558. DOI: 10.1007/s10953-010-9523-z.
Milliman, J. D., and A. W. Droxler (1996), Neritic and Pelagic Carbonate Sediment in
the Marine Environment: Ignorace is not Biss, Geol. Res. , 496-504.
196
Milliman, J. D., P. J. Troy, W. M. Balch, A. K. Adams, Y. -H. Li, and F. T. Mackenzie
(1999), Biologically mediated dissolution of calcium carbonate above the
chemical lysocline?, Deep-Sea Res. I, 46, 1653-1669.
Møller N. (1988), The prediction of mineral solubilities in natural waters: A chemical
equilibrium model for the Na-Ca-Cl-SO4-H2O system to high temperatures and
concentration, Geochim. Cosmochim. Acta, 52, 821-837.
Morse, J. W., and F. T. Mackenzie (1990), The Geochemistry of Sedimentary
Carbonates, 707 pp., Elsevier, Amsterdam.
Morse, J. W., A. Mucci, and F. J. Millero (1980), The solubility of calcite and aragonite
in seawater and 35 ‰ salinity at 25°C and atmospheric pressure, Geochim.
Cosmochim. Acta, 44, 85-95.
Morse, J. W., D. K. Gledhill, and F. J. Millero (2003), CaCO3 precipitation kinetics in
waters from the Great Bahama Bank: Implications for the relationship between
Bank hydrochemistry and whitings, Geochim. Cosmochim. Acta, 67(15), 28192826, doi:10.1016/S0016-7037(03)00103-0.
Morse, J. W., A. J. Andersson, and F.T. Mackenzie (2006), Initial responses of
carbonate-rich shelf sediments to rising atmospheric pCO2 and ‘‘ocean
acidification’’: Role of high Mg-calcites, Geochim. Cosmochim. Acta, 70, 5814-5830.
Morse J. W., R. S. Arvidson, and A. Lüttge (2007), Calcium carbonate formation and
dissolution, Chem. Rev., 107, 342–381.
Mucci, A. (1983), The solubility of calcite and aragonite in seawater at various salinities,
temperatures, and one atmosphere total pressure, Am. J. Sci. 283, 780-799.
Neck V., and J. I. Kim (2001), Solubility and hydrolysis of tetravalent actinides,
Radiochem. Acta, 89, 1-16.
Orr, J. C., V. J. Fabry, O. Aumont, L. Bopp, S. C. Doney, R. A. Feely, A. Gnanadesikan,
N. Gruber, A. Ishida, F. Joos, and others (2005), Anthropogenic ocean
acidification over the twenty-first century and its impact on calcifying organisms,
Nature, 437, 681–686.
Palmer D. A., and J. L. S. Bell (1994), Aluminum speciation and equilibria in aqueous
solution: IV. A potentiometric study of aluminum acetate complexation in acidic
NaCl brines to 150°C, Geochim. Cosmochim. Acta, 58, 651–659.
Palmer D. A., and D. J. Wesolowski (1992), Aluminum speciation and equilibria in
aqueous solution: II. The solubility of gibbsite in acidic sodium chloride solutions
from 30 to 70°C, Geochim. Cosmochim. Acta, 56, 1093–1111.
197
Palmer, D. A., and D.J. Wesolowski (1993), Aluminum speciation and equilibria in
aqueous solution: III. Potentiometric determination of the first hydrolysis constant
of aluminum (III) in sodium chloride solutions to 125°C, Geochim. Cosmochim.
Acta, 57, 2929–2938.
Palmer D. A., P. Benezeth P., and D. J. Wesolowski (2001), Aqueous high-temperature
solubility studies. I. The solubility of boehmite as functions of ionic strength (to 5
molal, NaCl), temperature (100-290°C), and pH as determined by in situ
measurements, Geochim. Cosmochim. Acta, 65, 2081-2095.
Parsons, T.R. (1982), The new physical definition of salinity: Biologists beware, Limnol.
