1 Find Perimeter and Area of Squares and Rectangles Using Formulas

Find Perimeter and Area of
Squares and Rectangles Using
Formulas
Brenda Meery
Jen Kershaw
Say Thanks to the Authors
Click http://www.ck12.org/saythanks
(No sign in required)
To access a customizable version of this book, as well as other
interactive content, visit www.ck12.org
CK-12 Foundation is a non-profit organization with a mission to
reduce the cost of textbook materials for the K-12 market both in
the U.S. and worldwide. Using an open-source, collaborative, and
web-based compilation model, CK-12 pioneers and promotes the
creation and distribution of high-quality, adaptive online textbooks
that can be mixed, modified and printed (i.e., the FlexBook®
textbooks).
Copyright © 2016 CK-12 Foundation, www.ck12.org
The names “CK-12” and “CK12” and associated logos and the
terms “FlexBook®” and “FlexBook Platform®” (collectively
“CK-12 Marks”) are trademarks and service marks of CK-12
Foundation and are protected by federal, state, and international
laws.
Any form of reproduction of this book in any format or medium,
in whole or in sections must include the referral attribution link
http://www.ck12.org/saythanks (placed in a visible location) in
addition to the following terms.
Except as otherwise noted, all CK-12 Content (including CK-12
Curriculum Material) is made available to Users in accordance
with the Creative Commons Attribution-Non-Commercial 3.0
Unported (CC BY-NC 3.0) License (http://creativecommons.org/
licenses/by-nc/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), which is incorporated
herein by this reference.
Complete terms can be found at http://www.ck12.org/about/
terms-of-use.
Printed: April 19, 2016
AUTHORS
Brenda Meery
Jen Kershaw
www.ck12.org
C HAPTER
Chapter 1. Find Perimeter and Area of Squares and Rectangles Using Formulas
1
Find Perimeter and Area of
Squares and Rectangles Using
Formulas
In this concept, you will learn to find the perimeter and area of squares and rectangles using formulas.
Raj has a small patch of land that he wants to turn into a vegetable garden. However, he wants to build a small fence
around it before he plants anything. He knows that the area of the land is 240 square feet and that the length of one
side is 15 feet. In order to build a fence, he needs to know the width of the land too. How can Raj write and solve an
equation to determine the width of his future garden?
In this concept, you will learn to find the perimeter and area of squares and rectangles using formulas.
Perimeter and Area of Squares and Rectangles
A formula is a method that has been proven to work when solving specific types of problems.
Let’s explore some of those familiar formulas by looking at rectangles, squares, area and perimeter.
The perimeter of a figure is the distance around the figure. Perimeter is the sum of all of the sides in a square or
rectangle. Since a rectangle has two sets of parallel sides, the formula for determining perimeter (P) of a rectangle
is:
P = 2L + 2W
L = length and W = width
1
www.ck12.org
Let’s look at an example.
The rectangle above shows its dimensions. Find the perimeter.
First, substitute the values for the width (W ) and the length (L) into the perimeter formula.
P = 2(12) + 2(9)
Next, complete the multiplication and addition to find the perimeter.
P = 2(12) + 2(9)
P = 24 + 18
P = 42
The answer is 42.
The perimeter of the rectangle is 42 inches.
Area is the amount of square units inside the figure. Area is found by multiplying the length × width. The formula
for finding the area of a rectangle is:
A = L ×W
You can use the dimensions from the rectangle above to find the area of this rectangle.
First, fill the values for L and W into the formula for area.
A = L ×W
A = 12 × 9
Next, solve for the area by multiplying.
A = 12 × 9
A = 108
2
www.ck12.org
Chapter 1. Find Perimeter and Area of Squares and Rectangles Using Formulas
The answer is 108.
The area of the rectangle is 108 in2 .
Notice that the unit of measurement for area is squared. That is because you multiplied a unit measure times itself:
in × in = in2 . Area is always written in square units.
