1H / Ultrafast MAS / Paramagnetic Bernd Reif Technische Universität München Helmholtz-Zentrum München Biomolecular Solid-State NMR Winter School Stowe, VT January 10-15, 2016 1. Protons in Solid-State NMR 1) Ultrafast MAS / low power decoupling 2) Application of 1H,1H homonuclear decoupling schemes like FSLG/PMLG, DUMBO ... 3) Deuteration Ultrafast MAS Proton Detection Heteronuclear Decoupling 1H line widths of NH3, CH and CH3 in alanine, measured at 600 MHz 1H Linewidth [Hz] MAS=60 kHz Samoson, Tuherm, Gan, Solid State NMR 20 130 (2001) Ernst, Samoson, Meier, J. Magn. Res. 163, 332 (2003) Ernst, Meier, Tuherm, Samoson, Meier, J. Am. Chem. Soc. 126 4764 (2004) Samoson, Tuherm, Past, Reinhold, Anupold, Heinmaa, Top. Curr. Chem. 246 15 (2005) Laage, Sachleben, Steuernagel, Pierattelli, Pintacuda, Emsley, J. Magn. Res. 196 133 (2009) Low-Power XiX Decoupling Schemes at Ultrafast MAS frequencies low-power (XiX)45: MAS = 50 kHz τp = 76 µs ν1 = 13 kHz high-power XiX: MAS = 50 kHz τp = 57 µs ν1 = 220 kHz Gly Cα intensity high-power XiX: Optimum for: τp = ca. 2.85 τr Detken, Hardy, Ernst, Meier, Chem. Phys. Lett. 356 298 (2002) Ernst, Samoson, Meier, J. Magn. Reson. 203 332 (2003) Low-Power Sequences for Hartmann-Hahn transfer n=0 Hartmann-Hahn match condition (ωI = ωS): Second Order-CP (SOCP) 1H spin-lock efficiency as a function of the applied rf-field amplitude, indirectly detected by cross polarization to the Cα resonance of glycine ethyl ester (MAS = 65 kHz) Lange, Scholz, Manolikas, Ernst, Meier, Chem. Phys. Lett. 468 100 (2009) Implementation of Low-Power Building-Blocks in Multidimensional Solid-State NMR experiments Vijayan, Demers, Biernat, Mandelkow, Becker, Lange ChemPhysChem 10, 2205 (2009) Frequency Switched Lee-Goldburg (FSLG) and Phase Modulated Lee-Goldburg (PMLG) Experiments for homonuclear 1H,1H Decoupling To obtain decoupling, magnetization has to be rotated around the magic angle in spin space: PMLG spectrum of a 15N labeled sample of a SH3 domain PMLG 1H,15N Correlation of the α-spectrin SH3 domain in the solid-state = ca. 0.24 ppm @750 MHz B0 = 750 MHz rescaled line width FSLG: Bielecki, Kolbert, Levitt, Chem Phys Lett 155, 341 (1989) PMLG: Vinogradov, Madhu, Vega, Chem Phys Lett 314 443 (1999) Protons in Solid-State NMR: Sensitivity and Resolution 3 B03 t (S /N ) ∝ nγ exc γ Det u-[2H,15N]-Nac-Val-Leu-OH € 15N Detection 1H Detection (S /N )[ 1 H ] $ γ H '3 / 2 ∝& ) (S /N )[ 15 N ] % γ N ( Sensitivity Gain = x 9.0 @ 33 kHz MAS ≈ (10) JMR 151, 320-327 (2001); JMR 160, 78-83 (2003) € 3/2 = 30 Proton density in the deuterated α-spectrin SH3 domain fully protonated perdeuterated with 100% of labile protons back-exchanged 500 MHz, 10 kHz MAS Chevelkov et al. J. Am. Chem. Soc. 125, 7788 (2003) Proton density in the deuterated α-spectrin SH3 domain perdeuterated with 10% of labile protons back-exchanged Chevelkov et al. Angew. Chem. Int. Edt. 45 3878-3881 (2006) Proton dilution in small organic molecules 1% protonated Ala (= 99% deuterated) MAS = 11 kHz B0 = 360 MHz MREV-8 CRAMPS spectrum 1H McDermott, Creuzet, Kolbert, Griffin, J. Magn. Reson. 