Oceanogr., 27, 384-385.
Paulson A. J., and D. R. Kester (1980), Copper(II) ion hydrolysis in aqueous solution, J.
Soln. Chem., 9, 269-277.
Perry, C. T., M. A. Salter, A. R. Harborne, S. F. Crowley, H. L. Jelks, and R. W. Wilson
(2011), Fish as major carbonate mud producers and missing components of the
tropical carbonate factor, PNAS, 108(10), 3865-3869, DOI:10.1073/pnas.
1015895108.
Pierrot, D., E. Lewis, and D. W. R. Wallace (2006), MS Excel Program Developed for
CO2 System Calculations. ORNL/CDIAC-105a. Carbon Dioxide Information
Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy,
Oak Ridge, Tennessee.
Pitzer, K. S. (1991), Theory: ion interaction approach: theory and data collection. in
Activity Coefficients in Electrolyte Solutions, 2nd ed. CRC Press, Boca Raton, FL.
Pivovarov, S. (2005), Modeling of ionic equilibria of trace metals (Cu2+, Zn2+, Cd2+) in
concentrated aqueous electrolyte solutions at 25°C, J. Colloid and Inter. Sci.,
291,421-432.
Plummer L.N. and F.T. Mackenzie (1974), Predicting mineral solubility from rate data:
Application to the dissolution of magnesian calcites. Am. J. Sci., 274, 179-216.
Poisson, A., M. Perie, J. Perie, and M. Chemla (1979) Individual equivalent ionic
conductances of the major ions in seawater, J. Sol. Chem., 8, 377-394.
Poisson, A., J. Lebel, and C. Brunet (1980), Influence of local variations in the ionic
ratios on the density of seawater in the St. Lawrence area, Deep-Sea Res. 27, 763781.
Poisson, A., J. Lebel, and C. Brunet (1981), The densities of western Indian Ocean, Red
Sea and eastern Mediterranean surface waters, Deep-Sea Res., 28, 1161-1172.
198
Powell K. J., P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, K. –A. Leuz, S. Sjoberg, and
H. Wanner (2009) Chemical speciation of environmentally significant metals with
inorganic ligands. Part 3: the Pb2+ + OH-, Cl-, CO32-, SO42-, and PO43systems (IUPAC Technical Report), Pure Appl. Chem., 81(12), 2425–2476.
Rai D., Y. Xia, N. J. Hess, D. M. Strachan, and B. P. McGrail (2001), Hydroxo and
chloro complexes/Ion interactions of Hf4+ and the solubility product of HfO2(am),
J. Soln. Chem., 30, 949-967.
Schofield R. K., and A. W. Taylor (1954), The hydrolysis of aluminum salt solutions, J.
Chem. Soc., 4445–4448.
Sharp, J. H., and C. H. Culberson (1982), The physical definition of salinity: A chemical
evaluation, Limnol.Oceanogr., 27, 385-387.
Soli, A. L., Z. I. Stewart, Z, and R. H. Byrne (2008), The influence of temperature on
PbCO30 formation in seawater, Mar. Chem., 110,1-6. DOI:10.1016/
j.marchem.2008.01.004.
Spieweck, F., and H. Bettin (1992), Review: Solid and liquid density determination,
Technisches. Messen, 59, 285-292.
Steemann-Nielsen, E., and S. Wium-Anderson (1970), Copper ions as poison in the sea
and in freshwater, Mar. Bio., 6, 93-97.
Stefánsson A. (2007), Iron(III) hydrolysis and solubility at 25°C, Environ. Sci. Technol.,
41, 6117-6123.
Stefánsson A., and T. M. Seward (2008), A Spectrophotometric study of iron(III)
hydrolysis in aqueous solutions to 200°C, Chem. Geology, 249, 227-235.
Sunda, W. G., and R. L. Ferguson (1983), Sensitivity of natural bacterial communities to
additions of copper and to cupric ion activity: A bioassay of copper complexation
in seawater, in Trace Metals in Seawater, edited by C. S. Wond, E. Boyle, K. W.
Bruland, J. D. Burton, and E. D. Goldberg, Plenum, New York.
Sverdrup, H. U., N. W. Johnson, and R. H. Fleming (1941), The Oceans, 1087 pp.,
Prentice Hall, Englewood Cliffs, New Jersey.
Tarapcik P., B. Fourest, and E. Giffaut (2005), Comparative approach of the solubility of
protactinium oxy/hydroxides, Radiochem. Acta, 93, 27-33.
Taylor, J. R. and M. Grosell (2006), Evolutionary aspects of intestinal bicarbonate
secretion in fish. Comp.Biochem.Physiol., A 143, 523-529.
199
Thornstenson, D. C., and L. N. Plummer (1977), Equilibrium criteria for two-component
solids reacting with fixed composition in an aqueous phase-Example: The
Magnesian calcites, Am. J. Sci., 277, 1203-1223.
Turner, D. R., M. Whitfield, and A. G. Dickson (1981), The equilibrium speciation of
dissolved components of freshwater and seawater at 25°C and 1 atm pressure,
Geochim. Cosmochim. Act, 44, 855–881.
UNESCO (1981a) Background papers and supporting data on the Practical Salinity Scale,
1978, UNESCO Technical Papers in Marine Science 37, pp. 144.
UNESCO (1981b), Background papers and supporting data on the International Equation
of State of Seawater, 1980, UNSECO Technical Papers in Marine Science 38, pp.
192.
Verdes G., R. Gout, and S. Castet (1992), Thermodynamic properties of Aluminate ion
and of bayerite, boehmite, diaspore and gibbsite, Euro. J. of Miner., 4, 767-792.
Volokhov, Yu. A., L. N. Pavlov, N. I. Eremin, and V. E. Mironov (1971), Hydrolysis of
aluminum salts, J. Appl. Chem., 44, 243–246.
Walsh, P. J., P. Blackwelder, K. A. Gill, E. Danulat, and T. P. Mommsen (1991)
Carbonate deposits in marine fish intestines: a new source of biomineralization,
Limnol. Oceanogr., 36, 1227-1232.
Wesolowski, D. J. (1992), Aluminum speciation and equilibria in aqueous solution: I.
The solubility of gibbsite in the system Na-K-Cl-OH-Al(OH)4 from 0 to 100°C,
Geochim. Cosmochim. Acta, 56, 1065–1091.
Wesolowski D. J., and D. A. Palmer (1994), Aluminum speciation and equilibria in
aqueous solutions: V. Gibbsite solubility at 50°C and pH 3-9 in 1 molal NaCl
solutions (a general model for aluminum speciation; analytical methods),
Geochim. Cosmochim. Acta, 58, 2947-2969.
Wilson, R. W., F. J. Millero, J. R. Taylor, P. J. Walsh, V. Christensen, S. Jennings, and
M. Grosell (2009), Contribution of fish to the marine inorganic carbon cycle,
sScience, 323, 359-362, DOI: 10.1126/science.1157972.
Whitfield, M. (1975), The extension of chemical models for seawater to include trace
components at 25°C and 1 atm. Pressure, Geochim. Cosmochim. Acta, 39, 15451557.
Zakanova-Herzog V.P., T. M. Seward, and O. M. Sulemenov (2006), Arsenous acid
ionization in aqueous solutions from 25 to 300°C, Geochim. Cosmochim. Acta,
70, 1928-1938.
200
Zotov A. V., and Z. Y. Kotova (1979), Spectrophotometric determination of the first
hydrolysis constant of Fe3+ at 25-80°C, Geokhimiya, 285-290 (in Russian).
Zotov A. V., and Z. Y. Kotova (1980), Spectrophotometric determination of the first
constant of hydrolysis of Fe3+ ion at 80-200°C, Geokhimiya, 768-773 (in
Russian).