Core Mathematics for Modellers Problem Sheet for Lecture 4 (solutions) Differentiation of Standard Functions and Composite Functions 1. (a) (b) (c) (d) (e) (f) dy dx dy dx dy dx dy dx dy dx dy dx = 2 − 3x2 = 2ax + b − dx−2 = −4 + 8x3 = x−2 = 16x3 − 24x = x + x−2 /2 2. (a) f 0 (x) = 4e−2x + 2 cos(2x) + 3 sin(3x), √ 3 x 0 x (b) f (x) = 4 e − + sin x, 2 1 35 1 (c) f 0 (x) = − e−x + 8 + 3x ln 3 − , 2 x x 3. (a) (b) (c) (d) (e) (f) (g) (h) d2 y dx2 d2 y dx2 d2 y dx2 d2 y dx2 d2 y dx2 d2 y dx2 = −6x = 2a + 2dx−3 = 24x2 = −2x−3 = 48x2 − 24 = 1 − x−3 f 0 (π/2) = 4e−π − 5. f 0 (0) = 4. f 0 (1) = − 1 + 34 + ln 27. 2e 18(3x − 7)5 , 3(3 − x)−4 , 3(5 − x)−2 , 3 12x2 e4x , −6x + 21 , (x2 − 7x + 2)2 1 −4 1 2 −3 2x + 2 x − , 3x 3x 1 , x(ln x)2 1 1 −2/3 1 −3/2 x − x . 2 x1/3 + x−1/2 3 4. (a) Differentiating (2) and equating with the right-hand side of (1) we get that r = 1.5/day. (b) To find T we’re looking for the solution of N (t + T ) = 2N (t). Thus N0 er(t+T ) = 2N0 ert erT = 2 ln 2 T = . r Here’s the plot of T (r): (c) The function now takes the form N (t) = N0 e(b−d)t = N0 ed(R0 −1)t , hence: • The population will grow if R0 > 1. • The population will decline if R0 < 1. • The population will remain constant if R0 = 1. 5. (a) Here’s the plot of CD4 decline over time: raKe−r(t−t0 )) dCD4(t) = dt (1 + ae−r(t−t0 ) ))2 dCD4(t) dCD4(t) (c) |t=4 ≈ −62 and |t=8 ≈ −10. dt dt Hence, the rate of CD4 decline is greater at t = 4. (b) 6. The definition of a derivative is dy(x) y(x + ∆x) − y(x) = lim . ∆x→0 dx ∆x Hence, d(4x3 ) 4(x + ∆x)3 − 4x3 = lim ∆x→0 dx ∆x 4x3 + 12x2 ∆x + 12x∆x2 + 4∆x3 − 4x3 = lim ∆x→0 ∆x = 4 lim 3x2 + 3x∆x + 4∆x2 = 12x2 ∆x→0 7. y(x) = sin(x), y 0 (x) = cos(x), y 00 (x) = − sin(x), y 000 (x) == − cos(x), y 0000 (x) = sin(x). Hence, the 4th, 8th, 12th, ..., 200th derivative of sin x is sin x. 8. (a) (1 − x)−1 = 1 + x + x2 + x3 + ... valid for −1 < x < 1. (b) (c) d 2 3 dx (1 + x + x + x + ...) = 1 + 2x d −1 = (1 − x)−2 . Also: dx (1 − x) 1 = (1 − x)2 1 1−x 2 + 3x2 + ... valid for −1 < x < 1. = (1 + x + x2 + x3 + ...)(1 + x + x2 + x3 + ...) = 1 + x + x2 + x3 + ... x + x2 + x3 + ... x2 + x3 + ... x3 + ... +... = 1 + 2x + 3x2 + 4x3 + ... (d) They’re the same! This suggests that it should be possible to differentiate infinite series termby-term in some cases.
© Copyright 2026 Paperzz