You can also find the perimeter and area of a square. Remember that a square has four equal sides given the symbol
s. You can use the following formula for finding the perimeter of a square:
P = 4s
Let’s look at an example.
A rectangle has a length of 12 feet and a perimeter of 72 feet. Write and solve an equation to determine the width of
the rectangle.
First, substitute the values for the perimeter (P) and the length (L) into the perimeter formula.
72 = 2(12) + 2W
Next, complete the multiplication.
72 = 24 + 2W
Then, subtract 24 from both sides to get your variable alone on the right side.
72 − 24 = 24 − 24 + 2W
48 = 2W
Then, multiply both sides by the reciprocal of 2 to isolate your variable.
1
2
× 48
1
48
2
W
= 21 × 2W
1
= W
= 24
The answer is 24.
The width of the rectangle is 24 feet.
Examples
Example 1
Earlier, you were given a problem about Raj and his garden fence.
He knows that the area of the land is 240 square feet, the length of one side is 15 feet, and needs to know the width
of the land.
First, substitute the values for the area and the side length into the area formula.
3
www.ck12.org
A = L ×W
240 f t 2 = 15 f t ×W
Next, multiply both sides by the reciprocal of 15 in order to isolate the variable W .
1
15
× 240
1
W
1
= 15
× 15
1 ×W
= 16
The answer is 16.
The width of Raj’s garden is 16 ft. Therefore the dimensions of the garden are 16 ft by 15 ft.
Example 2
A square has a perimeter of 196 inches. Determine the length of one side of the square.
First, substitute the value for the perimeter (P) into the perimeter formula.
196 = 4s
Next, multiply both sides by the reciprocal of 4 to isolate your variable.
1
4
× 196
1
= 41 × 4s
1
= s
s = 49
196
4
The answer is 49.
Example 3
Find the perimeter of the following square if the side length is 4.5 inches.
First, substitute the value for the side length into the perimeter formula.
P = 4s
P = 4(4.5)
Next, multiply by 4 to solve for the perimeter.
P = 4(4.5)
P = 18
The answer is 18.
4
www.ck12.org
Chapter 1. Find Perimeter and Area of Squares and Rectangles Using Formulas
Example 4
Can you find the area of the square in Example 1?
First, substitute the value for the side length into the area formula.
A = s×s
A = 4.5 × 4.5
Next, multiply to solve for the area.
A = 4.5 × 4.5
A = 20.25
The answer is 20.25.
The area of the square is 20.25 in2 .
Example 5
A square has an area of 144 sq. meters. What is the side length?
First, substitute the value for the area into the area formula.
A = s×s
144 m2 = s × s
Next, take the square root of the area to isolate s. Remember that the opposite of square is square root.
144
144
s
s
= s×s
2
= s√
=
144
= 12
The answer is 12.
Review
Find the area and perimeter of each square or rectangle using formulas and the given dimensions. Each problem will
have two answers.
1. A square with a side length of 5 inches.
2. A rectangle with a length of 5 inches and a width of 3 inches.
3. A rectangle with a length of 8 cm and a width of 6 cm.
4. A square with a side length of 11 feet.
5. A rectangle with a length of 9 inches and a width of 4.5 inches.
6. A square with a side length of 7 feet.
5
www.ck12.org
7. A rectangle with a length of 12 meters and a width of 11 meters.
8. A square with a side length of 13 meters.
9. A rectangle with a length of 15 feet and a width of 8 feet.
10. A square with a side length of 12.5 feet.
Find the missing side length given the area of each square.
11. A = 64 in2
12. A = 36 in2
13. A = 81 m2
14. A = 100 in2
15. A = 144 f t 2
16. A = 121 cm2
17. A = 4 mm2
Answers for Review Problems
To see the Review answers, open this PDF file and look for section 1.13.
Resources
MEDIA
Click image to the left or use the URL below.
URL: https://www.ck12.org/flx/render/embeddedobject/167143
6