98, 408 (1992) 1H Zheng, Fishbein, Griffin, Herzfeld, J. Am. Chem. Soc. 115, 6254 (1993) Deuteration in Solid-State NMR Paulson, Morcombe, Gaponenko, Dancheck, Byrd & Zilm, Sensitive High Resolution Inverse Detection NMR Spectroscopy of Proteins in the Solid State. J Am Chem Soc 125: 15831-15836 (2003) Morcombe, Gaponenko, Byrd & Zilm, C-13 CP MAS spectroscopy of deuterated proteins: CP dynamics, line shapes, and T-1 relaxation. J Am Chem Soc 127: 397-404 (2005). Zhou & Rienstra, High-Performance Solvent Suppression for Proton-Detected Solid-State NMR. J Magn Reson 192: 167–172 (2008). Zhou, Shah, Cormos, Mullen, Sandoz & Rienstra, Proton-detected solid-state NMR Spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J Am Chem Soc 129: 11791-11801 (2007). Schanda, Huber, Verel, Ernst & Meier Direct Detection of 3hJNC Hydrogen-Bond Scalar Couplings in Proteins by Solid-State NMR Spectroscopy. Angew Chem Int Edt 48: 9322-9325 (2009) Schanda, Meier, Ernst Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 132: 15957–15967 (2010). Solvent Suppression in the Solid-State a,b: zg c: x-filter d: x-filter + gradients Chevelkov et al. JACS 125 7788 (2003) Solvent Suppression in the Solid-State Solution 2: Zilm and co-worker JACS 125 15831 (2003) Solution 3: MISSISSIPPI Rienstra and co-worker JMR 192 167 (2008) High power RF irradiation Imagine what happens to your sample (40 µL) when you apply 100 W for 30 ms ... High power RF irradiation Imagine what happens to your sample (40 µL) when you apply 100 W for 30 ms ... Using the water chemical shift as a thermometer Sample Heating due to Friction (3.2 mm rotor) "Static" Sample heating due to RF irradiation Total time of irradiation d1 = 30 ms ωrf = 100 kHz, 100 mM NaCl recycle delay = 3s regular CP-MAS probe a: no irradiation b: d2 = 2.7 s c: d2 = 1.7 s d: d2 = 1.0 s e: d2 = 0.03 s Static/Steady-state sample heating due to RF irradiation (cw = 30 ms) "Dynamic" Sample heating due to RF irradiation Total time of irradiation d1 = 30 ms ωrf = 100 kHz, 100 mM NaCl recycle delay = 3s d5 = 1 ms (switching delay) regular CP-MAS probe a: no irradiation b: t1 = 0 ms c: t1 = 10 ms d: t1 = 20 ms e: t1 = 30 ms Dynamic sample heating in an indirect evolution period due to RF irradiation d3 = 3s What can you do with protons in the solid-state ? Solution-State like Pulse Schemes applied to Crystalline Proteins HNCACB Coherences are sufficiently long-lived in the solid-state to enable scalar transfers combined with 1H detection Increased reliability in the assignment of resonances in MAS solid-state NMR Linser, Fink, Reif J. Magn. Reson. 