A Watery Grave for the Urey Ratio Paradox? CIDER group: J. Crowley, M. Gérault, T. Höink, A. Schaeffer, P. Barry, M. Hirschmann, T. Becker, S. Hier-Majumder, R. O’Connell, J. Frost, J. Girard, M. Nunez-Valdez Volatiles Melting Warm Mantle Cold Plate Hydrated Layer Dehydrated Lithosphere Mantle Heat Flow Volatiles Water and Plate Tectonics Water may affect plate mantle dynamics by 1 - Lubricating subduction zone faults 2 - Creating strong plates through dehydration of the lithosphere 3 - Modifying mantle viscosity Consider the cooling and thermal evolution of a simple ‘Earth-like’ planet with plate tectonics and a water dependent rheology Heat and Water Transport by Plate Tectonics Degassing Heat Flow Regassing Internal Heating Melting Mantle Temperature Water Concentration Viscosity Heat and Water Transport by Plate Tectonics Feedbacks Degassing Heat Flow Regassing Internal Heating Melting Mantle Temperature Water Concentration Viscosity Heat and Water Transport by Plate Tectonics Feedbacks Degassing Heat Flow Regassing Internal Heating Melting Mantle Temperature Water Concentration Viscosity Effect of water dependence Effect of temperature dependence J. Crowley, M. Gérault, and R. O’Connell, EPSL (2011) Relative Effect of Water and Thermal Cycles Time Scale Analysis: Feedbacks and relative rates of change require system to evolve such that (Theory) (In agreement with Observation for present day Earth) J. Crowley, M. Gérault, and R. O’Connell, EPSL (2011) Relative Effect of Water and Thermal Cycles Time Scale Analysis: Feedbacks and relative rates of change require system to evolve such that (Theory) Implications: Cooling + Regassing (In agreement with Observation for present day Earth) Regassing-Degassing Rheology Cooling + Degassing Warming + Degassing Heat and water transport are coupled Feedback needs to be included in thermal evolutions Warming + Regassing Surface Heat Flow A net regassing of the mantle forces the thermal cycle to release heat faster Regassing reduces the Urey ratio J. Crowley, M. Gérault, and R. O’Connell, EPSL (2011) Now Apply to the Earth J. Crowley, M. Gérault, T. Höink, A. Schaeffer, P. Barry, T. Becker, M. Hirschmann, S. Hier-Majumder, and R. O’Connell Temperature and water dependent rheology More accurate parameterization of degassing and regassing fluxes New dynamic model for thermal evolution that includes effects of strong plates and depth dependent viscosity Modeling of multiple reservoirs (surface, upper and lower mantle, and transition zone) Link Between Past and Present Earth 2200 200 Classic Thermal Evolutions 180 2000 160 140 Heat Flow (TW) Temperature (C) 1800 1600 1400 120 100 80 60 40 1200 Inte r nal H 20 1000 0 1 2 3 Time (Gy) 4 0 0 1 2 3 Time (Gy) eatin g 4 Link Between Past and Present Earth 2200 200 No Water Dependence Water Dependent Viscosity 180 2000 160 Thermal Evolutions with Water 140 Heat Flow (TW) 1800 Temperature (C) Classic Thermal Evolutions 1600 1400 120 100 80 60 40 1200 Inte r nal H 20 1000 0 1 2 3 Time (Gy) 4 0 0 1 2 3 Time (Gy) eatin g 4 Link Between Past and Present Earth 2200 200 No Water Dependence Water Dependent Viscosity 180 2000 160 Thermal Evolutions with Water 140 Heat Flow (TW) 1800 Temperature (C) Classic Thermal Evolutions 1600 1400 120 100 80 60 40 1200 Inte r nal H 20 1000 0 1 2 3 Time (Gy) 4 0 0 1 2 3 Time (Gy) eatin g 4 New mechanism allowing for a large range of possible Urey ratios Dynamics of present day Earth tell us about the past - possibly ‘deep time’ Feedback on CIDER • smaller groups... • have all groups meet throughout the year 89723(7*+CD:E2?F*+G23*+,HF;./ &! &! &! &! &" ! &B A " # '()*+,-./ # '()*+,-./ $ $ % ,Q/ SMS5 && &! % =2N3 5997(?F ! !IJ ! ! " " " # '()*+,-./ # '()*+,-./ 61*N*?3 O2. $ $ % ,*/ &IJ & % &! &! &! &! & & ! O*F2NN(?F G*F2NN(?F 61*N*?3 O2. <*23+=79>+;+-*?*123(9?+,'@/ O*F2NN(?F G*F2NN(?F & ! 61*N*?3 O2. " &! &! O*F2NN(?F G*F2NN(?F L79> 5997(?F 6723*+8*79:(3.+,:);.*21/ &$!! " K2?37*+@23*1+59?:*?3123(9?+,00)/ ! &! 61*N*?3 O2. &#!! KL;KL,3M#I$-./ &%!! 61*N*?3 O2. "!!! O*F2NN(?F G*F2NN(?F &! 61*N*?3 O2. &!!! O*F2NN(?F G*F2NN(?F &"!! O*F2NN(?F G*F2NN(?F '*)0*12341*+,5/ ,2/ ,P/ ,:/ " " B " # '()*+,-./ ,R/ " # '()*+,-./ $ % $ % J. Crowley, M. Gérault, and R. O’Connell, EPSL (2011) New Work: - Sensitivity to rheology 350 7.8 7.75 7.7 7.65 7.6 0.6 0.8 r 1 10 5 0 0 200 400 Activation Energy E (kJ/kg mol) 250 30 25 0.8 r 1 20 0.6 1.2 340 Mantle Water Concentration (ppm) Plate Velocity (cm/year) 20 15 300 200 0.6 1.2 0.69 35 Urey Ratio 7.85 Surface Heat Flow Internal Heating 320 300 280 260 240 220 200 0 200 400 Activation Energy E (kJ/kg mol) 0.68 0.67 0.66 0.8 r 1 1.2 0.65 0.6 50 0.8 r 1 1.2 0.8 Surface Heat Flow Internal Heating 0.7 40 30 20 10 0.6 Urey Ratio 7.9 Heat Flow (TW) Plate Velocity (cm/year) 7.95 40 Heat Flow and Internal Heating (TW) Mantle Water Concentration (ppm) 8 0.5 0.4 0.3 0.2 0.1 0 0 200 400 Activation Energy E (kJ/kg mol) 0 0 200 400 Activation Energy E (kJ/kg mol) Relative Effect of Water and Heat Transport on Viscosity E, r Ur Rnet 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.75 0.5 0.5 r χm # kJ mol 300 300 300 500 300 500 300 300 300 300 $ 300 600 900 300 300 300 300 300 300 300 re n St SW T (ppm) 0.68 0.68 0.68 0.68 1 1 0.68 0.68 0.68 0.68 gt h tr at io E Re lat ive rC W at e rE on c on xp n at io en en rg χm ±9 ±9 ±9 ±9 ±9 ±9 ±9 ±9 ±6 ±3 Ur W at e !R − D" 1011 kg yr tiv Relative Effect for Present Day Earth (Observation) Ac Re ga ss D ing eg as sin g U re y Ra tio En e Effect of temperature dependence J.W. Crowley, M. Gérault, and R.J. O’Connell, EPSL (2011) t y n Effect of water dependence 1.3 0.57 0.34 0.80 2.0 1.2 0.89 2.7 0.89 0.44
© Copyright 2026 Paperzz