193, 89 (2008) Linser, Fink, Reif, J. Biomol. NMR 47, 1 (2010) More assignment experiments Linser, R., Fink, U., and Reif, B. (2010). Narrow carbonyl resonances in proton-diluted proteins facilitate NMR assignments in the solid-state. J Biomol NMR 47, 1-6. Linser, R. (2011). Side-chain to backbone correlations from solid-state NMR of perdeuterated proteins through combined excitation and long-range magnetization transfers. J Biomol NMR 51, 221-226. Linser, R. (2012). Backbone assignment of perdeuterated proteins using long-range H/C-dipolar transfers. J Biomol NMR 52, 151-158. Barbet-Massin, E., Pell, A.J., Jaudzems, K., Franks, W.T., Retel, J.S., Kotelovica, S., Akopjana, I., Tars, K., Emsley, L., Oschkinat, H., Lesage, A., and Pintacuda, G. (2013). Out-and-back C-13-C-13 scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS. J Biomol NMR 56, 379-386. Barbet-Massin, E., Pell, A.J., Retel, J.S., Andreas, L.B., Jaudzems, K., Franks, W.T., Nieuwkoop, A.J., Hiller, M., Hagman, V., Guerry, P., Bertarello, A., Knight, M.J., Felletti, M., Le Marchand, T., Kotelovica, S., Akopjana, I., Tars, K., Stoppini, M., Bellotti, V., Bolognesi, M., Ricagno, S., Chou, J.J., Griffin, R.G., Oschkinat, H., Lesage, A., Emsley, L., Herrmann, T., and Pintacuda, G. (2014). Rapid Proton-Detected NMR Assignment for Proteins with Fast Magic Angle Spinning. J Am Chem Soc 136, 12489-12497. Chevelkov, V., Habenstein, B., Loquet, A., Giller, K., Becker, S., and Lange, A. (2014). Protondetected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins. J Magn Reson 242, 180-188. Residual Protonation in Perdeuterated Proteins HANAH (1H Natural Abundance in 2H Proteins) Residual Protonation in perdeuterated proteins (> 97% 2H, 99% 13C -Glucose) 10% labeling of -CD2H α-spectrin SH3 Methyl 1H,13C Correlations at 1H „Natural Abundance“ 1H,13C 1H,13C double CP HMQC Agarwal et al. JMR 194 16 (2008) Increased sensitivity using specific precursors for amino acid biosynthesis α-spectrin SH3 α-ketoisovalerate: Sparse labeling at Leu, Val sites (no measurable 13C-13C spin diffusion) H D C D Goto, Gardner, Mueller, Willis, Kay, JBNMR 13, 369 (1999) Agarwal, Diehl, Skrynnikov, Reif, JACS 128, 12620 (2006) Agarwal, Xue, Reif, Skrynnikov, JACS 130, 16611 (2008) Detection of Exchangeable Hydroxyl Protons α-spectrin SH3 W41ε ? Exchangeable Hydroxyl Protons in α-spectrin SH3 13C detected 1H,13C-CP ∼ 1 ms HN C´ Cα Exchangeable Hydroxyl Protons in α-spectrin SH3 Exchangeable Hydroxyl Protons in α-spectrin SH3 13C Agarwal et al. JACS 132 3187 (2010) detected 1H,13C-CP Exchange Properties of Hydroxyl Protons (α-SH3, 5°C) Hydrogen Bonds in α-spectrin SH3: Y15(OH)-E22(COO-) Hydrogen Bonds in α-spectrin SH3: Y15(OH)-E22(COO-) Hydrogen Bonds in α-spectrin SH3: T24(OH)-E17(COO-) 0.94 %r (3 Int C_O_H DC _ O _ H H ...O=C = ' * (τ mix → ∞) = D Int H...O= C & rC _ O _ H ) H ...O=C DH , C = −µ0 0.53 € γ H γC ! rH3 , C €r(OH) = ca. 1.08-1.10 Å 4D Solid-State NMR Experiment for Structure Determination Huber et al. Meier Chem Phys. Chem. 12, 915-918 (2011) Use of time shared evolution periods in 3D/4D experiments 2D F3/F4 plane (red) of the 4D HN…NH Linser et al. JACS 133, 5905-5912 (2011) High Resolution Deuterium MAS solid-state NMR spectroscopy 1) Analysis of Side Chain and Backbone Dynamics 2) In Solution-State, 2H resonances are broad due to the J(0) contribution to 2H T2 CQ = ca. 55 kHz (methyl) and 165 kHz In solution: 2 2 1 " e qQ % R(D+ ) = $ ' [9J(0) + 15J(ω D ) + 6J(2ω D )] 80 # ! & τf 1 1 τR J(ω ) = S 2 + (1− S 2 ) 2 9 1+ (ωτ R ) 9 1+ (ωτ f ) 2 In solids € Deuterium Single Quantum (SQ) Correlations Setup-System: 2H,13C,15N-NAc-Val-Leu-OH Deuterium Double Quantum (DQ) Correlations DQ chemical shifts are scaled by 1/2 Setup-System: 2H,13C,15N-NAc-Val-Leu-OH Making use of the spin-1 properties of 2H: HQ = ωQ [3Iz Iz − I ⋅ I] 3 € τ = 3 µs (black), 9 µs (red/blue) > Factor 2 increased resolution in the DQ experiment Where does the additional increase in resolution (> 2) come from? ωQ [3Iz Iz − I ⋅ I] 3 e 2qQ 1 2 ωQ = [ 2 (3cos θ −1)] ; 2I(2I −1) HQ = η=0 € 2H-DQ are insensitive to MA mis-setting and to Motional Broadening See Vega, Pines (1977) J. Chem. Phys. 66 5624 Simulated 2H off-Magic Angle spectra CQ = 100 kHz MAS = 20 kHz Setting the Magic Angle using NaNO3 2H 13C spectroscopy applied to α-spectrin SH3 detected 1H,13C CP 2H-DQ,13C CP Dmet-Cmet Dα-Cα 2H spectroscopy applied to α-spectrin SH3: Methyl spectral region 13C detected 1H,13C CP 2H-DQ,13C CP S/N(2H,13C) ≈ 2-3 x S/N(1H,13C) γ(1H) = 6.5 x γ(2H) T1 (1H) = 4 x T1 (2H) n(2H) = 33-36 x n(1H) 2H spectroscopy applied to α-spectrin SH3 Cα-Dα Agarwal, Faelber, Schmieder, Reif, JACS 131, 2 (2009) Can we detect aliphatic protons ? (other than methyls) Can we detect aliphatic protons (other than methyls) ? Biosynthesis with 2H,13C glucose and various amounts of H2O (5-30 %) NOESY type distance restraints in the solid-state 3. Paramagnetic Loss: Dilution: x10 Gain: Line width: x4 Proton detection: x9 How can we do better ? Doping with Cu(II)-EDTA 0 mM Cu-EDTA 75 mM Cu-EDTA Wickramasinghe, Kotecha, Samoson, Past, Ishii J. Magn. Reson. 184, 350 (2007) Linser, Diehl, Chevelkov, Reif J. Magn. Reson. 189, 209 (2007) PREs are not uniform. Accessibility of an Amide Proton in the SH3 domain of α-spectrin - Cu(II)EDTA + 75 mM Cu(II)EDTA Is the differential 1H-T1 due to a variation of the HN distance to the surface of the protein ? Surface Distance of an Amide Proton in α-spectrin SH3 ΔR1(1H): R1(with Cu-EDTA) – R1(without Cu-EDTA) Disentangling Paramagnetic Effects from Intrinsic Differences in 1H-T1 Relaxation ΔR1(1H) is a Function of the Surface Distance of an Amide Proton ΔR1 = k /r 6 2 2 2 0 $ µ '2 2γ n ge µB 3τ c 6τ c τc Se ( Se + 1) & 0 ) / + + 2 2 2 22 2 2 % 4 π ( .1+ (ω n − ω e ) τ c 1+ ω n τ c 1+ (ω n + ω e ) τ c 1 15 1/ τ c = 1/ τ e + 1/ τ n k= € € € Integration over the solvent accessible volume yields: r$ max 2 π θ max ΔR1, eff = k ⋅ reff−6 reff−6 = ∫ ∫ ∫r 0 0 −6 ⋅ r$2 sin θ dθ dϕ dr$ r = r02 + r"2 + 2r0 r"cos θ 0 Solomon, Phys. Rev. 99, 559 (1955) € € € ΔR1(1H) is a Function of the Surface Accessibilty of an Amide Proton dashed line: θmax = 60° and 120° solid line: θmax = 90° 150 mM, 0 mM Cu-EDTA r = 4.0 Å Linser et al. J. Am. Chem. Soc. 131 1307 (2009) Faster is better …. u-[2H,15N]-GB1, 39 kHz MAS, 750 MHz: Back-exchanged with 100 % H2O Zhou, Shea, Nieuwkoop, Franks, Wylie, Mullen, Sandoz, Rienstra (2007) Angewandte Chemie Int. Edt. 46 8380-8383 u-[2H,15N] α-SH3 re-crystallized with 100 % H2O 60 kHz MAS, 1000 MHz Lewandowski, Dumez, Akbey, Lange, Emsley, Oschkinat (2011) J. Phys. Chem. Lett. 2 2205-2211 1.3 mm rotors yield approximately the same absolute intensity as fully packed 3.2 mm rotors 2H,15N α-SH3 as a function of [H2O] (during crystallization) Akbey et al., JBNMR 46, 67-73 (2010) MAS rotor Volume max concentration exchangeable protons relative intensity 1.3 mm 4 µL 100 % 0.5 3.2 mm 40 µL ca. 20 % 1 Proton detection at FAST MAS with Protonated Protein Samples Protonated GB1, u-[1H,15N], 39 kHz MAS Zhou, Shah, Cormos, Mullen, Sandoz, Rienstra (2007) J. Am. Chem. Soc. 129 11791-11801 Proton detected experiments of Protonated Protein Samples 800 MHz, MAS = 60 kHz ε186 subunit from DNA polymerase III tetrameric single-stranded DNA binding protein (SSB) Marchetti, Jehle, Felletti, Knight, Wang, Xu, Park, Otting, Lesage, Emsley, Dixon, Pintacuda (2012) Angewandte Chemie Int. Edt. 51 10756-10759 Proton detected experiments of Protonated and Deuterated Protein Samples u-[1H,15N] SSB, 800 MHz Marchetti et al. (2012) Angewandte Chemie Int. Edt. 51, 10756-10759 u-[2H,15N] α-SH3, 1000 MHz Lewandowski et al. (2011) J. Phys. Chem. Lett. 2 2205-2211 when fast is not fast enough … Ubiquitin, u-2H,13C,15N, recrystallized from 100 % H2O MAS: 100 kHz, 850 MHz Agarwal et al. Meier Angewandte Chemie Int. Edt. 53, 12253-12256 (2014) Applications to non-crystalline systems Soluble Protein Complexes: The proteasome activator complex 11S-α7(β7β7)α7 [Thermoplasma acidophilum] perdeuterated, back-exchanged with 20% H2O; 20 kHz MAS, 600 MHz 11S-α7β7β7α7 1.1 MDa Mainz et al., Angewandte Chemie Int. Edt. 52 8746-8751 (2013) MAS induces reversible sedimentation of protein complexes αB inhibits amorphous aggregation of reduced lysozyme Challenges in the Solid-State: - Crystal contacts - Ligands have to be co-precipitated - Analysis of chemical shifts is ambiguous if crystal symmetry changes Challenges in Solution-State: - Correlation time problem: Resonance Lines become broad for large molecules - TROSY (Pervushin/Wüthrich) - Decrease of τC: High temperature / Reversed Micelles (Wand) Bertini et al., PNAS 108, 10396 (2011) Ribosomal Complexes: How far can we go ? Questions: • Can we observe individual components of the ribosome ? • Does ribosome binding induce a conformational change of Trigger Factor (TF) ? in collaboration with Shang-Te Danny Hsu, Taiwan and Roland Beckmann, LMU München Barbet-Massin, Angewandte Chemie Int. Edt. 54, 4367 (2015) TF-RBD in complex with the 50S ribosome in complex with 50S TF-RBD in complex with 50S solution-state (TF-RBD) unbound TF-RBD in solution TF-RBD in complex with the 50S ribosome no chemical shift changes chemical shift changes / exchange broadening solution-state (TF-RBD) in complex with 50S TF (Ribosome Binding Domain) (~14 kDa) in complex with 50S (~1.4 MDa) 100 % back-exchanged @ 60 kHz MAS: ca. 20 µg TF-RBD Baram et al. Yonath PNAS 102 12017 (2005) Processing of the Amyloid Precursor Protein (APP) yields the Alzheimer's disease β-amyloid peptide Aβ Solid-State NMR of Aβ aggregates Lansbury et al. Griffin, Nat. Struct.Biol. 2, 990 (1995) Benzinger et al. Meredith, Proc. Natl. Acad. Sci. USA 95, 13407 (1998) Petkova et al. Tycko, Science 307, 262 (2005) Petkova et al. Tycko, Biochemistry 45, 498 (2006) Paravastu, et al. Tycko, Proc. Natl Acad. Sci. USA 106, 7443 (2009) Bertini et al. Mao J. Am. Chem. Soc. 133, 16013 (2011) Chimon et al. Ishii, Nature Stuct. Mol. Biol. 14, 1157 (2007) Ahmed et al. Smith, Nature Struct. Mol. Biol. 17 561 (2010) Amyloids: Alzheimer’s disease Aβ40 fibrils 50 nm Tex • 1 set of resonances (30-40 peaks) • Well defined chemical shift dispersion → well-defined 3D structure 3D-HNCO Linser et al., Angewandte Chem. Int. Edt. 50, 4508-4512 (2011) Alzheimer's disease Amyloid Aβ(1-40) 1H,15N CP correlation (full spectrum) Lys-28 ? Histidine imidazole correlations ? Alzheimer's disease Amyloid Aβ(1-40) 1H,13C CP correlation Ser H 2O His Detection of Histidines Imidazole Protons in Amyloid Aβ(1-40) fibrils Detection of Histidines Imidazole Protons in Amyloid Aβ(1-40) fibrils - Hδ1 Detection of Histidines Imidazole Protons in Alzheimer's disease Amyloid Aβ(1-40) fibrils H13 Q15 E11 H14 K16 E22 Tycko, Quart Rev Biophys. 39 1-55 (2006) Hδ1 Cα Gln-Cβ/ Glu-Cβ Exchangeable side chains can assist in determining the quarternary structure of amyloid fibrils Histidines can assist in determining the quarternary structure of Amyloid Aβ(1-40) fibrils Hδ1 Agarwal et al., PCCP 15, 12551 (2013); see also: Petkova et al. PNAS 99 16742 (2002) Membrane proteins: OmpG and Bacteriorhodopsin Bacteriorhodopsin OmpG Linser et al. Angewandte Chemie Int. Edt. 50, 4508-4512 (2011) Protein-RNA Complexes: The boxCD - L7ae complex of Archeoglobus fulgidus solution-state solid-state Asami et al. Angewandte Chemie Int. Edt. 52 2345-2349 (2013) HN correlations of the boxCD RNA-Protein Complex Superposition of the Solid-State and Solution-State Spectra solution-state solid-state Protein HN correlation spectra in presence of protonated and deuterated RNA Other examples: Proton detection in noncrystalline systems Ward, M.E., Shi, L., Lake, E., Krishnamurthy, S., Hutchins, H., Brown, L.S., and Ladizhansky, V. (2011). Proton-Detected Solid-State NMR Reveals Intramembrane Polar Networks in a Seven-Helical Transmembrane Protein Proteorhodopsin. J Am Chem Soc 133, 17434-17443. Andreas, L.B., Reese, M., Eddy, M.T., Gelev, V., Ni, Q.Z., Miller, E.A., Emsley, L., Pintacuda, G., Chou, J.J., and Griffin, R.G. (2015). Structure and Mechanism of the Influenza A M2(18-60) Dimer of Dimers. J Am Chem Soc 137, 14877–14886. Chevelkov, V., Habenstein, B., Loquet, A., Giller, K., Becker, S., and Lange, A. (2014). Protondetected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins. J Magn Reson 242, 180-188. Acknowledgement Vipin Agarwal Sam Asami Veniamin Chevelkov Rasmus Linser Purdue University Nikolai Skrynnikov
© Copyright 2026 Paperzz